Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ9½Ú

prior analytics-µÚ9½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






negative¡¡proposition¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡be¡¡negative



assertoric£º¡¡e¡£g¡£¡¡if¡¡it¡¡is¡¡not¡¡possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡any



B£»¡¡but¡¡B¡¡may¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Cs£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should



not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Cs¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡C£»¡¡but¡¡cannot



belong¡¡to¡¡any¡¡B£»¡¡neither¡¡can¡¡B¡¡belong¡¡to¡¡any¡¡A¡£¡¡So¡¡if¡¡A¡¡belongs¡¡to¡¡all



C£»¡¡to¡¡none¡¡of¡¡the¡¡Cs¡¡can¡¡B¡¡belong¡£¡¡But¡¡it¡¡was¡¡laid¡¡down¡¡that¡¡B¡¡may



belong¡¡to¡¡some¡¡C¡£¡¡But¡¡when¡¡the¡¡particular¡¡affirmative¡¡in¡¡the



negative¡¡syllogism£»¡¡e¡£g¡£¡¡BC¡¡the¡¡minor¡¡premiss£»¡¡or¡¡the¡¡universal



proposition¡¡in¡¡the¡¡affirmative¡¡syllogism£»¡¡e¡£g¡£¡¡AB¡¡the¡¡major¡¡premiss£»



is¡¡necessary£»¡¡there¡¡will¡¡not¡¡be¡¡an¡¡assertoric¡¡conclusion¡£¡¡The



demonstration¡¡is¡¡the¡¡same¡¡as¡¡before¡£¡¡But¡¡if¡¡the¡¡minor¡¡premiss¡¡is



universal£»¡¡and¡¡problematic£»¡¡whether¡¡affirmative¡¡or¡¡negative£»¡¡and¡¡the



major¡¡premiss¡¡is¡¡particular¡¡and¡¡necessary£»¡¡there¡¡cannot¡¡be¡¡a



syllogism¡£¡¡Premisses¡¡of¡¡this¡¡kind¡¡are¡¡possible¡¡both¡¡where¡¡the¡¡relation



is¡¡positive¡¡and¡¡necessary£»¡¡e¡£g¡£¡¡animal¡­white¡­man£»¡¡and¡¡where¡¡it¡¡is



necessary¡¡and¡¡negative£»¡¡e¡£g¡£¡¡animal¡­white¡­garment¡£¡¡But¡¡when¡¡the



universal¡¡is¡¡necessary£»¡¡the¡¡particular¡¡problematic£»¡¡if¡¡the¡¡universal



is¡¡negative¡¡we¡¡may¡¡take¡¡the¡¡terms¡¡animal¡­white¡­raven¡¡to¡¡illustrate¡¡the



positive¡¡relation£»¡¡or¡¡animal¡­white¡­pitch¡¡to¡¡illustrate¡¡the¡¡negative£»



and¡¡if¡¡the¡¡universal¡¡is¡¡affirmative¡¡we¡¡may¡¡take¡¡the¡¡terms



animal¡­white¡­swan¡¡to¡¡illustrate¡¡the¡¡positive¡¡relation£»¡¡and



animal¡­white¡­snow¡¡to¡¡illustrate¡¡the¡¡negative¡¡and¡¡necessary¡¡relation¡£



Nor¡¡again¡¡is¡¡a¡¡syllogism¡¡possible¡¡when¡¡the¡¡premisses¡¡are¡¡indefinite£»



or¡¡both¡¡particular¡£¡¡Terms¡¡applicable¡¡in¡¡either¡¡case¡¡to¡¡illustrate



the¡¡positive¡¡relation¡¡are¡¡animal¡­white¡­man£º¡¡to¡¡illustrate¡¡the



negative£»¡¡animal¡­white¡­inanimate¡£¡¡For¡¡the¡¡relation¡¡of¡¡animal¡¡to¡¡some



white£»¡¡and¡¡of¡¡white¡¡to¡¡some¡¡inanimate£»¡¡is¡¡both¡¡necessary¡¡and



positive¡¡and¡¡necessary¡¡and¡¡negative¡£¡¡Similarly¡¡if¡¡the¡¡relation¡¡is



problematic£º¡¡so¡¡the¡¡terms¡¡may¡¡be¡¡used¡¡for¡¡all¡¡cases¡£



¡¡¡¡Clearly¡¡then¡¡from¡¡what¡¡has¡¡been¡¡said¡¡a¡¡syllogism¡¡results¡¡or¡¡not¡¡from



similar¡¡relations¡¡of¡¡the¡¡terms¡¡whether¡¡we¡¡are¡¡dealing¡¡with¡¡simple



existence¡¡or¡¡necessity£»¡¡with¡¡this¡¡exception£»¡¡that¡¡if¡¡the¡¡negative



premiss¡¡is¡¡assertoric¡¡the¡¡conclusion¡¡is¡¡problematic£»¡¡but¡¡if¡¡the



negative¡¡premiss¡¡is¡¡necessary¡¡the¡¡conclusion¡¡is¡¡both¡¡problematic¡¡and



negative¡¡assertoric¡£¡¡£§It¡¡is¡¡clear¡¡also¡¡that¡¡all¡¡the¡¡syllogisms¡¡are



imperfect¡¡and¡¡are¡¡perfected¡¡by¡¡means¡¡of¡¡the¡¡figures¡¡above¡¡mentioned¡££§







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡17







¡¡¡¡In¡¡the¡¡second¡¡figure¡¡whenever¡¡both¡¡premisses¡¡are¡¡problematic£»¡¡no



syllogism¡¡is¡¡possible£»¡¡whether¡¡the¡¡premisses¡¡are¡¡affirmative¡¡or



negative£»¡¡universal¡¡or¡¡particular¡£¡¡But¡¡when¡¡one¡¡premiss¡¡is¡¡assertoric£»



the¡¡other¡¡problematic£»¡¡if¡¡the¡¡affirmative¡¡is¡¡assertoric¡¡no¡¡syllogism



is¡¡possible£»¡¡but¡¡if¡¡the¡¡universal¡¡negative¡¡is¡¡assertoric¡¡a



conclusion¡¡can¡¡always¡¡be¡¡drawn¡£¡¡Similarly¡¡when¡¡one¡¡premiss¡¡is



necessary£»¡¡the¡¡other¡¡problematic¡£¡¡Here¡¡also¡¡we¡¡must¡¡understand¡¡the



term¡¡'possible'¡¡in¡¡the¡¡conclusion£»¡¡in¡¡the¡¡same¡¡sense¡¡as¡¡before¡£



¡¡¡¡First¡¡we¡¡must¡¡point¡¡out¡¡that¡¡the¡¡negative¡¡problematic¡¡proposition¡¡is



not¡¡convertible£»¡¡e¡£g¡£¡¡if¡¡A¡¡may¡¡belong¡¡to¡¡no¡¡B£»¡¡it¡¡does¡¡not¡¡follow¡¡that



B¡¡may¡¡belong¡¡to¡¡no¡¡A¡£¡¡For¡¡suppose¡¡it¡¡to¡¡follow¡¡and¡¡assume¡¡that¡¡B¡¡may



belong¡¡to¡¡no¡¡A¡£¡¡Since¡¡then¡¡problematic¡¡affirmations¡¡are¡¡convertible



with¡¡negations£»¡¡whether¡¡they¡¡are¡¡contraries¡¡or¡¡contradictories£»¡¡and



since¡¡B¡¡may¡¡belong¡¡to¡¡no¡¡A£»¡¡it¡¡is¡¡clear¡¡that¡¡B¡¡may¡¡belong¡¡to¡¡all¡¡A¡£



But¡¡this¡¡is¡¡false£º¡¡for¡¡if¡¡all¡¡this¡¡can¡¡be¡¡that£»¡¡it¡¡does¡¡not¡¡follow



that¡¡all¡¡that¡¡can¡¡be¡¡this£º¡¡consequently¡¡the¡¡negative¡¡proposition¡¡is



not¡¡convertible¡£¡¡Further£»¡¡these¡¡propositions¡¡are¡¡not¡¡incompatible£»



'A¡¡may¡¡belong¡¡to¡¡no¡¡B'£»¡¡'B¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡of



the¡¡As'£»¡¡e¡£g¡£¡¡it¡¡is¡¡possible¡¡that¡¡no¡¡man¡¡should¡¡be¡¡white¡¡£¨for¡¡it¡¡is



also¡¡possible¡¡that¡¡every¡¡man¡¡should¡¡be¡¡white£©£»¡¡but¡¡it¡¡is¡¡not¡¡true¡¡to



say¡¡that¡¡it¡¡is¡¡possible¡¡that¡¡no¡¡white¡¡thing¡¡should¡¡be¡¡a¡¡man£º¡¡for



many¡¡white¡¡things¡¡are¡¡necessarily¡¡not¡¡men£»¡¡and¡¡the¡¡necessary¡¡£¨as¡¡we



saw£©¡¡other¡¡than¡¡the¡¡possible¡£



¡¡¡¡Moreover¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡prove¡¡the¡¡convertibility¡¡of¡¡these



propositions¡¡by¡¡a¡¡reductio¡¡ad¡¡absurdum£»¡¡i¡£e¡£¡¡by¡¡claiming¡¡assent¡¡to¡¡the



following¡¡argument£º¡¡'since¡¡it¡¡is¡¡false¡¡that¡¡B¡¡may¡¡belong¡¡to¡¡no¡¡A£»¡¡it



is¡¡true¡¡that¡¡it¡¡cannot¡¡belong¡¡to¡¡no¡¡A£»¡¡for¡¡the¡¡one¡¡statement¡¡is¡¡the



contradictory¡¡of¡¡the¡¡other¡£¡¡But¡¡if¡¡this¡¡is¡¡so£»¡¡it¡¡is¡¡true¡¡that¡¡B



necessarily¡¡belongs¡¡to¡¡some¡¡of¡¡the¡¡As£º¡¡consequently¡¡A¡¡necessarily



belongs¡¡to¡¡some¡¡of¡¡the¡¡Bs¡£¡¡But¡¡this¡¡is¡¡impossible¡£'¡¡The¡¡argument



cannot¡¡be¡¡admitted£»¡¡for¡¡it¡¡does¡¡not¡¡follow¡¡that¡¡some¡¡A¡¡is



necessarily¡¡B£»¡¡if¡¡it¡¡is¡¡not¡¡possible¡¡that¡¡no¡¡A¡¡should¡¡be¡¡B¡£¡¡For¡¡the



latter¡¡expression¡¡is¡¡used¡¡in¡¡two¡¡senses£»¡¡one¡¡if¡¡A¡¡some¡¡is



necessarily¡¡B£»¡¡another¡¡if¡¡some¡¡A¡¡is¡¡necessarily¡¡not¡¡B¡£¡¡For¡¡it¡¡is¡¡not



true¡¡to¡¡say¡¡that¡¡that¡¡which¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the



As¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡any¡¡A£»¡¡just¡¡as¡¡it¡¡is¡¡not¡¡true¡¡to¡¡say



that¡¡what¡¡necessarily¡¡belongs¡¡to¡¡some¡¡A¡¡may¡¡possibly¡¡belong¡¡to¡¡all



A¡£¡¡If¡¡any¡¡one¡¡then¡¡should¡¡claim¡¡that¡¡because¡¡it¡¡is¡¡not¡¡possible¡¡for



C¡¡to¡¡belong¡¡to¡¡all¡¡D£»¡¡it¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡D£»¡¡he



would¡¡make¡¡a¡¡false¡¡assumption£º¡¡for¡¡it¡¡does¡¡belong¡¡to¡¡all¡¡D£»¡¡but



because¡¡in¡¡some¡¡cases¡¡it¡¡belongs¡¡necessarily£»¡¡therefore¡¡we¡¡say¡¡that¡¡it



is¡¡not¡¡possible¡¡for¡¡it¡¡to¡¡belong¡¡to¡¡all¡£¡¡Hence¡¡both¡¡the¡¡propositions



'A¡¡necessarily¡¡belongs¡¡to¡¡some¡¡B'¡¡and¡¡'A¡¡necessarily¡¡does¡¡not¡¡belong



to¡¡some¡¡B'¡¡are¡¡opposed¡¡to¡¡the¡¡proposition¡¡'A¡¡belongs¡¡to¡¡all¡¡B'¡£



Similarly¡¡also¡¡they¡¡are¡¡opposed¡¡to¡¡the¡¡proposition¡¡'A¡¡may¡¡belong¡¡to¡¡no



B'¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡in¡¡relation¡¡to¡¡what¡¡is¡¡possible¡¡and¡¡not



possible£»¡¡in¡¡the¡¡sense¡¡originally¡¡defined£»¡¡we¡¡must¡¡assume£»¡¡not¡¡that



A¡¡necessarily¡¡belongs¡¡to¡¡some¡¡B£»¡¡but¡¡that¡¡A¡¡necessarily¡¡does¡¡not



belong¡¡to¡¡some¡¡B¡£¡¡But¡¡if¡¡this¡¡is¡¡assumed£»¡¡no¡¡absurdity¡¡results£º



consequently¡¡no¡¡syllogism¡£¡¡It¡¡is¡¡clear¡¡from¡¡what¡¡has¡¡been¡¡said¡¡that



the¡¡negative¡¡proposition¡¡is¡¡not¡¡convertible¡£



¡¡¡¡This¡¡being¡¡proved£»¡¡suppose¡¡it¡¡possible¡¡that¡¡A¡¡may¡¡belong¡¡to¡¡no¡¡B¡¡and



to¡¡all¡¡C¡£¡¡By¡¡means¡¡of¡¡conversion¡¡no¡¡syllogism¡¡will¡¡result£º¡¡for¡¡the



major¡¡premiss£»¡¡as¡¡has¡¡been¡¡said£»¡¡is¡¡not¡¡convertible¡£¡¡Nor¡¡can¡¡a¡¡proof



be¡¡obtained¡¡by¡¡a¡¡reductio¡¡ad¡¡absurdum£º¡¡for¡¡if¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡can



belong¡¡to¡¡all¡¡C£»¡¡no¡¡false¡¡consequence¡¡results£º¡¡for¡¡A¡¡may¡¡belong¡¡both



to¡¡all¡¡C¡¡and¡¡to¡¡no¡¡C¡£¡¡In¡¡general£»¡¡if¡¡there¡¡is¡¡a¡¡syllogism£»¡¡it¡¡is¡¡clear



that¡¡its¡¡conclusion¡¡will¡¡be¡¡problematic¡¡because¡¡neither¡¡of¡¡the



premisses¡¡is¡¡assertoric£»¡¡and¡¡this¡¡must¡¡be¡¡either¡¡affirmative¡¡or



negative¡£¡¡But¡¡neither¡¡is¡¡possible¡£¡¡Suppose¡¡the¡¡conclusion¡¡is



affirmative£º¡¡it¡¡will¡¡be¡¡proved¡¡by¡¡an¡¡example¡¡that¡¡the¡¡predicate¡¡cannot



belong¡¡to¡¡the¡¡subject¡£¡¡Suppose¡¡the¡¡conclusion¡¡is¡¡negative£º¡¡it¡¡will



be¡¡proved¡¡that¡¡it¡¡is¡¡not¡¡problematic¡¡but¡¡necessary¡£¡¡Let¡¡A¡¡be¡¡white£»



B¡¡man£»¡¡C¡¡horse¡£¡¡It¡¡is¡¡possible¡¡then¡¡for¡¡A¡¡to¡¡belong¡¡to¡¡all¡¡of¡¡the



one¡¡and¡¡to¡¡none¡¡of¡¡the¡¡other¡£¡¡But¡¡it¡¡is¡¡not¡¡possible¡¡for¡¡B¡¡to¡¡belong



nor¡¡not¡¡to¡¡belong¡¡to¡¡C¡£¡¡That¡¡it¡¡is¡¡not¡¡possible¡¡for¡¡it¡¡to¡¡belong£»¡¡is



clear¡£¡¡For¡¡no¡¡horse¡¡is¡¡a¡¡man¡£¡¡Neither¡¡is¡¡it¡¡possible¡¡for¡¡it¡¡not¡¡to



belong¡£¡¡For¡¡it¡¡is¡¡necessary¡¡that¡¡no¡¡horse¡¡should¡¡be¡¡a¡¡man£»¡¡but¡¡the



necessary¡¡we¡¡found¡¡to¡¡be¡¡different¡¡from¡¡the¡¡possible¡£¡¡No¡¡syllogism



then¡¡results¡£¡¡A¡¡similar¡¡proof¡¡can¡¡be¡¡given¡¡if¡¡the¡¡major¡¡premiss¡¡is



negative£»¡¡the¡¡minor¡¡affirmative£»¡¡or¡¡if¡¡both¡¡are¡¡affirmative¡¡or



negative¡£¡¡The¡¡demonstration¡¡can¡¡be¡¡made¡¡by¡¡means¡¡of¡¡the¡¡same¡¡terms¡£



And¡¡whenever¡¡one¡¡premiss¡¡is¡¡universal£»¡¡the¡¡other¡¡particular£»¡¡or¡¡both



are¡¡particular¡¡or¡¡indefinite£»¡¡or¡¡in¡¡whatever¡¡other¡¡way¡¡the¡¡premisses



can¡¡be¡¡altered£»¡¡the¡¡proof¡¡will¡¡always¡¡proceed¡¡through¡¡the¡¡same



terms¡£¡¡Clearly¡¡then£»¡¡if¡¡both¡¡the¡¡premisses¡¡are¡¡problematic£»¡¡no



syllogism¡¡results¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡18







¡¡¡¡But¡¡if¡¡one¡¡premiss¡¡is¡¡assertoric£»¡¡the¡¡other¡¡problematic£»¡¡if¡¡the



affirmative¡¡is¡¡assertoric¡¡and¡¡the¡¡negative¡¡problematic¡¡no¡¡syllogism



will¡¡be¡¡possible£»¡¡whether¡¡the¡¡premisses¡¡are¡¡universal¡¡or¡¡particular¡£



The¡¡proof¡¡is¡¡the¡¡same¡¡as¡¡above£»¡¡and¡¡by¡¡means¡¡of¡¡the¡¡same¡¡terms¡£¡¡But



when¡¡the¡¡affirmative¡¡premiss¡¡is¡¡problematic£»¡¡and¡¡the¡¡negative



assertoric£»¡¡we¡¡shall¡¡have¡¡a¡¡syllogism¡£¡¡Suppose¡¡A¡¡belongs¡¡to¡¡no¡¡B£»



but¡¡can¡¡belong¡¡to¡¡all¡¡C¡£¡¡If¡¡the¡¡negative¡¡proposition¡¡is¡¡converted£»¡¡B



will¡¡belong¡¡to¡¡no¡¡A¡£¡¡But¡¡ex¡¡hypothesi¡¡can¡¡belong¡¡to¡¡all¡¡C£º¡¡so¡¡a



syllogism¡¡is¡¡made£»¡¡proving¡¡by¡¡means¡¡of¡¡the¡¡first¡¡figure¡¡that¡¡B¡¡may



belong¡¡to¡¡no¡¡C¡£¡¡Similarly¡¡also¡¡if¡¡the¡¡minor¡¡premiss¡¡is¡¡negative¡£¡¡But



if¡¡both¡¡premisses¡¡are¡¡negative£»¡¡one¡¡being¡¡assertoric£»¡¡the¡¡other



problematic£»¡¡nothing¡¡follows¡¡necessarily¡¡from¡¡these¡¡premisses¡¡as



they¡¡stand£»¡¡but¡¡if¡¡the¡¡problematic¡¡premiss¡¡is¡¡converted¡¡into¡¡its



complementary¡¡affirmati

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ