太子爷小说网 > 社科电子书 > 细胞叛逆者 -罗伯特·温伯格1111 >

第10节

细胞叛逆者 -罗伯特·温伯格1111-第10节

小说: 细胞叛逆者 -罗伯特·温伯格1111 字数: 每页4000字

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



  对细胞复制自身DNA分子的机制仔细审查,也发现了类似的矛盾。细胞复制DNA是为了分裂作准备,这一过程容易发生错误。在DNA聚合酶——为DNA复制服务的酶——复制出一段DNA后,由于聚合酶的操作失误,此刻DNA新链中每1000个碱基就有1个是错误的。然而同以前一样,DNA中累积的突变体的实际比率仍是极低的。经由某种途径,细胞消除了绝大多数DNA中最初的复制错误。
  实际数字非常低: 到细胞完成全部DNA复制过程时,只有不到百万分之一的碱基复制错误。 细胞内部有一套复制编辑机制,用它在DNA中查找复制错的碱基并将它们逐出双螺旋体。突变率如此之低,这充分证明了该机制的威力。被放逐的碱基留下的空缺由新的能够恢复DNA 正确序列的碱基替代,抹去全部错误不留一丝痕迹。细胞内还有一套类似的机制, 专门负责查找并切除遭化学诱变剂攻击及篡改的DNA碱基。这些复原遗传文本的过程称作“DNA修复”。
  因此细胞的遗传数据库坚不可摧、固若金汤只是海市蜃楼般的错觉。基因组的稳定好比一场战战兢兢的高空走钢丝表演,是高度警惕的修复机制和遗传混乱永无休止的持久战。
  这种情况对肿瘤的形成产生了直接影响: 如果DNA修复的努力付诸东流,那么细胞DNA 中将累积大量被改动的碱基。这就是说突变的累积至少受到三方面因素的影响:外来的或内部诱变物对DNA的损害,DNA复制中的错误,弥补诱变物质或复制错误带来的破坏的DNA修复机制自身存在的缺陷。 由于突变是肿瘤的发动机,在某种程度上,以上三因素很可能都是肿瘤的起因。
  我们现在知道,几种家族性癌症是由DNA修复的遗传缺陷引起的。DNA修复的细胞设施由大群蛋白质组成。 其中,部分蛋白质专门负责识别受损的DNA片段,部分负责切除,还有一部分用能够复原正确序列的新碱基来替代被删除的错误碱基。如果规定蛋白质结构的某个基因存在缺陷,将高速推进癌症的形成。
  有一种遗传性结肠癌是与之相关的著名病例,该病的发病率要比家族性息肉病高四到五倍。 在四种规定关键的DNA修复蛋白质的基因中,遗传性非息肉病结肠癌(HNPCC)患者继承的一种基因存在缺陷。在修复DNA复制错误的机制中,这四种蛋白质都是至关重要的。如上所述,通过以正确碱基替代复制错了的碱基,许多复制错误被迅即抹去。 可是在HNPCC患者的细胞中,许多此类复制错误未被纠正,并且随细胞分裂作为突变原封不动地传给了子代细胞。结果,随着一次次的细胞生长和分裂,在HNPCC患者的细胞中,以令人心惊肉跳的速率累积着突变。
  HNPCC患者全身上下的细胞无一不存在DNA修复缺陷。尽管缺陷无所不在,可是癌症高发部位明显集中在结肠和子宫内膜壁;而卵巢和膀胱等其他一些地方,发病率稍低。癌症为什么对这些器官情有独钟,原因不明。
  发生在HNPCC患者身上的结肠肿瘤携带的突变癌基因和肿瘤抑制基因, 与散发性、 非家族性癌症患者的非常相似。主要区别在于各自基因突变的速率。HNPCC患者的结肠细胞中, 由于缺少有效的DNA修复机制,这些基因突变的速率和肿瘤发育的总体速率突飞猛进。
  在各种DNA修复酶中, 有一些专司识别紫外线(UV)造成的损害。太阳或者褐肤灯产生的紫外线是一种短波辐射,它袭击DNA分子,使DNA链上的相邻碱基融合成怪异的双碱基复合体,给皮肤细胞造成明显损害。这些碱基融合体导致复制错误、累积突变,结果可能引起基底细胞或扁平细胞皮肤癌。这两种疾病倒容易治愈,但是突变累积也可能导致黑色素瘤这样的不治之症。
  近年来皮肤癌的发病率与日俱增。 过去20年中,黑色素瘤的发病率也有年均4%左右的增幅。引起发病率增长的罪魁祸首无疑应是过去三四十年中甚嚣尘上的日光浴。褐肤房的使用肯定会火上浇油。那些有意无意中反复经受大剂量紫外线照射的人,尽管它们的DNA修复机制任劳任怨,但是仍不能避免皮肤突变细胞的积累。
  大约有10个基因专门负责修复紫外线造成的DNA损害, 其中~个基因的遗传缺陷会引起一种罕见的疾病——着色性干皮病。患者的皮肤对日光极为敏感,好发皮肤癌。着色性干皮病患者的一生中,必须严格避免阳光的直接照射,长期屏蔽皮肤,以防发生癌变。
  另一种DNA修复基因A7“ M如果存在遗传缺陷,人体对电离辐射或X线会极端敏感。 过敏性只是DNA修复中大量缺陷的表现之一,只是冰山一角;终其一生,患者体内都在以加速度累积着突变。
  ATM基因缺陷可能有几种表现形式。个体如果承袭了两份有缺陷的A7“M基因副本, 会患有共济失调一毛细血管扩张综合征。每5万人中就有1个人为这种DNA修复缺陷付出了高昂的代价。他们存在姿态不稳、血管扩张、免疫缺陷、未老先衰的情况,罹患癌症的风险更是上升了100倍。
  近来有证据显示,在家族性乳腺癌和卵巢癌中包含两种基因——BRCAI和BRCAZ,它们分管保持DNA统~性的其他一些蛋白质。 在美国的乳腺癌患者中,有10%的人病因是其中一种基因的遗传缺陷。 与其他遗传性DNA修复缺陷一样,为什么这两种突变基因特别偏爱某些特定的靶器官——一乳房和卵巢呢?原因目前仍属未知。
  我们还没有搞清DNA修复机制的全部的复杂原理。 同样,我们也不清楚有缺陷的修复基因分布的范围和频度。有朝一日,当我们彻底弄清了这两个问题,才有望识别DNA修复缺陷在各种人类肿瘤中扮演的角色。
  有一部分酶负责中和外来诱变剂,如吸烟导入人体的物质。这些酶的问题更加复杂。要搞清它们在防御化学物质的攻击、保卫基因组方面所起的作用,以及细胞内酶含显低下带来的后果,恐怕还需要10年的努力。
  亦凡公益图书馆(shuku)下一章 回目录
  第十章 细胞中的信号蛋白质:生长控制设施
  认识突变经验后, 我们可以对癌症追根溯源,直到细胞的中抠控制分子即DNA中的可识别的变化。但是就某种角度而言,这些遗传发现索然无味,并不能告诉我们多少新东西。基因是纯粹的信息,只不过是精确的抽象概念。如果对基因只作孤立的分析, 我们并不能了解多少细胞鲜活的生命内容。而且,构成基因的DNA碱基序列对揭示基因的运作几无用处。因此,既便我们知道在癌症的发育过程中这个或那个基因发生了突变,但我们对突变基因导致细胞异常生长的机制仍然一无所知。幸运的是,分子生物学为我们提供了有用的逻辑思路,引领我们去理解基因的功能。基因指令周围的细胞制造特定的蛋白质,蛋白质再担负起基因的任务。蛋白质催化生化反应或者造就精密的物质结构。要理解基因的工作情况,必须深入了解基因蛋白质的功能。
  按此逻辑,前述的每一个基因都编码确定某一特定蛋白质的构造。在控制基因的严密关注下, 合成的癌基因蛋白质扬帆起航, 开始在细胞内部引发种种变化。src基因制造出一种叫做PP60‘ “的蛋白质,ras基因的产品叫P21。一长串癌基因也有一大堆癌基因蛋白质相对应,后者有时被称为癌蛋白。当然,肿瘤抑制基因也能通过自己的特定蛋白质控制细胞的繁殖。要深入了解癌症,最终只能从细致分析不同蛋白质的运作着手。
  在直面癌蛋白之前,必须将它们放在生物学背景之下。尤其必须知道癌蛋白的正常形式对于正常、健康细胞所起的作用。正常细胞的功能是我们研究癌的分子畸变的基础。
  某种意义上,癌蛋白的正常形式扮演的角色不言而喻:它们帮助正常细胞控制生长。不幸的是,这个结论并未告诉我们多少新内容;它差不多只是对问题的重复。下面这个问题别开生面,要有用得多:正常细胞是如何确知其生长和抑制生长的时机的呢?
  任何时候,人体中的绝大多数细胞都处在静止状态。只有在不断更新的组织如结肠上皮、骨髓(制造新的血细胞)和皮肤处,才能看到大量欣欣向荣地生长和分裂的细胞。
  组织细胞繁殖率的巨大差异引出的还是老问题:这些细胞究竟是如何知道生长的时机的呢?至于胚胎发育时的组织,情况就更为复杂,此刻细胞繁殖的结果是形成复杂的新组织,而不是维持现有的组织构造。
  尽管每个细胞在其基因中都有极为精密的数据库,可是基因并不能给细胞多少关键的信息片段。基因不能告诉细胞自己委身何处、怎么会到达这个地方的、身体是否要求它生长。基因只能告诉细胞如何回应外部信号,即来自体内远近其他不同细胞的信号。人体内的每个细胞都仰仗它所在的细胞群落告诉它所处的方位、到达的路径及行事方式。在远近不同的邻居们提供的信息中,就有对细胞何时开始生长的指令。
  复杂的生物体不如此,无法组成。细胞彼此互相依存,戮力同心,组成组织、器官以及最终的生物体。在群落中,个体细胞的行为须服从周围机体的需要。因此,在生物体内,每个细胞都必须和其他许多细胞保持密切持久的联系;这些联系组成了将群落结合在一起的网络。尽管组织内的细胞在物质上已经形影不离,但通过不停的交换信息,它们的联系更为紧密。
  因此,正常组织是由几百万个细胞组成的系统,它们组成稳定的社会,互相传递信息表明自己的需要。癌组织是如何遵循这种模式的呢?在一大堆正常细胞的包围中,是什么规定着癌细胞的行为?
  癌细胞是一个叛逆者。癌细胞和正常的伙伴不同,它无视周围细胞群众的需要。癌细胞只关心自己的繁殖利益。它们自私自利、不讲公德。尤为关键的是,不同于正常细胞,癌细胞掌握了无须周围细胞群落的推动即可开始生长的本领。
  现在我们可以用更确切的词汇来表述正常细胞如何控制自身的繁殖这个问题。在一个正常细胞开始生长和分裂行动之前,它离不开外部的推动。相反,癌细胞似乎能够自我激活,无须借助其他细胞的推动。
  那么,细胞彼此之间是怎样刺激生长的呢?我们理解了这一点之后,就可以着手搞清楚癌蛋白篡夺正常细胞间的信号活动、使之变成无关紧要的具体过程。生长信使原则上,控制生长的信息可以通过电信号或者小的有机分子在细胞间传递,可是,由于种种原因,造化提供了另外一种方法。在所有复杂的多细胞生物体中,信息是由叫做生长因子的小的可溶性蛋白质分子传递的。细胞释放出一个生长因子,然后因子在胞际间隙移动,最终影响到它的目标——另一个细胞。这个靶细胞的回应是启动生长和分裂程序。
  体内细胞释放的某些生长因子离开原地后,通过血液作长途跋涉,最后才到达合适的靶细胞。但通常生长因子分子只作距离很短的位移。细胞释放出的生长因子影响的是近邻细胞。组织内的细胞群落主要是由这种近距离信号联结起来的。
  生长因子的合成和释放受到严密监控。不合时宜的释放会刺激细胞在错误的时间和地点开始繁殖,对正常的组织构造造成灾难性破坏。我们对细胞释放生长因子的决策机制所知有限。但是,有一些鲜活的例子可以使我们获得有关机制的一些片断。
  当某个组织受损时,凝血块会止住出血。形成血块不能少了血小板,它聚集在出血点,形成物质屏障防止血液进一步流失。与此同时,血小板释放出几种生长因子——最主要的是血小板衍生生长因子(PDGF)——刺激邻近的结缔组织细胞生长。这些结缔组织细胞是重建受损组织、愈合创口的先锋队。
  当组织供氧不足时,也会有生长因子释放。组织内的细胞会释放出血管内皮生长因子(VEGF)。该因子刺激邻近专司构建血管的细胞。由此,邻近VEGF释放点的毛细血管可以延伸至缺氧组织。延展的毛细血管系统透入组织,供给组织急需的氧气。
  当细胞被从活体组织中采出、置于培养皿中培养时,生长因子对细胞的刺激愈显重要。培养皿中的培养液中有养分——一糖、氨基酸和维生素——每个细胞正常新陈代谢所必须的养分,然而这些养分仅够满足细胞的生存需要。由于没有鲜明的生长信号,正常细胞在培养皿中彷徨,既不生长、也不分裂。
  只有当在培养基中加入血清,正常细胞才开始繁殖。添加的血清中含有生长因子, 其中最主要是PDGF和其他血清因子,如表皮生长因子(EG

返回目录 上一页 下一页 回到顶部 0 0

你可能喜欢的