prior analytics-µÚ4½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
indefinite£»¡¡it¡¡may¡¡be¡¡used¡¡truly¡¡of¡¡that¡¡also¡¡which¡¡belongs¡¡to¡¡none¡£
But¡¡if¡¡R¡¡belongs¡¡to¡¡no¡¡S£»¡¡no¡¡syllogism¡¡is¡¡possible£»¡¡as¡¡has¡¡been¡¡shown¡£
Clearly¡¡then¡¡no¡¡syllogism¡¡will¡¡be¡¡possible¡¡here¡£
¡¡¡¡But¡¡if¡¡the¡¡negative¡¡term¡¡is¡¡universal£»¡¡whenever¡¡the¡¡major¡¡is
negative¡¡and¡¡the¡¡minor¡¡affirmative¡¡there¡¡will¡¡be¡¡a¡¡syllogism¡£¡¡For¡¡if¡¡P
belongs¡¡to¡¡no¡¡S£»¡¡and¡¡R¡¡belongs¡¡to¡¡some¡¡S£»¡¡P¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡R£º
for¡¡we¡¡shall¡¡have¡¡the¡¡first¡¡figure¡¡again£»¡¡if¡¡the¡¡premiss¡¡RS¡¡is
converted¡£
¡¡¡¡But¡¡when¡¡the¡¡minor¡¡is¡¡negative£»¡¡there¡¡will¡¡be¡¡no¡¡syllogism¡£¡¡Terms
for¡¡the¡¡positive¡¡relation¡¡are¡¡animal£»¡¡man£»¡¡wild£º¡¡for¡¡the¡¡negative
relation£»¡¡animal£»¡¡science£»¡¡wild¡the¡¡middle¡¡in¡¡both¡¡being¡¡the¡¡term
wild¡£
¡¡¡¡Nor¡¡is¡¡a¡¡syllogism¡¡possible¡¡when¡¡both¡¡are¡¡stated¡¡in¡¡the¡¡negative£»
but¡¡one¡¡is¡¡universal£»¡¡the¡¡other¡¡particular¡£¡¡When¡¡the¡¡minor¡¡is
related¡¡universally¡¡to¡¡the¡¡middle£»¡¡take¡¡the¡¡terms¡¡animal£»¡¡science£»
wild£»¡¡animal£»¡¡man£»¡¡wild¡£¡¡When¡¡the¡¡major¡¡is¡¡related¡¡universally¡¡to
the¡¡middle£»¡¡take¡¡as¡¡terms¡¡for¡¡a¡¡negative¡¡relation¡¡raven£»¡¡snow£»
white¡£¡¡For¡¡a¡¡positive¡¡relation¡¡terms¡¡cannot¡¡be¡¡found£»¡¡if¡¡R¡¡belongs
to¡¡some¡¡S£»¡¡and¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡S¡£¡¡For¡¡if¡¡P¡¡belongs¡¡to¡¡all¡¡R£»
and¡¡R¡¡to¡¡some¡¡S£»¡¡then¡¡P¡¡belongs¡¡to¡¡some¡¡S£º¡¡but¡¡we¡¡assumed¡¡that¡¡it
belongs¡¡to¡¡no¡¡S¡£¡¡Our¡¡point£»¡¡then£»¡¡must¡¡be¡¡proved¡¡from¡¡the¡¡indefinite
nature¡¡of¡¡the¡¡particular¡¡statement¡£
¡¡¡¡Nor¡¡is¡¡a¡¡syllogism¡¡possible¡¡anyhow£»¡¡if¡¡each¡¡of¡¡the¡¡extremes
belongs¡¡to¡¡some¡¡of¡¡the¡¡middle¡¡or¡¡does¡¡not¡¡belong£»¡¡or¡¡one¡¡belongs¡¡and
the¡¡other¡¡does¡¡not¡¡to¡¡some¡¡of¡¡the¡¡middle£»¡¡or¡¡one¡¡belongs¡¡to¡¡some¡¡of
the¡¡middle£»¡¡the¡¡other¡¡not¡¡to¡¡all£»¡¡or¡¡if¡¡the¡¡premisses¡¡are
indefinite¡£¡¡Common¡¡terms¡¡for¡¡all¡¡are¡¡animal£»¡¡man£»¡¡white£º¡¡animal£»
inanimate£»¡¡white¡£
¡¡¡¡It¡¡is¡¡clear¡¡then¡¡in¡¡this¡¡figure¡¡also¡¡when¡¡a¡¡syllogism¡¡will¡¡be
possible£»¡¡and¡¡when¡¡not£»¡¡and¡¡that¡¡if¡¡the¡¡terms¡¡are¡¡as¡¡stated£»¡¡a
syllogism¡¡results¡¡of¡¡necessity£»¡¡and¡¡if¡¡there¡¡is¡¡a¡¡syllogism£»¡¡the¡¡terms
must¡¡be¡¡so¡¡related¡£¡¡It¡¡is¡¡clear¡¡also¡¡that¡¡all¡¡the¡¡syllogisms¡¡in¡¡this
figure¡¡are¡¡imperfect¡¡£¨for¡¡all¡¡are¡¡made¡¡perfect¡¡by¡¡certain
supplementary¡¡assumptions£©£»¡¡and¡¡that¡¡it¡¡will¡¡not¡¡be¡¡possible¡¡to
reach¡¡a¡¡universal¡¡conclusion¡¡by¡¡means¡¡of¡¡this¡¡figure£»¡¡whether¡¡negative
or¡¡affirmative¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7
¡¡¡¡It¡¡is¡¡evident¡¡also¡¡that¡¡in¡¡all¡¡the¡¡figures£»¡¡whenever¡¡a¡¡proper
syllogism¡¡does¡¡not¡¡result£»¡¡if¡¡both¡¡the¡¡terms¡¡are¡¡affirmative¡¡or
negative¡¡nothing¡¡necessary¡¡follows¡¡at¡¡all£»¡¡but¡¡if¡¡one¡¡is
affirmative£»¡¡the¡¡other¡¡negative£»¡¡and¡¡if¡¡the¡¡negative¡¡is¡¡stated
universally£»¡¡a¡¡syllogism¡¡always¡¡results¡¡relating¡¡the¡¡minor¡¡to¡¡the
major¡¡term£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡or¡¡some¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡no¡¡C£º
for¡¡if¡¡the¡¡premisses¡¡are¡¡converted¡¡it¡¡is¡¡necessary¡¡that¡¡C¡¡does¡¡not
belong¡¡to¡¡some¡¡A¡£¡¡Similarly¡¡also¡¡in¡¡the¡¡other¡¡figures£º¡¡a¡¡syllogism
always¡¡results¡¡by¡¡means¡¡of¡¡conversion¡£¡¡It¡¡is¡¡evident¡¡also¡¡that¡¡the
substitution¡¡of¡¡an¡¡indefinite¡¡for¡¡a¡¡particular¡¡affirmative¡¡will¡¡effect
the¡¡same¡¡syllogism¡¡in¡¡all¡¡the¡¡figures¡£
¡¡¡¡It¡¡is¡¡clear¡¡too¡¡that¡¡all¡¡the¡¡imperfect¡¡syllogisms¡¡are¡¡made¡¡perfect
by¡¡means¡¡of¡¡the¡¡first¡¡figure¡£¡¡For¡¡all¡¡are¡¡brought¡¡to¡¡a¡¡conclusion
either¡¡ostensively¡¡or¡¡per¡¡impossibile¡£¡¡In¡¡both¡¡ways¡¡the¡¡first¡¡figure
is¡¡formed£º¡¡if¡¡they¡¡are¡¡made¡¡perfect¡¡ostensively£»¡¡because¡¡£¨as¡¡we¡¡saw£©
all¡¡are¡¡brought¡¡to¡¡a¡¡conclusion¡¡by¡¡means¡¡of¡¡conversion£»¡¡and¡¡conversion
produces¡¡the¡¡first¡¡figure£º¡¡if¡¡they¡¡are¡¡proved¡¡per¡¡impossibile£»¡¡because
on¡¡the¡¡assumption¡¡of¡¡the¡¡false¡¡statement¡¡the¡¡syllogism¡¡comes¡¡about
by¡¡means¡¡of¡¡the¡¡first¡¡figure£»¡¡e¡£g¡£¡¡in¡¡the¡¡last¡¡figure£»¡¡if¡¡A¡¡and¡¡B
belong¡¡to¡¡all¡¡C£»¡¡it¡¡follows¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£º¡¡for¡¡if¡¡A
belonged¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡A¡¡would¡¡belong¡¡to¡¡no¡¡C£º
but¡¡£¨as¡¡we¡¡stated£©¡¡it¡¡belongs¡¡to¡¡all¡¡C¡£¡¡Similarly¡¡also¡¡with¡¡the¡¡rest¡£
¡¡¡¡It¡¡is¡¡possible¡¡also¡¡to¡¡reduce¡¡all¡¡syllogisms¡¡to¡¡the¡¡universal
syllogisms¡¡in¡¡the¡¡first¡¡figure¡£¡¡Those¡¡in¡¡the¡¡second¡¡figure¡¡are¡¡clearly
made¡¡perfect¡¡by¡¡these£»¡¡though¡¡not¡¡all¡¡in¡¡the¡¡same¡¡way£»¡¡the¡¡universal
syllogisms¡¡are¡¡made¡¡perfect¡¡by¡¡converting¡¡the¡¡negative¡¡premiss£»¡¡each
of¡¡the¡¡particular¡¡syllogisms¡¡by¡¡reductio¡¡ad¡¡impossibile¡£¡¡In¡¡the
first¡¡figure¡¡particular¡¡syllogisms¡¡are¡¡indeed¡¡made¡¡perfect¡¡by
themselves£»¡¡but¡¡it¡¡is¡¡possible¡¡also¡¡to¡¡prove¡¡them¡¡by¡¡means¡¡of¡¡the
second¡¡figure£»¡¡reducing¡¡them¡¡ad¡¡impossibile£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to
all¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡it¡¡follows¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡C¡£¡¡For¡¡if¡¡it
belonged¡¡to¡¡no¡¡C£»¡¡and¡¡belongs¡¡to¡¡all¡¡B£»¡¡then¡¡B¡¡will¡¡belong¡¡to¡¡no¡¡C£º
this¡¡we¡¡know¡¡by¡¡means¡¡of¡¡the¡¡second¡¡figure¡£¡¡Similarly¡¡also
demonstration¡¡will¡¡be¡¡possible¡¡in¡¡the¡¡case¡¡of¡¡the¡¡negative¡£¡¡For¡¡if¡¡A
belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£º
for¡¡if¡¡it¡¡belonged¡¡to¡¡all¡¡C£»¡¡and¡¡belongs¡¡to¡¡no¡¡B£»¡¡then¡¡B¡¡will¡¡belong
to¡¡no¡¡C£º¡¡and¡¡this¡¡£¨as¡¡we¡¡saw£©¡¡is¡¡the¡¡middle¡¡figure¡£¡¡Consequently£»
since¡¡all¡¡syllogisms¡¡in¡¡the¡¡middle¡¡figure¡¡can¡¡be¡¡reduced¡¡to
universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure£»¡¡and¡¡since¡¡particular
syllogisms¡¡in¡¡the¡¡first¡¡figure¡¡can¡¡be¡¡reduced¡¡to¡¡syllogisms¡¡in¡¡the
middle¡¡figure£»¡¡it¡¡is¡¡clear¡¡that¡¡particular¡¡syllogisms¡¡can¡¡be¡¡reduced
to¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡£¡¡Syllogisms¡¡in¡¡the¡¡third
figure£»¡¡if¡¡the¡¡terms¡¡are¡¡universal£»¡¡are¡¡directly¡¡made¡¡perfect¡¡by¡¡means
of¡¡those¡¡syllogisms£»¡¡but£»¡¡when¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡particular£»
by¡¡means¡¡of¡¡the¡¡particular¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure£º¡¡and¡¡these
£¨we¡¡have¡¡seen£©¡¡may¡¡be¡¡reduced¡¡to¡¡the¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first
figure£º¡¡consequently¡¡also¡¡the¡¡particular¡¡syllogisms¡¡in¡¡the¡¡third
figure¡¡may¡¡be¡¡so¡¡reduced¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡all¡¡syllogisms¡¡may
be¡¡reduced¡¡to¡¡the¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡£
¡¡¡¡We¡¡have¡¡stated¡¡then¡¡how¡¡syllogisms¡¡which¡¡prove¡¡that¡¡something
belongs¡¡or¡¡does¡¡not¡¡belong¡¡to¡¡something¡¡else¡¡are¡¡constituted£»¡¡both¡¡how
syllogisms¡¡of¡¡the¡¡same¡¡figure¡¡are¡¡constituted¡¡in¡¡themselves£»¡¡and¡¡how
syllogisms¡¡of¡¡different¡¡figures¡¡are¡¡related¡¡to¡¡one¡¡another¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8
¡¡¡¡Since¡¡there¡¡is¡¡a¡¡difference¡¡according¡¡as¡¡something¡¡belongs£»
necessarily¡¡belongs£»¡¡or¡¡may¡¡belong¡¡to¡¡something¡¡else¡¡£¨for¡¡many
things¡¡belong¡¡indeed£»¡¡but¡¡not¡¡necessarily£»¡¡others¡¡neither
necessarily¡¡nor¡¡indeed¡¡at¡¡all£»¡¡but¡¡it¡¡is¡¡possible¡¡for¡¡them¡¡to¡¡belong£©£»
it¡¡is¡¡clear¡¡that¡¡there¡¡will¡¡be¡¡different¡¡syllogisms¡¡to¡¡prove¡¡each¡¡of
these¡¡relations£»¡¡and¡¡syllogisms¡¡with¡¡differently¡¡related¡¡terms£»¡¡one
syllogism¡¡concluding¡¡from¡¡what¡¡is¡¡necessary£»¡¡another¡¡from¡¡what¡¡is£»¡¡a
third¡¡from¡¡what¡¡is¡¡possible¡£
¡¡¡¡There¡¡is¡¡hardly¡¡any¡¡difference¡¡between¡¡syllogisms¡¡from¡¡necessary
premisses¡¡and¡¡syllogisms¡¡from¡¡premisses¡¡which¡¡merely¡¡assert¡£¡¡When
the¡¡terms¡¡are¡¡put¡¡in¡¡the¡¡same¡¡way£»¡¡then£»¡¡whether¡¡something¡¡belongs
or¡¡necessarily¡¡belongs¡¡£¨or¡¡does¡¡not¡¡belong£©¡¡to¡¡something¡¡else£»¡¡a
syllogism¡¡will¡¡or¡¡will¡¡not¡¡result¡¡alike¡¡in¡¡both¡¡cases£»¡¡the¡¡only
difference¡¡being¡¡the¡¡addition¡¡of¡¡the¡¡expression¡¡'necessarily'¡¡to¡¡the
terms¡£¡¡For¡¡the¡¡negative¡¡statement¡¡is¡¡convertible¡¡alike¡¡in¡¡both
cases£»¡¡and¡¡we¡¡should¡¡give¡¡the¡¡same¡¡account¡¡of¡¡the¡¡expressions¡¡'to¡¡be
contained¡¡in¡¡something¡¡as¡¡in¡¡a¡¡whole'¡¡and¡¡'to¡¡be¡¡predicated¡¡of¡¡all
of¡¡something'¡£¡¡With¡¡the¡¡exceptions¡¡to¡¡be¡¡made¡¡below£»¡¡the¡¡conclusion
will¡¡be¡¡proved¡¡to¡¡be¡¡necessary¡¡by¡¡means¡¡of¡¡conversion£»¡¡in¡¡the¡¡same
manner¡¡as¡¡in¡¡the¡¡case¡¡of¡¡simple¡¡predication¡£¡¡But¡¡in¡¡the¡¡middle
figure¡¡when¡¡the¡¡universal¡¡statement¡¡is¡¡affirmative£»¡¡and¡¡the¡¡particular
negative£»¡¡and¡¡again¡¡in¡¡the¡¡third¡¡figure¡¡when¡¡the¡¡universal¡¡is
affirmative¡¡and¡¡the¡¡particular¡¡negative£»¡¡the¡¡demonstration¡¡will¡¡not
take¡¡the¡¡same¡¡form£»¡¡but¡¡it¡¡is¡¡necessary¡¡by¡¡the¡¡'exposition'¡¡of¡¡a
part¡¡of¡¡the¡¡subject¡¡of¡¡the¡¡particular¡¡negative¡¡proposition£»¡¡to¡¡which
the¡¡predicate¡¡does¡¡not¡¡belong£»¡¡to¡¡make¡¡the¡¡syllogism¡¡in¡¡reference¡¡to
this£º¡¡with¡¡terms¡¡so¡¡chosen¡¡the¡¡conclusion¡¡will¡¡necessarily¡¡follow¡£¡¡But
if¡¡the¡¡relation¡¡is¡¡necessary¡¡in¡¡respect¡¡of¡¡the¡¡part¡¡taken£»¡¡it¡¡must
hold¡¡of¡¡some¡¡of¡¡that¡¡term¡¡in¡¡which¡¡this¡¡part¡¡is¡¡included£º¡¡for¡¡the¡¡part
taken¡¡is¡¡just¡¡some¡¡of¡¡that¡£¡¡And¡¡each¡¡of¡¡the¡¡resulting¡¡syllogisms¡¡is¡¡in
the¡¡appropriate¡¡figure¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡9
¡¡¡¡It¡¡happens¡¡sometimes¡¡also¡¡that¡¡when¡¡one¡¡premiss¡¡is¡¡necessary¡¡the
conclusion¡¡is¡¡necessary£»¡¡not¡¡however¡¡when¡¡either¡¡premiss¡¡is¡¡necessary£»
but¡¡only¡¡when¡¡the¡¡major¡¡is£»¡¡e¡£g¡£¡¡if¡¡A¡¡is¡¡taken¡¡as¡¡necessarily
belonging¡¡or¡¡not¡¡belonging¡¡to¡¡B£»¡¡but¡¡B¡¡is¡¡taken¡¡as¡¡simply¡¡belonging¡¡to
C£º¡¡for¡¡if¡¡the¡¡premisses¡¡are¡¡taken¡¡in¡¡this¡¡way£»¡¡A¡¡will¡¡necessarily
belong¡¡or¡¡not¡¡belong¡¡to¡¡C¡£¡¡For¡¡since¡¡necessarily¡¡belongs£»¡¡or¡¡does
not¡¡belong£»¡¡to¡¡every¡¡B£»¡¡and¡¡since¡¡C¡¡is¡¡one¡¡of¡¡the¡¡Bs£»¡¡it¡¡is¡¡clear¡¡that
for¡¡C¡¡also¡¡the¡¡positive¡¡or¡¡the¡¡negative¡¡relation¡¡to¡¡A¡¡will¡¡hold
necessarily¡£¡¡But¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡not¡¡necessary£»¡¡but¡¡the
minor¡¡i