prior analytics-µÚ9½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
negative¡¡proposition¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡be¡¡negative
assertoric£º¡¡e¡£g¡£¡¡if¡¡it¡¡is¡¡not¡¡possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡any
B£»¡¡but¡¡B¡¡may¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Cs£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should
not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Cs¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡C£»¡¡but¡¡cannot
belong¡¡to¡¡any¡¡B£»¡¡neither¡¡can¡¡B¡¡belong¡¡to¡¡any¡¡A¡£¡¡So¡¡if¡¡A¡¡belongs¡¡to¡¡all
C£»¡¡to¡¡none¡¡of¡¡the¡¡Cs¡¡can¡¡B¡¡belong¡£¡¡But¡¡it¡¡was¡¡laid¡¡down¡¡that¡¡B¡¡may
belong¡¡to¡¡some¡¡C¡£¡¡But¡¡when¡¡the¡¡particular¡¡affirmative¡¡in¡¡the
negative¡¡syllogism£»¡¡e¡£g¡£¡¡BC¡¡the¡¡minor¡¡premiss£»¡¡or¡¡the¡¡universal
proposition¡¡in¡¡the¡¡affirmative¡¡syllogism£»¡¡e¡£g¡£¡¡AB¡¡the¡¡major¡¡premiss£»
is¡¡necessary£»¡¡there¡¡will¡¡not¡¡be¡¡an¡¡assertoric¡¡conclusion¡£¡¡The
demonstration¡¡is¡¡the¡¡same¡¡as¡¡before¡£¡¡But¡¡if¡¡the¡¡minor¡¡premiss¡¡is
universal£»¡¡and¡¡problematic£»¡¡whether¡¡affirmative¡¡or¡¡negative£»¡¡and¡¡the
major¡¡premiss¡¡is¡¡particular¡¡and¡¡necessary£»¡¡there¡¡cannot¡¡be¡¡a
syllogism¡£¡¡Premisses¡¡of¡¡this¡¡kind¡¡are¡¡possible¡¡both¡¡where¡¡the¡¡relation
is¡¡positive¡¡and¡¡necessary£»¡¡e¡£g¡£¡¡animal¡white¡man£»¡¡and¡¡where¡¡it¡¡is
necessary¡¡and¡¡negative£»¡¡e¡£g¡£¡¡animal¡white¡garment¡£¡¡But¡¡when¡¡the
universal¡¡is¡¡necessary£»¡¡the¡¡particular¡¡problematic£»¡¡if¡¡the¡¡universal
is¡¡negative¡¡we¡¡may¡¡take¡¡the¡¡terms¡¡animal¡white¡raven¡¡to¡¡illustrate¡¡the
positive¡¡relation£»¡¡or¡¡animal¡white¡pitch¡¡to¡¡illustrate¡¡the¡¡negative£»
and¡¡if¡¡the¡¡universal¡¡is¡¡affirmative¡¡we¡¡may¡¡take¡¡the¡¡terms
animal¡white¡swan¡¡to¡¡illustrate¡¡the¡¡positive¡¡relation£»¡¡and
animal¡white¡snow¡¡to¡¡illustrate¡¡the¡¡negative¡¡and¡¡necessary¡¡relation¡£
Nor¡¡again¡¡is¡¡a¡¡syllogism¡¡possible¡¡when¡¡the¡¡premisses¡¡are¡¡indefinite£»
or¡¡both¡¡particular¡£¡¡Terms¡¡applicable¡¡in¡¡either¡¡case¡¡to¡¡illustrate
the¡¡positive¡¡relation¡¡are¡¡animal¡white¡man£º¡¡to¡¡illustrate¡¡the
negative£»¡¡animal¡white¡inanimate¡£¡¡For¡¡the¡¡relation¡¡of¡¡animal¡¡to¡¡some
white£»¡¡and¡¡of¡¡white¡¡to¡¡some¡¡inanimate£»¡¡is¡¡both¡¡necessary¡¡and
positive¡¡and¡¡necessary¡¡and¡¡negative¡£¡¡Similarly¡¡if¡¡the¡¡relation¡¡is
problematic£º¡¡so¡¡the¡¡terms¡¡may¡¡be¡¡used¡¡for¡¡all¡¡cases¡£
¡¡¡¡Clearly¡¡then¡¡from¡¡what¡¡has¡¡been¡¡said¡¡a¡¡syllogism¡¡results¡¡or¡¡not¡¡from
similar¡¡relations¡¡of¡¡the¡¡terms¡¡whether¡¡we¡¡are¡¡dealing¡¡with¡¡simple
existence¡¡or¡¡necessity£»¡¡with¡¡this¡¡exception£»¡¡that¡¡if¡¡the¡¡negative
premiss¡¡is¡¡assertoric¡¡the¡¡conclusion¡¡is¡¡problematic£»¡¡but¡¡if¡¡the
negative¡¡premiss¡¡is¡¡necessary¡¡the¡¡conclusion¡¡is¡¡both¡¡problematic¡¡and
negative¡¡assertoric¡£¡¡£§It¡¡is¡¡clear¡¡also¡¡that¡¡all¡¡the¡¡syllogisms¡¡are
imperfect¡¡and¡¡are¡¡perfected¡¡by¡¡means¡¡of¡¡the¡¡figures¡¡above¡¡mentioned¡££§
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡17
¡¡¡¡In¡¡the¡¡second¡¡figure¡¡whenever¡¡both¡¡premisses¡¡are¡¡problematic£»¡¡no
syllogism¡¡is¡¡possible£»¡¡whether¡¡the¡¡premisses¡¡are¡¡affirmative¡¡or
negative£»¡¡universal¡¡or¡¡particular¡£¡¡But¡¡when¡¡one¡¡premiss¡¡is¡¡assertoric£»
the¡¡other¡¡problematic£»¡¡if¡¡the¡¡affirmative¡¡is¡¡assertoric¡¡no¡¡syllogism
is¡¡possible£»¡¡but¡¡if¡¡the¡¡universal¡¡negative¡¡is¡¡assertoric¡¡a
conclusion¡¡can¡¡always¡¡be¡¡drawn¡£¡¡Similarly¡¡when¡¡one¡¡premiss¡¡is
necessary£»¡¡the¡¡other¡¡problematic¡£¡¡Here¡¡also¡¡we¡¡must¡¡understand¡¡the
term¡¡'possible'¡¡in¡¡the¡¡conclusion£»¡¡in¡¡the¡¡same¡¡sense¡¡as¡¡before¡£
¡¡¡¡First¡¡we¡¡must¡¡point¡¡out¡¡that¡¡the¡¡negative¡¡problematic¡¡proposition¡¡is
not¡¡convertible£»¡¡e¡£g¡£¡¡if¡¡A¡¡may¡¡belong¡¡to¡¡no¡¡B£»¡¡it¡¡does¡¡not¡¡follow¡¡that
B¡¡may¡¡belong¡¡to¡¡no¡¡A¡£¡¡For¡¡suppose¡¡it¡¡to¡¡follow¡¡and¡¡assume¡¡that¡¡B¡¡may
belong¡¡to¡¡no¡¡A¡£¡¡Since¡¡then¡¡problematic¡¡affirmations¡¡are¡¡convertible
with¡¡negations£»¡¡whether¡¡they¡¡are¡¡contraries¡¡or¡¡contradictories£»¡¡and
since¡¡B¡¡may¡¡belong¡¡to¡¡no¡¡A£»¡¡it¡¡is¡¡clear¡¡that¡¡B¡¡may¡¡belong¡¡to¡¡all¡¡A¡£
But¡¡this¡¡is¡¡false£º¡¡for¡¡if¡¡all¡¡this¡¡can¡¡be¡¡that£»¡¡it¡¡does¡¡not¡¡follow
that¡¡all¡¡that¡¡can¡¡be¡¡this£º¡¡consequently¡¡the¡¡negative¡¡proposition¡¡is
not¡¡convertible¡£¡¡Further£»¡¡these¡¡propositions¡¡are¡¡not¡¡incompatible£»
'A¡¡may¡¡belong¡¡to¡¡no¡¡B'£»¡¡'B¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡of
the¡¡As'£»¡¡e¡£g¡£¡¡it¡¡is¡¡possible¡¡that¡¡no¡¡man¡¡should¡¡be¡¡white¡¡£¨for¡¡it¡¡is
also¡¡possible¡¡that¡¡every¡¡man¡¡should¡¡be¡¡white£©£»¡¡but¡¡it¡¡is¡¡not¡¡true¡¡to
say¡¡that¡¡it¡¡is¡¡possible¡¡that¡¡no¡¡white¡¡thing¡¡should¡¡be¡¡a¡¡man£º¡¡for
many¡¡white¡¡things¡¡are¡¡necessarily¡¡not¡¡men£»¡¡and¡¡the¡¡necessary¡¡£¨as¡¡we
saw£©¡¡other¡¡than¡¡the¡¡possible¡£
¡¡¡¡Moreover¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡prove¡¡the¡¡convertibility¡¡of¡¡these
propositions¡¡by¡¡a¡¡reductio¡¡ad¡¡absurdum£»¡¡i¡£e¡£¡¡by¡¡claiming¡¡assent¡¡to¡¡the
following¡¡argument£º¡¡'since¡¡it¡¡is¡¡false¡¡that¡¡B¡¡may¡¡belong¡¡to¡¡no¡¡A£»¡¡it
is¡¡true¡¡that¡¡it¡¡cannot¡¡belong¡¡to¡¡no¡¡A£»¡¡for¡¡the¡¡one¡¡statement¡¡is¡¡the
contradictory¡¡of¡¡the¡¡other¡£¡¡But¡¡if¡¡this¡¡is¡¡so£»¡¡it¡¡is¡¡true¡¡that¡¡B
necessarily¡¡belongs¡¡to¡¡some¡¡of¡¡the¡¡As£º¡¡consequently¡¡A¡¡necessarily
belongs¡¡to¡¡some¡¡of¡¡the¡¡Bs¡£¡¡But¡¡this¡¡is¡¡impossible¡£'¡¡The¡¡argument
cannot¡¡be¡¡admitted£»¡¡for¡¡it¡¡does¡¡not¡¡follow¡¡that¡¡some¡¡A¡¡is
necessarily¡¡B£»¡¡if¡¡it¡¡is¡¡not¡¡possible¡¡that¡¡no¡¡A¡¡should¡¡be¡¡B¡£¡¡For¡¡the
latter¡¡expression¡¡is¡¡used¡¡in¡¡two¡¡senses£»¡¡one¡¡if¡¡A¡¡some¡¡is
necessarily¡¡B£»¡¡another¡¡if¡¡some¡¡A¡¡is¡¡necessarily¡¡not¡¡B¡£¡¡For¡¡it¡¡is¡¡not
true¡¡to¡¡say¡¡that¡¡that¡¡which¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the
As¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡any¡¡A£»¡¡just¡¡as¡¡it¡¡is¡¡not¡¡true¡¡to¡¡say
that¡¡what¡¡necessarily¡¡belongs¡¡to¡¡some¡¡A¡¡may¡¡possibly¡¡belong¡¡to¡¡all
A¡£¡¡If¡¡any¡¡one¡¡then¡¡should¡¡claim¡¡that¡¡because¡¡it¡¡is¡¡not¡¡possible¡¡for
C¡¡to¡¡belong¡¡to¡¡all¡¡D£»¡¡it¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡D£»¡¡he
would¡¡make¡¡a¡¡false¡¡assumption£º¡¡for¡¡it¡¡does¡¡belong¡¡to¡¡all¡¡D£»¡¡but
because¡¡in¡¡some¡¡cases¡¡it¡¡belongs¡¡necessarily£»¡¡therefore¡¡we¡¡say¡¡that¡¡it
is¡¡not¡¡possible¡¡for¡¡it¡¡to¡¡belong¡¡to¡¡all¡£¡¡Hence¡¡both¡¡the¡¡propositions
'A¡¡necessarily¡¡belongs¡¡to¡¡some¡¡B'¡¡and¡¡'A¡¡necessarily¡¡does¡¡not¡¡belong
to¡¡some¡¡B'¡¡are¡¡opposed¡¡to¡¡the¡¡proposition¡¡'A¡¡belongs¡¡to¡¡all¡¡B'¡£
Similarly¡¡also¡¡they¡¡are¡¡opposed¡¡to¡¡the¡¡proposition¡¡'A¡¡may¡¡belong¡¡to¡¡no
B'¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡in¡¡relation¡¡to¡¡what¡¡is¡¡possible¡¡and¡¡not
possible£»¡¡in¡¡the¡¡sense¡¡originally¡¡defined£»¡¡we¡¡must¡¡assume£»¡¡not¡¡that
A¡¡necessarily¡¡belongs¡¡to¡¡some¡¡B£»¡¡but¡¡that¡¡A¡¡necessarily¡¡does¡¡not
belong¡¡to¡¡some¡¡B¡£¡¡But¡¡if¡¡this¡¡is¡¡assumed£»¡¡no¡¡absurdity¡¡results£º
consequently¡¡no¡¡syllogism¡£¡¡It¡¡is¡¡clear¡¡from¡¡what¡¡has¡¡been¡¡said¡¡that
the¡¡negative¡¡proposition¡¡is¡¡not¡¡convertible¡£
¡¡¡¡This¡¡being¡¡proved£»¡¡suppose¡¡it¡¡possible¡¡that¡¡A¡¡may¡¡belong¡¡to¡¡no¡¡B¡¡and
to¡¡all¡¡C¡£¡¡By¡¡means¡¡of¡¡conversion¡¡no¡¡syllogism¡¡will¡¡result£º¡¡for¡¡the
major¡¡premiss£»¡¡as¡¡has¡¡been¡¡said£»¡¡is¡¡not¡¡convertible¡£¡¡Nor¡¡can¡¡a¡¡proof
be¡¡obtained¡¡by¡¡a¡¡reductio¡¡ad¡¡absurdum£º¡¡for¡¡if¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡can
belong¡¡to¡¡all¡¡C£»¡¡no¡¡false¡¡consequence¡¡results£º¡¡for¡¡A¡¡may¡¡belong¡¡both
to¡¡all¡¡C¡¡and¡¡to¡¡no¡¡C¡£¡¡In¡¡general£»¡¡if¡¡there¡¡is¡¡a¡¡syllogism£»¡¡it¡¡is¡¡clear
that¡¡its¡¡conclusion¡¡will¡¡be¡¡problematic¡¡because¡¡neither¡¡of¡¡the
premisses¡¡is¡¡assertoric£»¡¡and¡¡this¡¡must¡¡be¡¡either¡¡affirmative¡¡or
negative¡£¡¡But¡¡neither¡¡is¡¡possible¡£¡¡Suppose¡¡the¡¡conclusion¡¡is
affirmative£º¡¡it¡¡will¡¡be¡¡proved¡¡by¡¡an¡¡example¡¡that¡¡the¡¡predicate¡¡cannot
belong¡¡to¡¡the¡¡subject¡£¡¡Suppose¡¡the¡¡conclusion¡¡is¡¡negative£º¡¡it¡¡will
be¡¡proved¡¡that¡¡it¡¡is¡¡not¡¡problematic¡¡but¡¡necessary¡£¡¡Let¡¡A¡¡be¡¡white£»
B¡¡man£»¡¡C¡¡horse¡£¡¡It¡¡is¡¡possible¡¡then¡¡for¡¡A¡¡to¡¡belong¡¡to¡¡all¡¡of¡¡the
one¡¡and¡¡to¡¡none¡¡of¡¡the¡¡other¡£¡¡But¡¡it¡¡is¡¡not¡¡possible¡¡for¡¡B¡¡to¡¡belong
nor¡¡not¡¡to¡¡belong¡¡to¡¡C¡£¡¡That¡¡it¡¡is¡¡not¡¡possible¡¡for¡¡it¡¡to¡¡belong£»¡¡is
clear¡£¡¡For¡¡no¡¡horse¡¡is¡¡a¡¡man¡£¡¡Neither¡¡is¡¡it¡¡possible¡¡for¡¡it¡¡not¡¡to
belong¡£¡¡For¡¡it¡¡is¡¡necessary¡¡that¡¡no¡¡horse¡¡should¡¡be¡¡a¡¡man£»¡¡but¡¡the
necessary¡¡we¡¡found¡¡to¡¡be¡¡different¡¡from¡¡the¡¡possible¡£¡¡No¡¡syllogism
then¡¡results¡£¡¡A¡¡similar¡¡proof¡¡can¡¡be¡¡given¡¡if¡¡the¡¡major¡¡premiss¡¡is
negative£»¡¡the¡¡minor¡¡affirmative£»¡¡or¡¡if¡¡both¡¡are¡¡affirmative¡¡or
negative¡£¡¡The¡¡demonstration¡¡can¡¡be¡¡made¡¡by¡¡means¡¡of¡¡the¡¡same¡¡terms¡£
And¡¡whenever¡¡one¡¡premiss¡¡is¡¡universal£»¡¡the¡¡other¡¡particular£»¡¡or¡¡both
are¡¡particular¡¡or¡¡indefinite£»¡¡or¡¡in¡¡whatever¡¡other¡¡way¡¡the¡¡premisses
can¡¡be¡¡altered£»¡¡the¡¡proof¡¡will¡¡always¡¡proceed¡¡through¡¡the¡¡same
terms¡£¡¡Clearly¡¡then£»¡¡if¡¡both¡¡the¡¡premisses¡¡are¡¡problematic£»¡¡no
syllogism¡¡results¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡18
¡¡¡¡But¡¡if¡¡one¡¡premiss¡¡is¡¡assertoric£»¡¡the¡¡other¡¡problematic£»¡¡if¡¡the
affirmative¡¡is¡¡assertoric¡¡and¡¡the¡¡negative¡¡problematic¡¡no¡¡syllogism
will¡¡be¡¡possible£»¡¡whether¡¡the¡¡premisses¡¡are¡¡universal¡¡or¡¡particular¡£
The¡¡proof¡¡is¡¡the¡¡same¡¡as¡¡above£»¡¡and¡¡by¡¡means¡¡of¡¡the¡¡same¡¡terms¡£¡¡But
when¡¡the¡¡affirmative¡¡premiss¡¡is¡¡problematic£»¡¡and¡¡the¡¡negative
assertoric£»¡¡we¡¡shall¡¡have¡¡a¡¡syllogism¡£¡¡Suppose¡¡A¡¡belongs¡¡to¡¡no¡¡B£»
but¡¡can¡¡belong¡¡to¡¡all¡¡C¡£¡¡If¡¡the¡¡negative¡¡proposition¡¡is¡¡converted£»¡¡B
will¡¡belong¡¡to¡¡no¡¡A¡£¡¡But¡¡ex¡¡hypothesi¡¡can¡¡belong¡¡to¡¡all¡¡C£º¡¡so¡¡a
syllogism¡¡is¡¡made£»¡¡proving¡¡by¡¡means¡¡of¡¡the¡¡first¡¡figure¡¡that¡¡B¡¡may
belong¡¡to¡¡no¡¡C¡£¡¡Similarly¡¡also¡¡if¡¡the¡¡minor¡¡premiss¡¡is¡¡negative¡£¡¡But
if¡¡both¡¡premisses¡¡are¡¡negative£»¡¡one¡¡being¡¡assertoric£»¡¡the¡¡other
problematic£»¡¡nothing¡¡follows¡¡necessarily¡¡from¡¡these¡¡premisses¡¡as
they¡¡stand£»¡¡but¡¡if¡¡the¡¡problematic¡¡premiss¡¡is¡¡converted¡¡into¡¡its
complementary¡¡affirmati