西方的没落(第一卷)-第30节
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
十三
从古典数字与西方数字的这一根本对立中,产生出了一个同样根本的区别,那就是要素间的关系在这两个数字世界中的区别。在古典数学中,数量之间的联系被称作比例;在西方数学中,关系之间的联系全包含在函数的观点中。“比例”和“函数”这两个词的意义不只局限于数学;它们在雕塑和音乐这两个相关的艺术领域也极为重要。除了在单体雕像各部分的安排中,比例占有很重要的地位之外,雕像、浮雕、壁画等典型的古典艺术形式,都有尺度的扩大与缩小——而在音乐中,这些词便毫无意义——正如我们在钻石艺术中所看到的,在那里,主题本质上是原石料按比例的缩小。相反,在函数的领域,具有决定性的重要意义的,乃是群的转换(transformation of groups),而音乐家也乐于承认,同样的观念在现代作曲理论中也具有本质的地位。我只需提及18世纪最美妙的一种管弦乐形式——变奏曲,便足可证明这一点。
所有的比例,都是基于各要素的不变性,而所有的转换,都是基于各要素的可变性。例如,比较一下对称定理的不同证明:欧几里得对它的证明事实上有赖于一个事先假定的1:1的比率,而近代数学是通过角函数来演绎出相同的定理。
十四
古典数学整个地是一种构成(construction)(广义上说,它包括初等算术),也就说,是某个单一的、在视觉上在场的图形的生产。在这一可称作第二雕刻的艺术中,圆规就是它的凿子。而另一方面,在函数研究中,对象不是以体量大小表现出来的结果,而是对一般的形式可能性的讨论,其工作方式可最好地描述为是一种与音乐十分类似的作曲程序;并且事实上,有许许多多的观念与音乐理论(例如音调、乐句、音阶等)是交汇的,这些观念皆可直接运用于物理学,至少可以证明,有许多关系通过这种运用可以得到说明。
每一个构成,都是一种断言,每一次运算,都是对表象的一种否定,因为前者所获得的结果,在视觉上是给定的,后者所获得的结果,则是对表象的解决。也是因此,我们还会遇到这两种数学之间的另一个差别;研究小的事物的古典数学,处理的是具体的个例,产生的是一个一劳永逸的构成,而研究无穷的数学,处理的是全部种类的形式可能性,是函数、运算、方程式、曲线的群,并且所着眼的不是这些东西最终达致的任何结果,而是它们的进程。就这样,在最近的两个世纪里——尽管现今的数学家几乎没有意识到这一事实——逐渐地产生了数学运算的一般形态学的观念,我们在总体地论及近代数学的实际意义时,便可以证明这一点。所有这一切,正如我们将越来越明确地感觉到的,都是西方才智所固有的一般倾向的一种体现,这种倾向是浮士德精神和浮士德文化所固有的,在其他的精神和文化中是看不到的。我们的数学有为数众多的难题,这些难题常常被视作是“我们的”难题,如同如何把圆周化成正方形是希腊人的难题一样,——例如,无穷级数中的收敛(convergence)问题(柯西),把椭圆积分和代数积分转换成双周期的函数的问题[阿贝尔(Abel)、高斯],这些问题,在追求简单、明确的定量结果的古代人看来,也许不过是相当艰深的高超技巧的一次展示罢了。其实,甚至今天的大众在心里也是这么认为的。根本就没有什么“大众”的近代数学,尽管它也包括有无穷远即距离的象征主义。所有伟大的西方作品,从《神曲》到《帕西伐尔》,都是非大众的,而古典的一切,从荷马史诗到帕加马(Pergamum)的祭坛,都是极其大众化的。
十五
因此,最后,西方数字思想的全部内涵,都集中到了浮士德式的数学中那个具有历史意义的“极限问题”(limit…problem)上了,这个问题是通向无穷的关键,而浮士德式的无穷,与阿拉伯人和印度人的世界观中的无穷是完全不同的。无论数字在特定情形中以什么样的伪装显现出来——无穷级数也好,曲线或函数也好,其真正的本质,都是极限的理论。这一极限,与古典的求圆面积的问题中所标示出来的(尽管没有这样称呼)极限,是绝对相反的。一直到18世纪,欧几里得几何中的流行的先入之见仍在混淆着当时的微分原理的真正意义。无穷小量的观念,可以说是唾手可得,可是,无论数学家们的处理有多么的娴熟,无穷小量的概念仍残留有古典常量的痕迹,仍有着数量大小的外貌,尽管欧几里得根本就不知道这个概念,也根本不承认无穷小量的存在。因此,零是一个常量,是从+1到…1的线性连续体中的一个整数;可是,在欧拉的分析研究中,它却是一个绝大的难题。和他之后的许多人一样,欧拉要处理的是零的微分。只是到了19世纪,古典的数字感的这种遗迹才最终被消除,经由柯西对极限观念的明确阐述,微积分才获得了逻辑上的保障;只有当人们迈出理智的一步,从“无穷小量”转向“任何可能的确定量的最低极限”时,才产生出了在任何非零的可指定数的下面摆动的变数的概念。这种变数,已不再具有任何量的特征:就这样,最终由理论所表达出的极限,不再是对某一数值的趋近,而是其本身就是趋近,就是过程,就是运算。所以,极限不是一种状态,而是一种关系。并且因此,在我们的数学的这一决定性的难题中,我们突然间看到,西方心灵的构成是多么的具有历史性。
十六
把几何学从视觉的范畴中解放出来,把代数从量的观点中解放出来,然后在函数论的伟大结构中把两者结合在一起,超越图形与计算的所有基本局限——这便是西方数字思想的伟大进程。古典数学的常数消融于变数中。几何学成为解析性的,被消解了所有具体的形式;抽象的空间关系取代了数学的实体——严密的几何值便是从它那里获得的——这种空间关系到最后根本不能运用于感觉的、当下的现象中。至于欧几里得的视觉图形,亦被坐标系中任意选定的一个“原点”的几何轨迹所取代;几何客体的被假定的存在之客观性,亦被还原为一种条件,即在运算过程中(运算本身便是列等式的过程,而不是度量的过程),所选定的坐标系不应被改变。而这些坐标本身可直接视为是纯粹而简单的数值,其作用不是去决定,而是去代表或取代点作为空间元素的位置。数字作为既成之物的边界,不再像以前是历史地由一个图形来代表,而是由一个方程式来象征地代表。“几何学”的意义改变了;坐标系作为图象化的过程消失不见了,点成了一个完全抽象的数群。在建筑中,我们发现从文艺复兴到巴罗克的这一内在的转变,是通过米开朗基罗和维尼奥拉(Vignola)的创新完成的。视觉上纯粹的线条,在宫殿和教堂的立面上如同在数学中一样,变得无效了。取代我们在罗马…佛罗伦萨的柱廊和楼层中看到的明确的坐标,“无穷小”出现在优雅地流动的元素中,出现在涡形装饰和漩涡花饰中。构成物被消融在装饰——用数学语言来说,函数——的丰富性中。立柱和壁柱成组成簇地组合在一起,先是打断立面的连续性,再把它聚合起来,接着又无情地将其打散。墙体的表面、屋顶、楼层,全被融入大量的毛粉饰(stucco work)和装饰中,消失了,化为光与影的游戏了。当光在成熟的巴罗克——亦即从贝尼尼(Bernini)(1650年)到德累斯顿、维也纳和巴黎的罗可可风格这个时期——的形式世界中进行游戏时,光本身就变成了一个本质上音乐性的元素。德累斯顿的茨威格宫(the Dresden Zwinger)就是一部交响乐。和18世纪的数学一起,18世纪的建筑发展成了富有音乐特征的形式世界。
十七
我们时代的这种数学在发展过程中必定要走到一种状态:在那里,不仅人为的几何形式的极限,而且视觉本身的极限,实际上都被我们的理论以及我们的心灵视作是一种限制,视作是一种障碍,阻碍了内在可能性作毫无保留的表现——换句话说,在那里,超越性的广延的理想,与直接感知的局限发生了根本的冲突。古典的心灵,由于对柏拉图式和斯多葛式的αταραξια(不动心)的全面放弃,而屈从于感觉,并且(正如毕达哥拉斯学派的数那隐含的色情意义所显示的)这一心灵与其说是发布(emitted)不如说是感受(felt)其伟大的象征。它根本不可能超越此时此地的具体存在。但是,正如毕达哥拉斯学派的一名成员所认为的,数展示了“自然”中各别的和离散的事实(data)的本质,而笛卡儿和他的后继者则把数看作是某种应当被征服的东西,应当被榨取的东西,看作是一种抽象的关系,与所有现象的支撑物全然无关,但却能在一切场合在“自然”中突出自己。自《埃达》(the Eddas)、大教堂和十字军的最初哥特时期开始,甚至自古代征战的哥特人和北欧海盗(Vikings)开始,权力意志(用尼采的伟大表述说)就已经显示出了北方心灵对待其世界的态度,同时也在追求感官超越的热情中显示出了西方数字的动力学。在阿波罗式的数学中,才智是眼睛的仆人,而在浮士德式的数学中,才智是眼睛的主人。因此,我们看到,数学式的“绝对”空间根本上是非古典的,自一开始,它就是不同于日常经验和传统绘画中那种不确定的空间性的东西,亦是不同于康德的先验空间——它看起来像是一个毫不含糊的、确然的概念——的东西,虽然数学家们出于对希腊传统的尊敬而不敢面对这一事实。绝对空间是心灵的一种纯粹抽象,是心灵的一种理想的、无法实现的意愿,这心灵越来越不满足于感觉的表达手段,终于狂热地把这些手段弃之一旁。内在的眼睛觉醒了。
于是,第一次,那些深刻的思考者不得不承认,欧几里得几何,这个在所有时代皆视为真实且唯一的几何学,若从更高角度看,不过是一种假设而已,其普遍的有效性,自高斯以来,面对其他完全非感觉的几何学,我们就知道是根本不可能获得证明的。这种几何的一个关键命题,即欧几里得的平行公设,只是一种论断(assertion),因为我们还可以代之以另一个论断。事实上,我们可以断言说,通过某一给定的点,或是不可能有平行线,或是有两条平行线,或是有更多的平行线,可以平行于某一给定的直线,而所有这些假设,都可以导向一种完全无懈可击的三维空间的几何,这些几何都可以应用于物理学,甚至天文学,而且在某些情形下,可能更优于欧氏几何。
甚至一个简单的公设,如广延是无边界的——自黎曼和曲线空间理论以后,就必须把无边界性(boundlessness)和无终止性(endlessness)区分开来——也与所有直接感觉的本质特征相冲突,因为后者有赖于光阻(light…resistance)的存在,故而它事实上是有物质性的边界的。但是,抽象的边界原理可以想象成是:在一种全新的意义上超越视觉界定的可能性。在深刻的思想家看来,甚至在笛卡儿的几何中,也存在超越三维的经验空间的倾向,因为这种几何把三维的经验空间视作是对数字象征符号的一种不必要的限制。虽然,直到1800年左右,多维空间(遗憾的是,找不到更合适的词)的概念才为数学分析奠定了更广泛的基础,但是,向此迈出的真正的第一步,是在乘幂——实际上即是对数——脱离了原先与感觉上可认知的面积和体积的关系,并通过无理数和复数指数的运用而进入函数的领域,成为纯粹的一般关系值之后。任何一个稍微懂点数学推理的人,都会承认,当我们从把 3看作是一个自然最大值发展到把 n看作是自然最大值时,三维空间的无条件的必然性便随之被取消了。
一旦空间要素或者说“点”不再残留有视觉性的最后遗迹,而且不再是作为坐标线上的一种切割被呈现在眼前,而是被界定为由三个独立数构成的一个群,我们便不再有任何一致的理由来反对用一般的数字n取代数字3。维度的概念被根本地改变了。它不再是以度量的方式,参照“点”在某一可见系统内的位置,来处理点的特性的问题,而是借助我们所愿意的任何维度,来表达完全抽象的数群的特性的问题。数群——包含有n个独立有序的要素——是点的意象(image),因而亦可称之为是一个点。同样地,由此而逻辑地获得的方程式,亦可称之为是一个平面,是一个平面的意象。至于n维度中所有点的集合,则可