prior analytics-µÚ5½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
necessarily¡£¡¡But¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡not¡¡necessary£»¡¡but¡¡the
minor¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡For¡¡if¡¡it
were£»¡¡it¡¡would¡¡result¡¡both¡¡through¡¡the¡¡first¡¡figure¡¡and¡¡through¡¡the
third¡¡that¡¡A¡¡belongs¡¡necessarily¡¡to¡¡some¡¡B¡£¡¡But¡¡this¡¡is¡¡false£»¡¡for¡¡B
may¡¡be¡¡such¡¡that¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡none¡¡of¡¡it¡£
Further£»¡¡an¡¡example¡¡also¡¡makes¡¡it¡¡clear¡¡that¡¡the¡¡conclusion¡¡not¡¡be
necessary£»¡¡e¡£g¡£¡¡if¡¡A¡¡were¡¡movement£»¡¡B¡¡animal£»¡¡C¡¡man£º¡¡man¡¡is¡¡an
animal¡¡necessarily£»¡¡but¡¡an¡¡animal¡¡does¡¡not¡¡move¡¡necessarily£»¡¡nor
does¡¡man¡£¡¡Similarly¡¡also¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡negative£»¡¡for¡¡the
proof¡¡is¡¡the¡¡same¡£
¡¡¡¡In¡¡particular¡¡syllogisms£»¡¡if¡¡the¡¡universal¡¡premiss¡¡is¡¡necessary£»
then¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡if¡¡the¡¡particular£»¡¡the
conclusion¡¡will¡¡not¡¡be¡¡necessary£»¡¡whether¡¡the¡¡universal¡¡premiss¡¡is
negative¡¡or¡¡affirmative¡£¡¡First¡¡let¡¡the¡¡universal¡¡be¡¡necessary£»¡¡and¡¡let
A¡¡belong¡¡to¡¡all¡¡B¡¡necessarily£»¡¡but¡¡let¡¡B¡¡simply¡¡belong¡¡to¡¡some¡¡C£º¡¡it
is¡¡necessary¡¡then¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡C¡¡necessarily£º¡¡for¡¡C¡¡falls
under¡¡B£»¡¡and¡¡A¡¡was¡¡assumed¡¡to¡¡belong¡¡necessarily¡¡to¡¡all¡¡B¡£¡¡Similarly
also¡¡if¡¡the¡¡syllogism¡¡should¡¡be¡¡negative£º¡¡for¡¡the¡¡proof¡¡will¡¡be¡¡the
same¡£¡¡But¡¡if¡¡the¡¡particular¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion
will¡¡not¡¡be¡¡necessary£º¡¡for¡¡from¡¡the¡¡denial¡¡of¡¡such¡¡a¡¡conclusion
nothing¡¡impossible¡¡results£»¡¡just¡¡as¡¡it¡¡does¡¡not¡¡in¡¡the¡¡universal
syllogisms¡£¡¡The¡¡same¡¡is¡¡true¡¡of¡¡negative¡¡syllogisms¡£¡¡Try¡¡the¡¡terms
movement£»¡¡animal£»¡¡white¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10
¡¡¡¡In¡¡the¡¡second¡¡figure£»¡¡if¡¡the¡¡negative¡¡premiss¡¡is¡¡necessary£»¡¡then¡¡the
conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡if¡¡the¡¡affirmative£»¡¡not¡¡necessary¡£
First¡¡let¡¡the¡¡negative¡¡be¡¡necessary£»¡¡let¡¡A¡¡be¡¡possible¡¡of¡¡no¡¡B£»¡¡and
simply¡¡belong¡¡to¡¡C¡£¡¡Since¡¡then¡¡the¡¡negative¡¡statement¡¡is
convertible£»¡¡B¡¡is¡¡possible¡¡of¡¡no¡¡A¡£¡¡But¡¡A¡¡belongs¡¡to¡¡all¡¡C£»
consequently¡¡B¡¡is¡¡possible¡¡of¡¡no¡¡C¡£¡¡For¡¡C¡¡falls¡¡under¡¡A¡£¡¡The¡¡same
result¡¡would¡¡be¡¡obtained¡¡if¡¡the¡¡minor¡¡premiss¡¡were¡¡negative£º¡¡for¡¡if
A¡¡is¡¡possible¡¡be¡¡of¡¡no¡¡C£»¡¡C¡¡is¡¡possible¡¡of¡¡no¡¡A£º¡¡but¡¡A¡¡belongs¡¡to
all¡¡B£»¡¡consequently¡¡C¡¡is¡¡possible¡¡of¡¡none¡¡of¡¡the¡¡Bs£º¡¡for¡¡again¡¡we¡¡have
obtained¡¡the¡¡first¡¡figure¡£¡¡Neither¡¡then¡¡is¡¡B¡¡possible¡¡of¡¡C£º¡¡for
conversion¡¡is¡¡possible¡¡without¡¡modifying¡¡the¡¡relation¡£
¡¡¡¡But¡¡if¡¡the¡¡affirmative¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not
be¡¡necessary¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B¡¡necessarily£»¡¡but¡¡to¡¡no¡¡C¡¡simply¡£
If¡¡then¡¡the¡¡negative¡¡premiss¡¡is¡¡converted£»¡¡the¡¡first¡¡figure¡¡results¡£
But¡¡it¡¡has¡¡been¡¡proved¡¡in¡¡the¡¡case¡¡of¡¡the¡¡first¡¡figure¡¡that¡¡if¡¡the
negative¡¡major¡¡premiss¡¡is¡¡not¡¡necessary¡¡the¡¡conclusion¡¡will¡¡not¡¡be
necessary¡¡either¡£¡¡Therefore¡¡the¡¡same¡¡result¡¡will¡¡obtain¡¡here¡£¡¡Further£»
if¡¡the¡¡conclusion¡¡is¡¡necessary£»¡¡it¡¡follows¡¡that¡¡C¡¡necessarily¡¡does¡¡not
belong¡¡to¡¡some¡¡A¡£¡¡For¡¡if¡¡B¡¡necessarily¡¡belongs¡¡to¡¡no¡¡C£»¡¡C¡¡will
necessarily¡¡belong¡¡to¡¡no¡¡B¡£¡¡But¡¡B¡¡at¡¡any¡¡rate¡¡must¡¡belong¡¡to¡¡some¡¡A£»
if¡¡it¡¡is¡¡true¡¡£¨as¡¡was¡¡assumed£©¡¡that¡¡A¡¡necessarily¡¡belongs¡¡to¡¡all¡¡B¡£
Consequently¡¡it¡¡is¡¡necessary¡¡that¡¡C¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡A¡£¡¡But
nothing¡¡prevents¡¡such¡¡an¡¡A¡¡being¡¡taken¡¡that¡¡it¡¡is¡¡possible¡¡for¡¡C¡¡to
belong¡¡to¡¡all¡¡of¡¡it¡£¡¡Further¡¡one¡¡might¡¡show¡¡by¡¡an¡¡exposition¡¡of
terms¡¡that¡¡the¡¡conclusion¡¡is¡¡not¡¡necessary¡¡without¡¡qualification£»
though¡¡it¡¡is¡¡a¡¡necessary¡¡conclusion¡¡from¡¡the¡¡premisses¡£¡¡For¡¡example
let¡¡A¡¡be¡¡animal£»¡¡B¡¡man£»¡¡C¡¡white£»¡¡and¡¡let¡¡the¡¡premisses¡¡be¡¡assumed¡¡to
correspond¡¡to¡¡what¡¡we¡¡had¡¡before£º¡¡it¡¡is¡¡possible¡¡that¡¡animal¡¡should
belong¡¡to¡¡nothing¡¡white¡£¡¡Man¡¡then¡¡will¡¡not¡¡belong¡¡to¡¡anything¡¡white£»
but¡¡not¡¡necessarily£º¡¡for¡¡it¡¡is¡¡possible¡¡for¡¡man¡¡to¡¡be¡¡born¡¡white£»
not¡¡however¡¡so¡¡long¡¡as¡¡animal¡¡belongs¡¡to¡¡nothing¡¡white¡£¡¡Consequently
under¡¡these¡¡conditions¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary£»¡¡but¡¡it¡¡is¡¡not
necessary¡¡without¡¡qualification¡£
¡¡¡¡Similar¡¡results¡¡will¡¡obtain¡¡also¡¡in¡¡particular¡¡syllogisms¡£¡¡For
whenever¡¡the¡¡negative¡¡premiss¡¡is¡¡both¡¡universal¡¡and¡¡necessary£»¡¡then
the¡¡conclusion¡¡will¡¡be¡¡necessary£º¡¡but¡¡whenever¡¡the¡¡affirmative¡¡premiss
is¡¡universal£»¡¡the¡¡negative¡¡particular£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be
necessary¡£¡¡First¡¡then¡¡let¡¡the¡¡negative¡¡premiss¡¡be¡¡both¡¡universal¡¡and
necessary£º¡¡let¡¡it¡¡be¡¡possible¡¡for¡¡no¡¡B¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡it£»¡¡and
let¡¡A¡¡simply¡¡belong¡¡to¡¡some¡¡C¡£¡¡Since¡¡the¡¡negative¡¡statement¡¡is
convertible£»¡¡it¡¡will¡¡be¡¡possible¡¡for¡¡no¡¡A¡¡that¡¡B¡¡should¡¡belong¡¡to
it£º¡¡but¡¡A¡¡belongs¡¡to¡¡some¡¡C£»¡¡consequently¡¡B¡¡necessarily¡¡does¡¡not
belong¡¡to¡¡some¡¡of¡¡the¡¡Cs¡£¡¡Again¡¡let¡¡the¡¡affirmative¡¡premiss¡¡be¡¡both
universal¡¡and¡¡necessary£»¡¡and¡¡let¡¡the¡¡major¡¡premiss¡¡be¡¡affirmative¡£
If¡¡then¡¡A¡¡necessarily¡¡belongs¡¡to¡¡all¡¡B£»¡¡but¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡C£»
it¡¡is¡¡clear¡¡that¡¡B¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡but¡¡not¡¡necessarily¡£¡¡For
the¡¡same¡¡terms¡¡can¡¡be¡¡used¡¡to¡¡demonstrate¡¡the¡¡point£»¡¡which¡¡were¡¡used
in¡¡the¡¡universal¡¡syllogisms¡£¡¡Nor¡¡again£»¡¡if¡¡the¡¡negative¡¡statement¡¡is
necessary¡¡but¡¡particular£»¡¡will¡¡the¡¡conclusion¡¡be¡¡necessary¡£¡¡The
point¡¡can¡¡be¡¡demonstrated¡¡by¡¡means¡¡of¡¡the¡¡same¡¡terms¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡11
¡¡¡¡In¡¡the¡¡last¡¡figure¡¡when¡¡the¡¡terms¡¡are¡¡related¡¡universally¡¡to¡¡the
middle£»¡¡and¡¡both¡¡premisses¡¡are¡¡affirmative£»¡¡if¡¡one¡¡of¡¡the¡¡two¡¡is
necessary£»¡¡then¡¡the¡¡conclusion¡¡will¡¡be¡¡necessary¡£¡¡But¡¡if¡¡one¡¡is
negative£»¡¡the¡¡other¡¡affirmative£»¡¡whenever¡¡the¡¡negative¡¡is¡¡necessary
the¡¡conclusion¡¡also¡¡will¡¡be¡¡necessary£»¡¡but¡¡whenever¡¡the¡¡affirmative¡¡is
necessary¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡First¡¡let¡¡both¡¡the
premisses¡¡be¡¡affirmative£»¡¡and¡¡let¡¡A¡¡and¡¡B¡¡belong¡¡to¡¡all¡¡C£»¡¡and¡¡let
AC¡¡be¡¡necessary¡£¡¡Since¡¡then¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡C¡¡also¡¡will¡¡belong
to¡¡some¡¡B£»¡¡because¡¡the¡¡universal¡¡is¡¡convertible¡¡into¡¡the¡¡particular£º
consequently¡¡if¡¡A¡¡belongs¡¡necessarily¡¡to¡¡all¡¡C£»¡¡and¡¡C¡¡belongs¡¡to
some¡¡B£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡some¡¡B¡¡also¡£¡¡For¡¡B
is¡¡under¡¡C¡£¡¡The¡¡first¡¡figure¡¡then¡¡is¡¡formed¡£¡¡A¡¡similar¡¡proof¡¡will¡¡be
given¡¡also¡¡if¡¡BC¡¡is¡¡necessary¡£¡¡For¡¡C¡¡is¡¡convertible¡¡with¡¡some¡¡A£º
consequently¡¡if¡¡B¡¡belongs¡¡necessarily¡¡to¡¡all¡¡C£»¡¡it¡¡will¡¡belong
necessarily¡¡also¡¡to¡¡some¡¡A¡£
¡¡¡¡Again¡¡let¡¡AC¡¡be¡¡negative£»¡¡BC¡¡affirmative£»¡¡and¡¡let¡¡the¡¡negative
premiss¡¡be¡¡necessary¡£¡¡Since¡¡then¡¡C¡¡is¡¡convertible¡¡with¡¡some¡¡B£»¡¡but¡¡A
necessarily¡¡belongs¡¡to¡¡no¡¡C£»¡¡A¡¡will¡¡necessarily¡¡not¡¡belong¡¡to¡¡some¡¡B
either£º¡¡for¡¡B¡¡is¡¡under¡¡C¡£¡¡But¡¡if¡¡the¡¡affirmative¡¡is¡¡necessary£»¡¡the
conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡For¡¡suppose¡¡BC¡¡is¡¡affirmative¡¡and
necessary£»¡¡while¡¡AC¡¡is¡¡negative¡¡and¡¡not¡¡necessary¡£¡¡Since¡¡then¡¡the
affirmative¡¡is¡¡convertible£»¡¡C¡¡also¡¡will¡¡belong¡¡to¡¡some¡¡B
necessarily£º¡¡consequently¡¡if¡¡A¡¡belongs¡¡to¡¡none¡¡of¡¡the¡¡Cs£»¡¡while¡¡C
belongs¡¡to¡¡some¡¡of¡¡the¡¡Bs£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Bs¡but¡¡not
of¡¡necessity£»¡¡for¡¡it¡¡has¡¡been¡¡proved£»¡¡in¡¡the¡¡case¡¡of¡¡the¡¡first¡¡figure£»
that¡¡if¡¡the¡¡negative¡¡premiss¡¡is¡¡not¡¡necessary£»¡¡neither¡¡will¡¡the
conclusion¡¡be¡¡necessary¡£¡¡Further£»¡¡the¡¡point¡¡may¡¡be¡¡made¡¡clear¡¡by
considering¡¡the¡¡terms¡£¡¡Let¡¡the¡¡term¡¡A¡¡be¡¡'good'£»¡¡let¡¡that¡¡which¡¡B
signifies¡¡be¡¡'animal'£»¡¡let¡¡the¡¡term¡¡C¡¡be¡¡'horse'¡£¡¡It¡¡is¡¡possible
then¡¡that¡¡the¡¡term¡¡good¡¡should¡¡belong¡¡to¡¡no¡¡horse£»¡¡and¡¡it¡¡is¡¡necessary
that¡¡the¡¡term¡¡animal¡¡should¡¡belong¡¡to¡¡every¡¡horse£º¡¡but¡¡it¡¡is¡¡not
necessary¡¡that¡¡some¡¡animal¡¡should¡¡not¡¡be¡¡good£»¡¡since¡¡it¡¡is¡¡possible
for¡¡every¡¡animal¡¡to¡¡be¡¡good¡£¡¡Or¡¡if¡¡that¡¡is¡¡not¡¡possible£»¡¡take¡¡as¡¡the
term¡¡'awake'¡¡or¡¡'asleep'£º¡¡for¡¡every¡¡animal¡¡can¡¡accept¡¡these¡£
¡¡¡¡If£»¡¡then£»¡¡the¡¡premisses¡¡are¡¡universal£»¡¡we¡¡have¡¡stated¡¡when¡¡the
conclusion¡¡will¡¡be¡¡necessary¡£¡¡But¡¡if¡¡one¡¡premiss¡¡is¡¡universal£»¡¡the
other¡¡particular£»¡¡and¡¡if¡¡both¡¡are¡¡affirmative£»¡¡whenever¡¡the
universal¡¡is¡¡necessary¡¡the¡¡conclusion¡¡also¡¡must¡¡be¡¡necessary¡£¡¡The
demonstration¡¡is¡¡the¡¡same¡¡as¡¡before£»¡¡for¡¡the¡¡particular¡¡affirmative
also¡¡is¡¡convertible¡£¡¡If¡¡then¡¡it¡¡is¡¡necessary¡¡that¡¡B¡¡should¡¡belong¡¡to
all¡¡C£»¡¡and¡¡A¡¡falls¡¡under¡¡C£»¡¡it¡¡is¡¡necessary¡¡that¡¡B¡¡should¡¡belong¡¡to
some¡¡A¡£¡¡But¡¡if¡¡B¡¡must¡¡belong¡¡to¡¡some¡¡A£»¡¡then¡¡A¡¡must¡¡belong¡¡to¡¡some
B£º¡¡for¡¡conversion¡¡is¡¡possible¡£¡¡Similarly¡¡also¡¡if¡¡AC¡¡should¡¡be
necessary¡¡and¡¡universal£º¡¡for¡¡B¡¡falls¡¡under¡¡C¡£¡¡But¡¡if¡¡the¡¡particular
premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡necessary¡£¡¡Let¡¡the
premiss¡¡BC¡¡be¡¡both¡¡particular¡¡and¡¡necessary£»¡¡and¡¡let¡¡A¡¡belong¡¡to¡¡all
C£»¡¡not¡¡however¡¡necessarily¡£¡¡If¡¡the¡¡proposition¡¡BC¡¡is¡¡converted¡¡the
first¡¡figure¡¡is¡¡formed£»¡¡and¡¡the¡¡universal¡¡premiss¡¡is¡¡not¡¡necessary£»
but¡¡the¡¡particular¡¡is¡¡necessary¡£¡¡But¡¡when¡¡the¡¡premisses¡¡were¡¡thus£»¡¡the
conclusion¡¡£¨as¡¡we¡¡proved¡¡was¡¡not¡¡necessary£º¡¡consequently¡¡it¡¡is¡¡not
here¡¡either¡£¡¡Further£»¡¡the¡¡point¡¡is¡¡clear¡¡if¡¡we¡¡look¡¡at¡¡the¡¡terms¡£
Let¡¡A¡¡be¡¡waking£»¡¡B¡¡biped£»¡¡and¡¡C¡¡animal¡£¡¡It¡¡is¡¡necessary¡¡that¡¡B
should¡¡belong¡¡to¡¡some¡¡C£»¡¡but¡¡it¡¡is¡¡possible¡¡for¡¡A¡¡to¡¡belong¡¡to¡¡C£»
and¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡B¡¡is¡¡not¡¡necessary¡£¡¡For¡¡th