万物简史-第15节
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
从牛顿和玻义耳,到金勒、普里斯特利和亨利·卡文迪许,中间隔着一个世纪。在这个世纪里,化学得到了长足的发展,但还有很长的路要走。直到18世纪的最后几年(就普里斯特利而言,还要晚一点),各地的科学家们还在寻找有时候认为真的已经发现完全不存在的东西:变质的气体、没有燃素的海洋酸、福禄考、氧化钙石灰、水陆气味,尤其是燃素。当时,燃素被认为是燃烧的原动力。他们认为,在这一切的中间,还存在一种神秘的生命力,即能赋予无生命物体生命的力。谁也不知道这种难以捉摸的东西在哪里,但有两点是可信的:其一,你可以用电把它激活(玛丽·谢利在她的小说《弗兰肯斯泰因》里充分利用了这种认识);其二,它存在于某种物质,而不存在于别的物质。这就是化学最后分成两大部分的原因:有机的(指被认为有那种东西的物质)和无机的(指被认为没有那种东西的物质)。
这时候,需要有个目光敏锐的人来把化学推进到现代。法国出了这么个人。他的名字叫安托万-洛朗·拉瓦锡。拉瓦锡生于1743年,是一个小贵族家族的成员(他的父亲为这个家族出钱买了一个头衔)。1768年,他在一家深受人们讨厌的机构里买了个开业股。那个机构叫做〃税务总公司〃,代表政府负责收取税金和费用。根据各种说法,拉瓦锡本人又温和,又公正,但他工作的那家公司两方面都不具备。一方面,它只向穷人征税,不向富人征税;另一方面,它往往很武断。对拉瓦锡来说,那家机构之所以很有吸引力,是因为它为他提供了大量的钱来从事他的主要工作,那就是科学。最多的时候,他每年挣的钱多达15万里弗赫差不多相当于今天的1
200万英镑。
走上这条赚钱很多的职业道路3年之后,他娶了他的老板的一个14岁的女儿。这是一桩心和脑都很匹配的婚事。拉瓦锡太太有着机灵的头脑和出众的才华,很快在她的丈夫身边作出了许多成绩。尽管工作有压力,社交生活很繁忙,在大多数日子里他们都要用5个小时清晨2个小时,晚上3个小时以及整个星期天(他们称其为〃快活的日子〃)来从事科学工作。不知怎的,拉瓦锡还挤得出时间来担任火药专员,监督修建巴黎的一段城墙来防范走私分子,协助建立米制,还和别人合著了一本名叫《化学命名法》的手册。这本书成了统一元素名字的〃圣经〃。
第七章 基本物质(2)
作为英国皇家科学院的一名主要成员,无论时下有什么值得关注的事,他还都得知道,积极参与催眠术研究呀,监狱改革呀,昆虫的呼吸呀,巴黎的水供应呀,等等。1870年,一位很有前途的年轻科学家向科学院提交一篇论文,阐述一种新的燃烧理论;就是在那个岗位上,拉瓦锡说了几句轻蔑的话。这种理论的确是错的,但那位科学家再也没有原谅他。
他的名字叫让-保罗·马拉。
只有一件事拉瓦锡从来没有做过,那就是发现一种元素。在一个仿佛任何手拿烧杯、火焰和什么有意思的粉末的人都能发现新东西的时代还要特别说一句,是一个大约有三分之二的元素还没有被发现的时代里拉瓦锡没有发现一种元素。原因当然不是由于缺少烧杯。他有着天底下最好的私人实验室,好到了差不多荒谬的程度,里面竟有13000只烧杯。
恰恰相反,他把别人的发现拿过来,说明这些发现的意义。他摈弃了燃素和有害气体。
他确定了氧和氢到底是什么,并且给二者起了现今的名字。简而言之,他为化学的严格化、明晰化和条理化出了力。
他的想像力实际上是得来全不费工夫的。多年来,他和拉瓦锡太太一直在忙于艰苦的研究工作,那些研究要求最精密的计算。比如,他们确定,生锈的物体不会像大家长期以来认为的那样变轻,而会变重这是一项了不起的发现。物体在生锈的过程中以某种方式从空气中吸引基本粒子。认识到物质只会变形,不会消失,这还是第一次。假如你现在把这本书烧了,它的物质会变成灰和烟,但物质在宇宙中的总量不会改变。后来,这被称之为物质不灭,是一个革命性的理念。不幸的是,它恰好与另一场革命法国大革命同时发生,而在这场革命中,拉瓦锡完全站错了队。
他不但是税务总公司的一名成员,而且劲头十足地修建过巴黎的城墙起义的市民们对该建筑物厌恶之极,首先攻打的就是这东西。1791年,这时候已经是国民议会中一位重要人物的马拉利用了这一点,对拉瓦锡进行谴责,认为他早该被绞死。过不多久,马拉在洗澡时被一名受迫害的年轻女子杀害,她的名字叫夏洛特·科黛,但这对拉瓦锡来说已经为时太晚。
1793年,已经很紧张的〃恐怖统治〃达到了一个新的高度。10月,玛丽·安托瓦妮特被送上断头台。11月,正当拉瓦锡和他的妻子在拖拖拉拉地制订计划准备逃往苏格兰的时候,他被捕了。次年5月,他和31名税务总公司的同事一起被送上了革命法庭(在一个放着马拉半身像的审判室里)。其中8人被无罪释放,但拉瓦锡和其他几人被直接带到革命广场(现在的协和广场),也就是设置法国那个最忙碌的断头台的地方。拉瓦锡望着他的岳父脑袋落地,然后走上前去接受同样的命运。不到3个月,7月27日,罗伯斯庇尔被以同样的方式、在同一地点送上了西天。恐怖统治很快结束了。
他去世100年以后,一座拉瓦锡的雕像在巴黎落成,受到很多人的瞻仰,直到有人指出它看上去根本不像他。在盘问之下,雕刻师承认,他用了数学家和哲学家孔多塞的头像他显然备了一个希望谁也不会注意到,或者即使注意到也不会在乎。他的后一种想法是正确的。拉瓦锡兼孔多塞的雕像被准许留在原地,又留了半个世纪,直到第二次世界大战爆发。一天早晨,有人把它取走,当做废铁熔化了。
19世纪初,英国开始风行吸入一氧化二氮,或称笑气,因为有人发现,使用这种气体会〃给人一种高度的快感和刺激〃。在随后的半个世纪里,它成了年轻人使用的一种高档毒品。有个名叫阿斯克协会的学术团体一度不再致力于别的事情,专场举办〃笑气晚会〃,志愿者可以在那里狠狠吸上一口,提提精神,然后以摇摇摆摆的滑稽姿态逗乐观众。
直到1846年,才有人有时间为一氧化二氮找到了一条实用途径:用做麻醉药。事情是明摆着的,过去怎么谁也没有想到,害得天知道有多少万人在外科医生的刀下吃了不必要的苦头。
我提这一点是为了说明,在18世纪得到如此发展的化学,在19世纪的头几十年里有点儿失去方向,就像地质学在20世纪头几十年里的情况一样。部分原因跟仪器的局限性有关系比如,直到那个世纪末叶才有了离心机,极大地限制了许多种类的实验工作。还有部分原因是社会。总的来说,化学是商人的科学,是与煤炭、钾碱和染料打交道的人的科学,不是绅士的科学。绅士阶层往往对地质学、自然史和物理学感兴趣。(与英国相比,欧洲大陆的情况有点儿不一样,但仅仅是有点儿。)有一件事兴许能说明问题。那个世纪最重要的一次观察,即确定分子运动性质的布朗运动,不是化学家做的,而是苏格兰植物学家罗伯特·布朗做的。(布朗在1827年注意到,悬在水里的花粉微粒永远处于运动状态,无论时间持续多久。这样不停运动的原因即看不见的分子的作用在很长时间里是个谜。) 要不是出了个名叫伦福德伯爵的杰出人物,情况或许还要糟糕。尽管有个高贵的头衔,他本是普普通通的本杰明·汤普森,1753年生于美国马萨诸塞州的沃本。汤普森英俊漂亮,精力充沛,雄心勃勃,偶尔还非常勇敢,聪明过人,而又毫无顾忌。19岁那年,他娶了一位比他大14岁的有钱寡妇。但是,当殖民地爆发革命的时候,他愚蠢地站在保皇派一边,一度还为他们做间谍工作。在灾难性的1776年,他面临以〃对自由事业不够热心〃的罪名而被捕的危险,抢在一伙手提几桶热柏油和几袋鸡毛,打算用那两样东西把他打扮一下的反保皇派分子前面,他抛弃了老婆孩子仓皇出逃。
第七章 基本物质(3)
他先逃到英国,然后来到德国,在那里担任巴伐利亚政府的军事顾问。他深深打动了当局,1791年被授予〃神圣罗马帝国伦福德伯爵〃的称号。在慕尼黑期间,他还设计和筹建了那个名叫英国花园的著名公园。
在此期间,他挤出时间搞了大量纯科学工作。他成为世界上最著名的热力学权威,成为阐述液体对流和洋流循环原理的第一人。他还发明了几样有用的东西,包括滴滤咖啡壶、保暖内衣和一种现在仍叫做伦福德火炉的炉灶。1805年在法国逗留期间,他向安托万-洛朗·拉瓦锡的遗孀拉瓦锡太太求爱,娶她当了夫人。这桩婚事并不成功,他们很快就分道扬镳。
伦福德继续留在法国,直到1814年去世。他受到法国人的普遍尊敬,除了他的几位前妻。
我们之所以在这里提到他,是因为1799年他在伦敦的短暂停留期间创建了皇家科学研究所。18世纪末和19世纪初,英国各地涌现了许多学术团体,它成了其中的又一名成员。在一段时间里,它几乎是惟一的一所旨在积极发展化学这门新兴科学的有名望的机构,而这几乎完全要归功于一位名叫汉弗莱·戴维的杰出的年轻人。这个机构成立之后不久,戴维被任命为该研究所的化学教授,很快就名噪一时,成为一位卓越的授课者和多产的实验师。
上任不久,戴维开始宣布发现一种又一种新的元素:钾、钠、锰、钙、锶和铝。他发现那么多种元素,与其说是因为他搞清了元素的排列,不如说是因为他发明了一项巧妙的技术:把电流通过一种熔融状态的物质就是现在所谓的电解。他总共发现了12种元素,占他那个时代已知总数的五分之一。戴维本来会作出更大的成绩,但不幸的是,他是个年轻人,渐渐沉迷于一氧化二氮所带来的那种心旷神怡的乐趣。他简直离不开那种气体,一天要吸入三四次.最后,在1829年,据认为就是这种气体断送了他的性命。
幸亏别处还有别的严肃的人在从事这项工作。1808年,一位名叫约翰·道尔顿的年轻而顽强的贵格会教徒,成为宣布原子性质的第一人(过一会儿我们将更加充分地讨论这个进展);1811年,一个有着歌剧似的漂亮名字洛伦佐·罗马诺·阿马德奥·卡洛·阿伏伽德罗的意大利人取得了一项从长远来看将证明是具有重大意义的发现即体积相等的任何两种气体,在压力相等和温度相等的情况下,拥有的原子数量相等。
它后来被称做阿伏伽德罗定律。这个简单而有趣的定律在两个方面值得注意。第一,它为更精确地测定原子的大小和重量奠定了基础。化学家们利用阿伏伽德罗数最终测出,比如,一个典型的原子的直径是0。00000008厘米。这个数字确实很小。第二,差不多有50年时间,几乎谁也不知道这件事。
一方面,是因为阿伏伽德罗是个离群索居的人他一个人搞研究,从来不参加会议;另一方面,也是因为没有会议可以参加,很少有几家化学杂志可以发表文章。这是一件很怪的事。工业革命的动力在很大程度上来自化学的发展,而在几十年的时间里化学却几乎没有作为一门系统的科学独立存在。
直到1841年,才成立了伦敦化学学会;直到1848年,那个学会才定期出版一份杂志。而到那个时候,英国的大多数学术团体地质学会、地理学会、动物学学会、园艺学学会和(由博物学家和植物学家组成的)林奈学会至少已经存在20年,有的还要长得多。它的竞争对手化学研究所直到1877年才问世,那是在美国化学学会成立一年之后。由于化学界的组织工作如此缓慢,有关阿伏伽德罗1811年的重大发现的消息,直到1860年在卡尔斯鲁厄召开第一次国际化学代表大会才开始传开。
由于化学家们长期在隔绝的环境里工作,形成统一用语的速度很慢。直到19世纪末叶,H2O对一个化学家来说意为水,对另一个化学家来说意为过氧化氢。C2H2可以指乙烯,也可以指沼气。几乎没有哪种分子符号在各地是统一的。
化学家们还使用各种令人困惑的符号和缩写,常常是自己发明的。瑞典的J。J。伯采留斯发明了一种非常急需的排列方法,规定元素应当依照其希腊文或拉丁文名字加以缩写。这就是为什么铁的缩写是Fe(源自拉丁文ferrum),