Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ7½Ú

prior analytics-µÚ7½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






are¡¡negative£»¡¡either¡¡no¡¡syllogism¡¡results£»¡¡or¡¡if¡¡one¡¡it¡¡is¡¡not



perfect¡£¡¡For¡¡the¡¡necessity¡¡results¡¡from¡¡the¡¡conversion¡£



¡¡¡¡But¡¡if¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡universal£»¡¡the¡¡other¡¡particular£»¡¡when



the¡¡major¡¡premiss¡¡is¡¡universal¡¡there¡¡will¡¡be¡¡a¡¡perfect¡¡syllogism¡£



For¡¡if¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡and¡¡B¡¡for¡¡some¡¡C£»¡¡then¡¡A¡¡is¡¡possible



for¡¡some¡¡C¡£¡¡This¡¡is¡¡clear¡¡from¡¡the¡¡definition¡¡of¡¡being¡¡possible¡£¡¡Again



if¡¡A¡¡may¡¡belong¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡may¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Cs£»¡¡it¡¡is



necessary¡¡that¡¡A¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Cs¡£¡¡The



proof¡¡is¡¡the¡¡same¡¡as¡¡above¡£¡¡But¡¡if¡¡the¡¡particular¡¡premiss¡¡is¡¡negative£»



and¡¡the¡¡universal¡¡is¡¡affirmative£»¡¡the¡¡major¡¡still¡¡being¡¡universal



and¡¡the¡¡minor¡¡particular£»¡¡e¡£g¡£¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡B¡¡may¡¡possibly



not¡¡belong¡¡to¡¡some¡¡C£»¡¡then¡¡a¡¡clear¡¡syllogism¡¡does¡¡not¡¡result¡¡from



the¡¡assumed¡¡premisses£»¡¡but¡¡if¡¡the¡¡particular¡¡premiss¡¡is¡¡converted



and¡¡it¡¡is¡¡laid¡¡down¡¡that¡¡B¡¡possibly¡¡may¡¡belong¡¡to¡¡some¡¡C£»¡¡we¡¡shall



have¡¡the¡¡same¡¡conclusion¡¡as¡¡before£»¡¡as¡¡in¡¡the¡¡cases¡¡given¡¡at¡¡the



beginning¡£



¡¡¡¡But¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡the¡¡minor¡¡universal£»¡¡whether¡¡both¡¡are



affirmative£»¡¡or¡¡negative£»¡¡or¡¡different¡¡in¡¡quality£»¡¡or¡¡if¡¡both¡¡are



indefinite¡¡or¡¡particular£»¡¡in¡¡no¡¡way¡¡will¡¡a¡¡syllogism¡¡be¡¡possible¡£



For¡¡nothing¡¡prevents¡¡B¡¡from¡¡reaching¡¡beyond¡¡A£»¡¡so¡¡that¡¡as¡¡predicates



cover¡¡unequal¡¡areas¡£¡¡Let¡¡C¡¡be¡¡that¡¡by¡¡which¡¡B¡¡extends¡¡beyond¡¡A¡£¡¡To¡¡C



it¡¡is¡¡not¡¡possible¡¡that¡¡A¡¡should¡¡belong¡­either¡¡to¡¡all¡¡or¡¡to¡¡none¡¡or¡¡to



some¡¡or¡¡not¡¡to¡¡some£»¡¡since¡¡premisses¡¡in¡¡the¡¡mode¡¡of¡¡possibility¡¡are



convertible¡¡and¡¡it¡¡is¡¡possible¡¡for¡¡B¡¡to¡¡belong¡¡to¡¡more¡¡things¡¡than¡¡A



can¡£¡¡Further£»¡¡this¡¡is¡¡obvious¡¡if¡¡we¡¡take¡¡terms£»¡¡for¡¡if¡¡the¡¡premisses



are¡¡as¡¡assumed£»¡¡the¡¡major¡¡term¡¡is¡¡both¡¡possible¡¡for¡¡none¡¡of¡¡the



minor¡¡and¡¡must¡¡belong¡¡to¡¡all¡¡of¡¡it¡£¡¡Take¡¡as¡¡terms¡¡common¡¡to¡¡all¡¡the



cases¡¡under¡¡consideration¡¡'animal'¡­'white'¡­'man'£»¡¡where¡¡the¡¡major



belongs¡¡necessarily¡¡to¡¡the¡¡minor£»¡¡'animal'¡­'white'¡­'garment'£»¡¡where¡¡it



is¡¡not¡¡possible¡¡that¡¡the¡¡major¡¡should¡¡belong¡¡to¡¡the¡¡minor¡£¡¡It¡¡is¡¡clear



then¡¡that¡¡if¡¡the¡¡terms¡¡are¡¡related¡¡in¡¡this¡¡manner£»¡¡no¡¡syllogism



results¡£¡¡For¡¡every¡¡syllogism¡¡proves¡¡that¡¡something¡¡belongs¡¡either



simply¡¡or¡¡necessarily¡¡or¡¡possibly¡£¡¡It¡¡is¡¡clear¡¡that¡¡there¡¡is¡¡no



proof¡¡of¡¡the¡¡first¡¡or¡¡of¡¡the¡¡second¡£¡¡For¡¡the¡¡affirmative¡¡is



destroyed¡¡by¡¡the¡¡negative£»¡¡and¡¡the¡¡negative¡¡by¡¡the¡¡affirmative¡£



There¡¡remains¡¡the¡¡proof¡¡of¡¡possibility¡£¡¡But¡¡this¡¡is¡¡impossible¡£¡¡For¡¡it



has¡¡been¡¡proved¡¡that¡¡if¡¡the¡¡terms¡¡are¡¡related¡¡in¡¡this¡¡manner¡¡it¡¡is



both¡¡necessary¡¡that¡¡the¡¡major¡¡should¡¡belong¡¡to¡¡all¡¡the¡¡minor¡¡and¡¡not



possible¡¡that¡¡it¡¡should¡¡belong¡¡to¡¡any¡£¡¡Consequently¡¡there¡¡cannot¡¡be



a¡¡syllogism¡¡to¡¡prove¡¡the¡¡possibility£»¡¡for¡¡the¡¡necessary¡¡£¨as¡¡we¡¡stated£©



is¡¡not¡¡possible¡£



¡¡¡¡It¡¡is¡¡clear¡¡that¡¡if¡¡the¡¡terms¡¡are¡¡universal¡¡in¡¡possible¡¡premisses



a¡¡syllogism¡¡always¡¡results¡¡in¡¡the¡¡first¡¡figure£»¡¡whether¡¡they¡¡are



affirmative¡¡or¡¡negative£»¡¡only¡¡a¡¡perfect¡¡syllogism¡¡results¡¡in¡¡the¡¡first



case£»¡¡an¡¡imperfect¡¡in¡¡the¡¡second¡£¡¡But¡¡possibility¡¡must¡¡be¡¡understood



according¡¡to¡¡the¡¡definition¡¡laid¡¡down£»¡¡not¡¡as¡¡covering¡¡necessity¡£¡¡This



is¡¡sometimes¡¡forgotten¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡15







¡¡¡¡If¡¡one¡¡premiss¡¡is¡¡a¡¡simple¡¡proposition£»¡¡the¡¡other¡¡a¡¡problematic£»



whenever¡¡the¡¡major¡¡premiss¡¡indicates¡¡possibility¡¡all¡¡the¡¡syllogisms



will¡¡be¡¡perfect¡¡and¡¡establish¡¡possibility¡¡in¡¡the¡¡sense¡¡defined£»¡¡but



whenever¡¡the¡¡minor¡¡premiss¡¡indicates¡¡possibility¡¡all¡¡the¡¡syllogisms



will¡¡be¡¡imperfect£»¡¡and¡¡those¡¡which¡¡are¡¡negative¡¡will¡¡establish¡¡not



possibility¡¡according¡¡to¡¡the¡¡definition£»¡¡but¡¡that¡¡the¡¡major¡¡does¡¡not



necessarily¡¡belong¡¡to¡¡any£»¡¡or¡¡to¡¡all£»¡¡of¡¡the¡¡minor¡£¡¡For¡¡if¡¡this¡¡is¡¡so£»



we¡¡say¡¡it¡¡is¡¡possible¡¡that¡¡it¡¡should¡¡belong¡¡to¡¡none¡¡or¡¡not¡¡to¡¡all¡£¡¡Let



A¡¡be¡¡possible¡¡for¡¡all¡¡B£»¡¡and¡¡let¡¡B¡¡belong¡¡to¡¡all¡¡C¡£¡¡Since¡¡C¡¡falls



under¡¡B£»¡¡and¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡clearly¡¡it¡¡is¡¡possible¡¡for¡¡all¡¡C



also¡£¡¡So¡¡a¡¡perfect¡¡syllogism¡¡results¡£¡¡Likewise¡¡if¡¡the¡¡premiss¡¡AB¡¡is



negative£»¡¡and¡¡the¡¡premiss¡¡BC¡¡is¡¡affirmative£»¡¡the¡¡former¡¡stating



possible£»¡¡the¡¡latter¡¡simple¡¡attribution£»¡¡a¡¡perfect¡¡syllogism¡¡results



proving¡¡that¡¡A¡¡possibly¡¡belongs¡¡to¡¡no¡¡C¡£



¡¡¡¡It¡¡is¡¡clear¡¡that¡¡perfect¡¡syllogisms¡¡result¡¡if¡¡the¡¡minor¡¡premiss



states¡¡simple¡¡belonging£º¡¡but¡¡that¡¡syllogisms¡¡will¡¡result¡¡if¡¡the



modality¡¡of¡¡the¡¡premisses¡¡is¡¡reversed£»¡¡must¡¡be¡¡proved¡¡per¡¡impossibile¡£



At¡¡the¡¡same¡¡time¡¡it¡¡will¡¡be¡¡evident¡¡that¡¡they¡¡are¡¡imperfect£º¡¡for¡¡the



proof¡¡proceeds¡¡not¡¡from¡¡the¡¡premisses¡¡assumed¡£¡¡First¡¡we¡¡must¡¡state



that¡¡if¡¡B's¡¡being¡¡follows¡¡necessarily¡¡from¡¡A's¡¡being£»¡¡B's



possibility¡¡will¡¡follow¡¡necessarily¡¡from¡¡A's¡¡possibility¡£¡¡Suppose£»¡¡the



terms¡¡being¡¡so¡¡related£»¡¡that¡¡A¡¡is¡¡possible£»¡¡and¡¡B¡¡is¡¡impossible¡£¡¡If



then¡¡that¡¡which¡¡is¡¡possible£»¡¡when¡¡it¡¡is¡¡possible¡¡for¡¡it¡¡to¡¡be£»¡¡might



happen£»¡¡and¡¡if¡¡that¡¡which¡¡is¡¡impossible£»¡¡when¡¡it¡¡is¡¡impossible£»



could¡¡not¡¡happen£»¡¡and¡¡if¡¡at¡¡the¡¡same¡¡time¡¡A¡¡is¡¡possible¡¡and¡¡B



impossible£»¡¡it¡¡would¡¡be¡¡possible¡¡for¡¡A¡¡to¡¡happen¡¡without¡¡B£»¡¡and¡¡if



to¡¡happen£»¡¡then¡¡to¡¡be¡£¡¡For¡¡that¡¡which¡¡has¡¡happened£»¡¡when¡¡it¡¡has



happened£»¡¡is¡£¡¡But¡¡we¡¡must¡¡take¡¡the¡¡impossible¡¡and¡¡the¡¡possible¡¡not



only¡¡in¡¡the¡¡sphere¡¡of¡¡becoming£»¡¡but¡¡also¡¡in¡¡the¡¡spheres¡¡of¡¡truth¡¡and



predicability£»¡¡and¡¡the¡¡various¡¡other¡¡spheres¡¡in¡¡which¡¡we¡¡speak¡¡of



the¡¡possible£º¡¡for¡¡it¡¡will¡¡be¡¡alike¡¡in¡¡all¡£¡¡Further¡¡we¡¡must



understand¡¡the¡¡statement¡¡that¡¡B's¡¡being¡¡depends¡¡on¡¡A's¡¡being£»¡¡not¡¡as



meaning¡¡that¡¡if¡¡some¡¡single¡¡thing¡¡A¡¡is£»¡¡B¡¡will¡¡be£º¡¡for¡¡nothing¡¡follows



of¡¡necessity¡¡from¡¡the¡¡being¡¡of¡¡some¡¡one¡¡thing£»¡¡but¡¡from¡¡two¡¡at



least£»¡¡i¡£e¡£¡¡when¡¡the¡¡premisses¡¡are¡¡related¡¡in¡¡the¡¡manner¡¡stated¡¡to



be¡¡that¡¡of¡¡the¡¡syllogism¡£¡¡For¡¡if¡¡C¡¡is¡¡predicated¡¡of¡¡D£»¡¡and¡¡D¡¡of¡¡F£»



then¡¡C¡¡is¡¡necessarily¡¡predicated¡¡of¡¡F¡£¡¡And¡¡if¡¡each¡¡is¡¡possible£»¡¡the



conclusion¡¡also¡¡is¡¡possible¡£¡¡If¡¡then£»¡¡for¡¡example£»¡¡one¡¡should¡¡indicate



the¡¡premisses¡¡by¡¡A£»¡¡and¡¡the¡¡conclusion¡¡by¡¡B£»¡¡it¡¡would¡¡not¡¡only



result¡¡that¡¡if¡¡A¡¡is¡¡necessary¡¡B¡¡is¡¡necessary£»¡¡but¡¡also¡¡that¡¡if¡¡A¡¡is



possible£»¡¡B¡¡is¡¡possible¡£



¡¡¡¡Since¡¡this¡¡is¡¡proved¡¡it¡¡is¡¡evident¡¡that¡¡if¡¡a¡¡false¡¡and¡¡not



impossible¡¡assumption¡¡is¡¡made£»¡¡the¡¡consequence¡¡of¡¡the¡¡assumption



will¡¡also¡¡be¡¡false¡¡and¡¡not¡¡impossible£º¡¡e¡£g¡£¡¡if¡¡A¡¡is¡¡false£»¡¡but¡¡not



impossible£»¡¡and¡¡if¡¡B¡¡is¡¡the¡¡consequence¡¡of¡¡A£»¡¡B¡¡also¡¡will¡¡be¡¡false¡¡but



not¡¡impossible¡£¡¡For¡¡since¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡if¡¡B's¡¡being¡¡is



the¡¡consequence¡¡of¡¡A's¡¡being£»¡¡then¡¡B's¡¡possibility¡¡will¡¡follow¡¡from



A's¡¡possibility¡¡£¨and¡¡A¡¡is¡¡assumed¡¡to¡¡be¡¡possible£©£»¡¡consequently¡¡B¡¡will



be¡¡possible£º¡¡for¡¡if¡¡it¡¡were¡¡impossible£»¡¡the¡¡same¡¡thing¡¡would¡¡at¡¡the



same¡¡time¡¡be¡¡possible¡¡and¡¡impossible¡£



¡¡¡¡Since¡¡we¡¡have¡¡defined¡¡these¡¡points£»¡¡let¡¡A¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡B



be¡¡possible¡¡for¡¡all¡¡C£º¡¡it¡¡is¡¡necessary¡¡then¡¡that¡¡should¡¡be¡¡a



possible¡¡attribute¡¡for¡¡all¡¡C¡£¡¡Suppose¡¡that¡¡it¡¡is¡¡not¡¡possible£»¡¡but



assume¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡C£º¡¡this¡¡is¡¡false¡¡but¡¡not¡¡impossible¡£¡¡If



then¡¡A¡¡is¡¡not¡¡possible¡¡for¡¡C¡¡but¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡then¡¡A¡¡is¡¡not



possible¡¡for¡¡all¡¡B£º¡¡for¡¡a¡¡syllogism¡¡is¡¡formed¡¡in¡¡the¡¡third¡¡degree¡£¡¡But



it¡¡was¡¡assumed¡¡that¡¡A¡¡is¡¡a¡¡possible¡¡attribute¡¡for¡¡all¡¡B¡£¡¡It¡¡is



necessary¡¡then¡¡that¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡C¡£¡¡For¡¡though¡¡the¡¡assumption



we¡¡made¡¡is¡¡false¡¡and¡¡not¡¡impossible£»¡¡the¡¡conclusion¡¡is¡¡impossible¡£



It¡¡is¡¡possible¡¡also¡¡in¡¡the¡¡first¡¡figure¡¡to¡¡bring¡¡about¡¡the



impossibility£»¡¡by¡¡assuming¡¡that¡¡B¡¡belongs¡¡to¡¡C¡£¡¡For¡¡if¡¡B¡¡belongs¡¡to



all¡¡C£»¡¡and¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡B£»¡¡then¡¡A¡¡would¡¡be¡¡possible¡¡for¡¡all



C¡£¡¡But¡¡the¡¡assumption¡¡was¡¡made¡¡that¡¡A¡¡is¡¡not¡¡possible¡¡for¡¡all¡¡C¡£



¡¡¡¡We¡¡must¡¡understand¡¡'that¡¡which¡¡belongs¡¡to¡¡all'¡¡with¡¡no¡¡limitation¡¡in



respect¡¡of¡¡time£»¡¡e¡£g¡£¡¡to¡¡the¡¡present¡¡or¡¡to¡¡a¡¡particular¡¡period£»¡¡but



simply¡¡without¡¡qualification¡£¡¡For¡¡it¡¡is¡¡by¡¡the¡¡help¡¡of¡¡such



premisses¡¡that¡¡we¡¡make¡¡syllogisms£»¡¡since¡¡if¡¡the¡¡premiss¡¡is



understood¡¡with¡¡reference¡¡to¡¡the¡¡present¡¡moment£»¡¡there¡¡cannot¡¡be¡¡a



syllogism¡£¡¡For¡¡nothing¡¡perhaps¡¡prevents¡¡'man'¡¡belonging¡¡at¡¡a



particular¡¡time¡¡to¡¡everything¡¡that¡¡is¡¡moving£»¡¡i¡£e¡£¡¡if¡¡nothing¡¡else



were¡¡moving£º¡¡but¡¡'moving'¡¡is¡¡possible¡¡for¡¡every¡¡horse£»¡¡yet¡¡'man'¡¡is



possible¡¡for¡¡no¡¡horse¡£¡¡Further¡¡let¡¡the¡¡major¡¡term¡¡be¡¡'animal'£»¡¡the



middle¡¡'moving'£»¡¡the¡¡the¡¡minor¡¡'man'¡£¡¡The¡¡premisses¡¡then¡¡will¡¡be¡¡as



before£»¡¡but¡¡the¡¡conclusion¡¡necessary£»¡¡not¡¡possible¡£¡¡For¡¡man¡¡is



necessarily¡¡animal¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡the¡¡universal¡¡must¡¡be



understood¡¡simply£»¡¡without¡¡limitation¡¡in¡¡respect¡¡of¡¡time¡£



¡¡¡¡Again¡¡let¡¡the¡¡premiss¡¡AB¡¡be¡¡universal¡¡and¡¡negative£»¡¡and¡¡assume



that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡but¡¡B¡¡possibly¡¡belongs¡¡to¡¡all¡¡C¡£¡¡These



propositions¡¡being¡¡laid¡¡down£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡possibly



belongs¡¡to¡¡no¡¡C¡£¡¡Suppose¡¡that¡¡it¡¡cannot¡¡belong£»¡¡and¡¡that¡¡B¡¡belongs



to¡¡C£»¡¡as¡¡above¡£¡¡It¡¡is¡¡necessary¡¡then¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£º¡¡for



we¡¡have¡¡a¡¡syllogism¡¡in¡¡the¡¡third¡¡figure£º¡¡but¡¡this¡¡is¡¡impo

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ