Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ5½Ú

prior analytics-µÚ5½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






necessarily¡£¡¡But¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡not¡¡necessary£»¡¡but¡¡the



minor¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡For¡¡if¡¡it



were£»¡¡it¡¡would¡¡result¡¡both¡¡through¡¡the¡¡first¡¡figure¡¡and¡¡through¡¡the



third¡¡that¡¡A¡¡belongs¡¡necessarily¡¡to¡¡some¡¡B¡£¡¡But¡¡this¡¡is¡¡false£»¡¡for¡¡B



may¡¡be¡¡such¡¡that¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡none¡¡of¡¡it¡£



Further£»¡¡an¡¡example¡¡also¡¡makes¡¡it¡¡clear¡¡that¡¡the¡¡conclusion¡¡not¡¡be



necessary£»¡¡e¡£g¡£¡¡if¡¡A¡¡were¡¡movement£»¡¡B¡¡animal£»¡¡C¡¡man£º¡¡man¡¡is¡¡an



animal¡¡necessarily£»¡¡but¡¡an¡¡animal¡¡does¡¡not¡¡move¡¡necessarily£»¡¡nor



does¡¡man¡£¡¡Similarly¡¡also¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡negative£»¡¡for¡¡the



proof¡¡is¡¡the¡¡same¡£



¡¡¡¡In¡¡particular¡¡syllogisms£»¡¡if¡¡the¡¡universal¡¡premiss¡¡is¡¡necessary£»



then¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡if¡¡the¡¡particular£»¡¡the



conclusion¡¡will¡¡not¡¡be¡¡necessary£»¡¡whether¡¡the¡¡universal¡¡premiss¡¡is



negative¡¡or¡¡affirmative¡£¡¡First¡¡let¡¡the¡¡universal¡¡be¡¡necessary£»¡¡and¡¡let



A¡¡belong¡¡to¡¡all¡¡B¡¡necessarily£»¡¡but¡¡let¡¡B¡¡simply¡¡belong¡¡to¡¡some¡¡C£º¡¡it



is¡¡necessary¡¡then¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡C¡¡necessarily£º¡¡for¡¡C¡¡falls



under¡¡B£»¡¡and¡¡A¡¡was¡¡assumed¡¡to¡¡belong¡¡necessarily¡¡to¡¡all¡¡B¡£¡¡Similarly



also¡¡if¡¡the¡¡syllogism¡¡should¡¡be¡¡negative£º¡¡for¡¡the¡¡proof¡¡will¡¡be¡¡the



same¡£¡¡But¡¡if¡¡the¡¡particular¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion



will¡¡not¡¡be¡¡necessary£º¡¡for¡¡from¡¡the¡¡denial¡¡of¡¡such¡¡a¡¡conclusion



nothing¡¡impossible¡¡results£»¡¡just¡¡as¡¡it¡¡does¡¡not¡¡in¡¡the¡¡universal



syllogisms¡£¡¡The¡¡same¡¡is¡¡true¡¡of¡¡negative¡¡syllogisms¡£¡¡Try¡¡the¡¡terms



movement£»¡¡animal£»¡¡white¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10







¡¡¡¡In¡¡the¡¡second¡¡figure£»¡¡if¡¡the¡¡negative¡¡premiss¡¡is¡¡necessary£»¡¡then¡¡the



conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡if¡¡the¡¡affirmative£»¡¡not¡¡necessary¡£



First¡¡let¡¡the¡¡negative¡¡be¡¡necessary£»¡¡let¡¡A¡¡be¡¡possible¡¡of¡¡no¡¡B£»¡¡and



simply¡¡belong¡¡to¡¡C¡£¡¡Since¡¡then¡¡the¡¡negative¡¡statement¡¡is



convertible£»¡¡B¡¡is¡¡possible¡¡of¡¡no¡¡A¡£¡¡But¡¡A¡¡belongs¡¡to¡¡all¡¡C£»



consequently¡¡B¡¡is¡¡possible¡¡of¡¡no¡¡C¡£¡¡For¡¡C¡¡falls¡¡under¡¡A¡£¡¡The¡¡same



result¡¡would¡¡be¡¡obtained¡¡if¡¡the¡¡minor¡¡premiss¡¡were¡¡negative£º¡¡for¡¡if



A¡¡is¡¡possible¡¡be¡¡of¡¡no¡¡C£»¡¡C¡¡is¡¡possible¡¡of¡¡no¡¡A£º¡¡but¡¡A¡¡belongs¡¡to





all¡¡B£»¡¡consequently¡¡C¡¡is¡¡possible¡¡of¡¡none¡¡of¡¡the¡¡Bs£º¡¡for¡¡again¡¡we¡¡have



obtained¡¡the¡¡first¡¡figure¡£¡¡Neither¡¡then¡¡is¡¡B¡¡possible¡¡of¡¡C£º¡¡for



conversion¡¡is¡¡possible¡¡without¡¡modifying¡¡the¡¡relation¡£



¡¡¡¡But¡¡if¡¡the¡¡affirmative¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not



be¡¡necessary¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B¡¡necessarily£»¡¡but¡¡to¡¡no¡¡C¡¡simply¡£



If¡¡then¡¡the¡¡negative¡¡premiss¡¡is¡¡converted£»¡¡the¡¡first¡¡figure¡¡results¡£



But¡¡it¡¡has¡¡been¡¡proved¡¡in¡¡the¡¡case¡¡of¡¡the¡¡first¡¡figure¡¡that¡¡if¡¡the



negative¡¡major¡¡premiss¡¡is¡¡not¡¡necessary¡¡the¡¡conclusion¡¡will¡¡not¡¡be



necessary¡¡either¡£¡¡Therefore¡¡the¡¡same¡¡result¡¡will¡¡obtain¡¡here¡£¡¡Further£»



if¡¡the¡¡conclusion¡¡is¡¡necessary£»¡¡it¡¡follows¡¡that¡¡C¡¡necessarily¡¡does¡¡not



belong¡¡to¡¡some¡¡A¡£¡¡For¡¡if¡¡B¡¡necessarily¡¡belongs¡¡to¡¡no¡¡C£»¡¡C¡¡will



necessarily¡¡belong¡¡to¡¡no¡¡B¡£¡¡But¡¡B¡¡at¡¡any¡¡rate¡¡must¡¡belong¡¡to¡¡some¡¡A£»



if¡¡it¡¡is¡¡true¡¡£¨as¡¡was¡¡assumed£©¡¡that¡¡A¡¡necessarily¡¡belongs¡¡to¡¡all¡¡B¡£



Consequently¡¡it¡¡is¡¡necessary¡¡that¡¡C¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡A¡£¡¡But



nothing¡¡prevents¡¡such¡¡an¡¡A¡¡being¡¡taken¡¡that¡¡it¡¡is¡¡possible¡¡for¡¡C¡¡to



belong¡¡to¡¡all¡¡of¡¡it¡£¡¡Further¡¡one¡¡might¡¡show¡¡by¡¡an¡¡exposition¡¡of



terms¡¡that¡¡the¡¡conclusion¡¡is¡¡not¡¡necessary¡¡without¡¡qualification£»



though¡¡it¡¡is¡¡a¡¡necessary¡¡conclusion¡¡from¡¡the¡¡premisses¡£¡¡For¡¡example



let¡¡A¡¡be¡¡animal£»¡¡B¡¡man£»¡¡C¡¡white£»¡¡and¡¡let¡¡the¡¡premisses¡¡be¡¡assumed¡¡to



correspond¡¡to¡¡what¡¡we¡¡had¡¡before£º¡¡it¡¡is¡¡possible¡¡that¡¡animal¡¡should



belong¡¡to¡¡nothing¡¡white¡£¡¡Man¡¡then¡¡will¡¡not¡¡belong¡¡to¡¡anything¡¡white£»



but¡¡not¡¡necessarily£º¡¡for¡¡it¡¡is¡¡possible¡¡for¡¡man¡¡to¡¡be¡¡born¡¡white£»



not¡¡however¡¡so¡¡long¡¡as¡¡animal¡¡belongs¡¡to¡¡nothing¡¡white¡£¡¡Consequently



under¡¡these¡¡conditions¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡it¡¡is¡¡not



necessary¡¡without¡¡qualification¡£



¡¡¡¡Similar¡¡results¡¡will¡¡obtain¡¡also¡¡in¡¡particular¡¡syllogisms¡£¡¡For



whenever¡¡the¡¡negative¡¡premiss¡¡is¡¡both¡¡universal¡¡and¡¡necessary£»¡¡then



the¡¡conclusion¡¡will¡¡be¡¡necessary£º¡¡but¡¡whenever¡¡the¡¡affirmative¡¡premiss



is¡¡universal£»¡¡the¡¡negative¡¡particular£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be



necessary¡£¡¡First¡¡then¡¡let¡¡the¡¡negative¡¡premiss¡¡be¡¡both¡¡universal¡¡and



necessary£º¡¡let¡¡it¡¡be¡¡possible¡¡for¡¡no¡¡B¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡it£»¡¡and



let¡¡A¡¡simply¡¡belong¡¡to¡¡some¡¡C¡£¡¡Since¡¡the¡¡negative¡¡statement¡¡is



convertible£»¡¡it¡¡will¡¡be¡¡possible¡¡for¡¡no¡¡A¡¡that¡¡B¡¡should¡¡belong¡¡to



it£º¡¡but¡¡A¡¡belongs¡¡to¡¡some¡¡C£»¡¡consequently¡¡B¡¡necessarily¡¡does¡¡not



belong¡¡to¡¡some¡¡of¡¡the¡¡Cs¡£¡¡Again¡¡let¡¡the¡¡affirmative¡¡premiss¡¡be¡¡both



universal¡¡and¡¡necessary£»¡¡and¡¡let¡¡the¡¡major¡¡premiss¡¡be¡¡affirmative¡£



If¡¡then¡¡A¡¡necessarily¡¡belongs¡¡to¡¡all¡¡B£»¡¡but¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡C£»



it¡¡is¡¡clear¡¡that¡¡B¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡but¡¡not¡¡necessarily¡£¡¡For



the¡¡same¡¡terms¡¡can¡¡be¡¡used¡¡to¡¡demonstrate¡¡the¡¡point£»¡¡which¡¡were¡¡used



in¡¡the¡¡universal¡¡syllogisms¡£¡¡Nor¡¡again£»¡¡if¡¡the¡¡negative¡¡statement¡¡is



necessary¡¡but¡¡particular£»¡¡will¡¡the¡¡conclusion¡¡be¡¡necessary¡£¡¡The



point¡¡can¡¡be¡¡demonstrated¡¡by¡¡means¡¡of¡¡the¡¡same¡¡terms¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡11







¡¡¡¡In¡¡the¡¡last¡¡figure¡¡when¡¡the¡¡terms¡¡are¡¡related¡¡universally¡¡to¡¡the



middle£»¡¡and¡¡both¡¡premisses¡¡are¡¡affirmative£»¡¡if¡¡one¡¡of¡¡the¡¡two¡¡is



necessary£»¡¡then¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary¡£¡¡But¡¡if¡¡one¡¡is



negative£»¡¡the¡¡other¡¡affirmative£»¡¡whenever¡¡the¡¡negative¡¡is¡¡necessary



the¡¡conclusion¡¡also¡¡will¡¡be¡¡necessary£»¡¡but¡¡whenever¡¡the¡¡affirmative¡¡is



necessary¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡First¡¡let¡¡both¡¡the



premisses¡¡be¡¡affirmative£»¡¡and¡¡let¡¡A¡¡and¡¡B¡¡belong¡¡to¡¡all¡¡C£»¡¡and¡¡let



AC¡¡be¡¡necessary¡£¡¡Since¡¡then¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡C¡¡also¡¡will¡¡belong



to¡¡some¡¡B£»¡¡because¡¡the¡¡universal¡¡is¡¡convertible¡¡into¡¡the¡¡particular£º



consequently¡¡if¡¡A¡¡belongs¡¡necessarily¡¡to¡¡all¡¡C£»¡¡and¡¡C¡¡belongs¡¡to



some¡¡B£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡some¡¡B¡¡also¡£¡¡For¡¡B



is¡¡under¡¡C¡£¡¡The¡¡first¡¡figure¡¡then¡¡is¡¡formed¡£¡¡A¡¡similar¡¡proof¡¡will¡¡be



given¡¡also¡¡if¡¡BC¡¡is¡¡necessary¡£¡¡For¡¡C¡¡is¡¡convertible¡¡with¡¡some¡¡A£º



consequently¡¡if¡¡B¡¡belongs¡¡necessarily¡¡to¡¡all¡¡C£»¡¡it¡¡will¡¡belong



necessarily¡¡also¡¡to¡¡some¡¡A¡£



¡¡¡¡Again¡¡let¡¡AC¡¡be¡¡negative£»¡¡BC¡¡affirmative£»¡¡and¡¡let¡¡the¡¡negative



premiss¡¡be¡¡necessary¡£¡¡Since¡¡then¡¡C¡¡is¡¡convertible¡¡with¡¡some¡¡B£»¡¡but¡¡A



necessarily¡¡belongs¡¡to¡¡no¡¡C£»¡¡A¡¡will¡¡necessarily¡¡not¡¡belong¡¡to¡¡some¡¡B



either£º¡¡for¡¡B¡¡is¡¡under¡¡C¡£¡¡But¡¡if¡¡the¡¡affirmative¡¡is¡¡necessary£»¡¡the



conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡For¡¡suppose¡¡BC¡¡is¡¡affirmative¡¡and



necessary£»¡¡while¡¡AC¡¡is¡¡negative¡¡and¡¡not¡¡necessary¡£¡¡Since¡¡then¡¡the



affirmative¡¡is¡¡convertible£»¡¡C¡¡also¡¡will¡¡belong¡¡to¡¡some¡¡B



necessarily£º¡¡consequently¡¡if¡¡A¡¡belongs¡¡to¡¡none¡¡of¡¡the¡¡Cs£»¡¡while¡¡C



belongs¡¡to¡¡some¡¡of¡¡the¡¡Bs£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Bs¡­but¡¡not



of¡¡necessity£»¡¡for¡¡it¡¡has¡¡been¡¡proved£»¡¡in¡¡the¡¡case¡¡of¡¡the¡¡first¡¡figure£»



that¡¡if¡¡the¡¡negative¡¡premiss¡¡is¡¡not¡¡necessary£»¡¡neither¡¡will¡¡the



conclusion¡¡be¡¡necessary¡£¡¡Further£»¡¡the¡¡point¡¡may¡¡be¡¡made¡¡clear¡¡by



considering¡¡the¡¡terms¡£¡¡Let¡¡the¡¡term¡¡A¡¡be¡¡'good'£»¡¡let¡¡that¡¡which¡¡B



signifies¡¡be¡¡'animal'£»¡¡let¡¡the¡¡term¡¡C¡¡be¡¡'horse'¡£¡¡It¡¡is¡¡possible



then¡¡that¡¡the¡¡term¡¡good¡¡should¡¡belong¡¡to¡¡no¡¡horse£»¡¡and¡¡it¡¡is¡¡necessary



that¡¡the¡¡term¡¡animal¡¡should¡¡belong¡¡to¡¡every¡¡horse£º¡¡but¡¡it¡¡is¡¡not



necessary¡¡that¡¡some¡¡animal¡¡should¡¡not¡¡be¡¡good£»¡¡since¡¡it¡¡is¡¡possible



for¡¡every¡¡animal¡¡to¡¡be¡¡good¡£¡¡Or¡¡if¡¡that¡¡is¡¡not¡¡possible£»¡¡take¡¡as¡¡the



term¡¡'awake'¡¡or¡¡'asleep'£º¡¡for¡¡every¡¡animal¡¡can¡¡accept¡¡these¡£



¡¡¡¡If£»¡¡then£»¡¡the¡¡premisses¡¡are¡¡universal£»¡¡we¡¡have¡¡stated¡¡when¡¡the



conclusion¡¡will¡¡be¡¡necessary¡£¡¡But¡¡if¡¡one¡¡premiss¡¡is¡¡universal£»¡¡the



other¡¡particular£»¡¡and¡¡if¡¡both¡¡are¡¡affirmative£»¡¡whenever¡¡the



universal¡¡is¡¡necessary¡¡the¡¡conclusion¡¡also¡¡must¡¡be¡¡necessary¡£¡¡The



demonstration¡¡is¡¡the¡¡same¡¡as¡¡before£»¡¡for¡¡the¡¡particular¡¡affirmative



also¡¡is¡¡convertible¡£¡¡If¡¡then¡¡it¡¡is¡¡necessary¡¡that¡¡B¡¡should¡¡belong¡¡to



all¡¡C£»¡¡and¡¡A¡¡falls¡¡under¡¡C£»¡¡it¡¡is¡¡necessary¡¡that¡¡B¡¡should¡¡belong¡¡to



some¡¡A¡£¡¡But¡¡if¡¡B¡¡must¡¡belong¡¡to¡¡some¡¡A£»¡¡then¡¡A¡¡must¡¡belong¡¡to¡¡some



B£º¡¡for¡¡conversion¡¡is¡¡possible¡£¡¡Similarly¡¡also¡¡if¡¡AC¡¡should¡¡be



necessary¡¡and¡¡universal£º¡¡for¡¡B¡¡falls¡¡under¡¡C¡£¡¡But¡¡if¡¡the¡¡particular



premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡Let¡¡the



premiss¡¡BC¡¡be¡¡both¡¡particular¡¡and¡¡necessary£»¡¡and¡¡let¡¡A¡¡belong¡¡to¡¡all



C£»¡¡not¡¡however¡¡necessarily¡£¡¡If¡¡the¡¡proposition¡¡BC¡¡is¡¡converted¡¡the



first¡¡figure¡¡is¡¡formed£»¡¡and¡¡the¡¡universal¡¡premiss¡¡is¡¡not¡¡necessary£»



but¡¡the¡¡particular¡¡is¡¡necessary¡£¡¡But¡¡when¡¡the¡¡premisses¡¡were¡¡thus£»¡¡the



conclusion¡¡£¨as¡¡we¡¡proved¡¡was¡¡not¡¡necessary£º¡¡consequently¡¡it¡¡is¡¡not



here¡¡either¡£¡¡Further£»¡¡the¡¡point¡¡is¡¡clear¡¡if¡¡we¡¡look¡¡at¡¡the¡¡terms¡£



Let¡¡A¡¡be¡¡waking£»¡¡B¡¡biped£»¡¡and¡¡C¡¡animal¡£¡¡It¡¡is¡¡necessary¡¡that¡¡B



should¡¡belong¡¡to¡¡some¡¡C£»¡¡but¡¡it¡¡is¡¡possible¡¡for¡¡A¡¡to¡¡belong¡¡to¡¡C£»



and¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡B¡¡is¡¡not¡¡necessary¡£¡¡For¡¡th

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ