Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ4½Ú

prior analytics-µÚ4½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






indefinite£»¡¡it¡¡may¡¡be¡¡used¡¡truly¡¡of¡¡that¡¡also¡¡which¡¡belongs¡¡to¡¡none¡£



But¡¡if¡¡R¡¡belongs¡¡to¡¡no¡¡S£»¡¡no¡¡syllogism¡¡is¡¡possible£»¡¡as¡¡has¡¡been¡¡shown¡£



Clearly¡¡then¡¡no¡¡syllogism¡¡will¡¡be¡¡possible¡¡here¡£



¡¡¡¡But¡¡if¡¡the¡¡negative¡¡term¡¡is¡¡universal£»¡¡whenever¡¡the¡¡major¡¡is



negative¡¡and¡¡the¡¡minor¡¡affirmative¡¡there¡¡will¡¡be¡¡a¡¡syllogism¡£¡¡For¡¡if¡¡P



belongs¡¡to¡¡no¡¡S£»¡¡and¡¡R¡¡belongs¡¡to¡¡some¡¡S£»¡¡P¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡R£º



for¡¡we¡¡shall¡¡have¡¡the¡¡first¡¡figure¡¡again£»¡¡if¡¡the¡¡premiss¡¡RS¡¡is



converted¡£



¡¡¡¡But¡¡when¡¡the¡¡minor¡¡is¡¡negative£»¡¡there¡¡will¡¡be¡¡no¡¡syllogism¡£¡¡Terms



for¡¡the¡¡positive¡¡relation¡¡are¡¡animal£»¡¡man£»¡¡wild£º¡¡for¡¡the¡¡negative



relation£»¡¡animal£»¡¡science£»¡¡wild¡­the¡¡middle¡¡in¡¡both¡¡being¡¡the¡¡term



wild¡£



¡¡¡¡Nor¡¡is¡¡a¡¡syllogism¡¡possible¡¡when¡¡both¡¡are¡¡stated¡¡in¡¡the¡¡negative£»



but¡¡one¡¡is¡¡universal£»¡¡the¡¡other¡¡particular¡£¡¡When¡¡the¡¡minor¡¡is



related¡¡universally¡¡to¡¡the¡¡middle£»¡¡take¡¡the¡¡terms¡¡animal£»¡¡science£»



wild£»¡¡animal£»¡¡man£»¡¡wild¡£¡¡When¡¡the¡¡major¡¡is¡¡related¡¡universally¡¡to



the¡¡middle£»¡¡take¡¡as¡¡terms¡¡for¡¡a¡¡negative¡¡relation¡¡raven£»¡¡snow£»



white¡£¡¡For¡¡a¡¡positive¡¡relation¡¡terms¡¡cannot¡¡be¡¡found£»¡¡if¡¡R¡¡belongs



to¡¡some¡¡S£»¡¡and¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡S¡£¡¡For¡¡if¡¡P¡¡belongs¡¡to¡¡all¡¡R£»



and¡¡R¡¡to¡¡some¡¡S£»¡¡then¡¡P¡¡belongs¡¡to¡¡some¡¡S£º¡¡but¡¡we¡¡assumed¡¡that¡¡it



belongs¡¡to¡¡no¡¡S¡£¡¡Our¡¡point£»¡¡then£»¡¡must¡¡be¡¡proved¡¡from¡¡the¡¡indefinite



nature¡¡of¡¡the¡¡particular¡¡statement¡£



¡¡¡¡Nor¡¡is¡¡a¡¡syllogism¡¡possible¡¡anyhow£»¡¡if¡¡each¡¡of¡¡the¡¡extremes



belongs¡¡to¡¡some¡¡of¡¡the¡¡middle¡¡or¡¡does¡¡not¡¡belong£»¡¡or¡¡one¡¡belongs¡¡and



the¡¡other¡¡does¡¡not¡¡to¡¡some¡¡of¡¡the¡¡middle£»¡¡or¡¡one¡¡belongs¡¡to¡¡some¡¡of



the¡¡middle£»¡¡the¡¡other¡¡not¡¡to¡¡all£»¡¡or¡¡if¡¡the¡¡premisses¡¡are



indefinite¡£¡¡Common¡¡terms¡¡for¡¡all¡¡are¡¡animal£»¡¡man£»¡¡white£º¡¡animal£»



inanimate£»¡¡white¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡in¡¡this¡¡figure¡¡also¡¡when¡¡a¡¡syllogism¡¡will¡¡be



possible£»¡¡and¡¡when¡¡not£»¡¡and¡¡that¡¡if¡¡the¡¡terms¡¡are¡¡as¡¡stated£»¡¡a



syllogism¡¡results¡¡of¡¡necessity£»¡¡and¡¡if¡¡there¡¡is¡¡a¡¡syllogism£»¡¡the¡¡terms



must¡¡be¡¡so¡¡related¡£¡¡It¡¡is¡¡clear¡¡also¡¡that¡¡all¡¡the¡¡syllogisms¡¡in¡¡this



figure¡¡are¡¡imperfect¡¡£¨for¡¡all¡¡are¡¡made¡¡perfect¡¡by¡¡certain



supplementary¡¡assumptions£©£»¡¡and¡¡that¡¡it¡¡will¡¡not¡¡be¡¡possible¡¡to



reach¡¡a¡¡universal¡¡conclusion¡¡by¡¡means¡¡of¡¡this¡¡figure£»¡¡whether¡¡negative



or¡¡affirmative¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7







¡¡¡¡It¡¡is¡¡evident¡¡also¡¡that¡¡in¡¡all¡¡the¡¡figures£»¡¡whenever¡¡a¡¡proper



syllogism¡¡does¡¡not¡¡result£»¡¡if¡¡both¡¡the¡¡terms¡¡are¡¡affirmative¡¡or



negative¡¡nothing¡¡necessary¡¡follows¡¡at¡¡all£»¡¡but¡¡if¡¡one¡¡is



affirmative£»¡¡the¡¡other¡¡negative£»¡¡and¡¡if¡¡the¡¡negative¡¡is¡¡stated



universally£»¡¡a¡¡syllogism¡¡always¡¡results¡¡relating¡¡the¡¡minor¡¡to¡¡the



major¡¡term£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡or¡¡some¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡no¡¡C£º



for¡¡if¡¡the¡¡premisses¡¡are¡¡converted¡¡it¡¡is¡¡necessary¡¡that¡¡C¡¡does¡¡not



belong¡¡to¡¡some¡¡A¡£¡¡Similarly¡¡also¡¡in¡¡the¡¡other¡¡figures£º¡¡a¡¡syllogism



always¡¡results¡¡by¡¡means¡¡of¡¡conversion¡£¡¡It¡¡is¡¡evident¡¡also¡¡that¡¡the



substitution¡¡of¡¡an¡¡indefinite¡¡for¡¡a¡¡particular¡¡affirmative¡¡will¡¡effect



the¡¡same¡¡syllogism¡¡in¡¡all¡¡the¡¡figures¡£



¡¡¡¡It¡¡is¡¡clear¡¡too¡¡that¡¡all¡¡the¡¡imperfect¡¡syllogisms¡¡are¡¡made¡¡perfect



by¡¡means¡¡of¡¡the¡¡first¡¡figure¡£¡¡For¡¡all¡¡are¡¡brought¡¡to¡¡a¡¡conclusion



either¡¡ostensively¡¡or¡¡per¡¡impossibile¡£¡¡In¡¡both¡¡ways¡¡the¡¡first¡¡figure



is¡¡formed£º¡¡if¡¡they¡¡are¡¡made¡¡perfect¡¡ostensively£»¡¡because¡¡£¨as¡¡we¡¡saw£©



all¡¡are¡¡brought¡¡to¡¡a¡¡conclusion¡¡by¡¡means¡¡of¡¡conversion£»¡¡and¡¡conversion



produces¡¡the¡¡first¡¡figure£º¡¡if¡¡they¡¡are¡¡proved¡¡per¡¡impossibile£»¡¡because



on¡¡the¡¡assumption¡¡of¡¡the¡¡false¡¡statement¡¡the¡¡syllogism¡¡comes¡¡about



by¡¡means¡¡of¡¡the¡¡first¡¡figure£»¡¡e¡£g¡£¡¡in¡¡the¡¡last¡¡figure£»¡¡if¡¡A¡¡and¡¡B



belong¡¡to¡¡all¡¡C£»¡¡it¡¡follows¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£º¡¡for¡¡if¡¡A



belonged¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡A¡¡would¡¡belong¡¡to¡¡no¡¡C£º



but¡¡£¨as¡¡we¡¡stated£©¡¡it¡¡belongs¡¡to¡¡all¡¡C¡£¡¡Similarly¡¡also¡¡with¡¡the¡¡rest¡£



¡¡¡¡It¡¡is¡¡possible¡¡also¡¡to¡¡reduce¡¡all¡¡syllogisms¡¡to¡¡the¡¡universal



syllogisms¡¡in¡¡the¡¡first¡¡figure¡£¡¡Those¡¡in¡¡the¡¡second¡¡figure¡¡are¡¡clearly



made¡¡perfect¡¡by¡¡these£»¡¡though¡¡not¡¡all¡¡in¡¡the¡¡same¡¡way£»¡¡the¡¡universal



syllogisms¡¡are¡¡made¡¡perfect¡¡by¡¡converting¡¡the¡¡negative¡¡premiss£»¡¡each



of¡¡the¡¡particular¡¡syllogisms¡¡by¡¡reductio¡¡ad¡¡impossibile¡£¡¡In¡¡the



first¡¡figure¡¡particular¡¡syllogisms¡¡are¡¡indeed¡¡made¡¡perfect¡¡by



themselves£»¡¡but¡¡it¡¡is¡¡possible¡¡also¡¡to¡¡prove¡¡them¡¡by¡¡means¡¡of¡¡the



second¡¡figure£»¡¡reducing¡¡them¡¡ad¡¡impossibile£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to



all¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡it¡¡follows¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡C¡£¡¡For¡¡if¡¡it



belonged¡¡to¡¡no¡¡C£»¡¡and¡¡belongs¡¡to¡¡all¡¡B£»¡¡then¡¡B¡¡will¡¡belong¡¡to¡¡no¡¡C£º



this¡¡we¡¡know¡¡by¡¡means¡¡of¡¡the¡¡second¡¡figure¡£¡¡Similarly¡¡also



demonstration¡¡will¡¡be¡¡possible¡¡in¡¡the¡¡case¡¡of¡¡the¡¡negative¡£¡¡For¡¡if¡¡A



belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£º



for¡¡if¡¡it¡¡belonged¡¡to¡¡all¡¡C£»¡¡and¡¡belongs¡¡to¡¡no¡¡B£»¡¡then¡¡B¡¡will¡¡belong



to¡¡no¡¡C£º¡¡and¡¡this¡¡£¨as¡¡we¡¡saw£©¡¡is¡¡the¡¡middle¡¡figure¡£¡¡Consequently£»



since¡¡all¡¡syllogisms¡¡in¡¡the¡¡middle¡¡figure¡¡can¡¡be¡¡reduced¡¡to



universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure£»¡¡and¡¡since¡¡particular



syllogisms¡¡in¡¡the¡¡first¡¡figure¡¡can¡¡be¡¡reduced¡¡to¡¡syllogisms¡¡in¡¡the



middle¡¡figure£»¡¡it¡¡is¡¡clear¡¡that¡¡particular¡¡syllogisms¡¡can¡¡be¡¡reduced



to¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡£¡¡Syllogisms¡¡in¡¡the¡¡third



figure£»¡¡if¡¡the¡¡terms¡¡are¡¡universal£»¡¡are¡¡directly¡¡made¡¡perfect¡¡by¡¡means



of¡¡those¡¡syllogisms£»¡¡but£»¡¡when¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡particular£»



by¡¡means¡¡of¡¡the¡¡particular¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure£º¡¡and¡¡these



£¨we¡¡have¡¡seen£©¡¡may¡¡be¡¡reduced¡¡to¡¡the¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first



figure£º¡¡consequently¡¡also¡¡the¡¡particular¡¡syllogisms¡¡in¡¡the¡¡third



figure¡¡may¡¡be¡¡so¡¡reduced¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡all¡¡syllogisms¡¡may



be¡¡reduced¡¡to¡¡the¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡£



¡¡¡¡We¡¡have¡¡stated¡¡then¡¡how¡¡syllogisms¡¡which¡¡prove¡¡that¡¡something



belongs¡¡or¡¡does¡¡not¡¡belong¡¡to¡¡something¡¡else¡¡are¡¡constituted£»¡¡both¡¡how



syllogisms¡¡of¡¡the¡¡same¡¡figure¡¡are¡¡constituted¡¡in¡¡themselves£»¡¡and¡¡how



syllogisms¡¡of¡¡different¡¡figures¡¡are¡¡related¡¡to¡¡one¡¡another¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8







¡¡¡¡Since¡¡there¡¡is¡¡a¡¡difference¡¡according¡¡as¡¡something¡¡belongs£»



necessarily¡¡belongs£»¡¡or¡¡may¡¡belong¡¡to¡¡something¡¡else¡¡£¨for¡¡many



things¡¡belong¡¡indeed£»¡¡but¡¡not¡¡necessarily£»¡¡others¡¡neither



necessarily¡¡nor¡¡indeed¡¡at¡¡all£»¡¡but¡¡it¡¡is¡¡possible¡¡for¡¡them¡¡to¡¡belong£©£»



it¡¡is¡¡clear¡¡that¡¡there¡¡will¡¡be¡¡different¡¡syllogisms¡¡to¡¡prove¡¡each¡¡of



these¡¡relations£»¡¡and¡¡syllogisms¡¡with¡¡differently¡¡related¡¡terms£»¡¡one



syllogism¡¡concluding¡¡from¡¡what¡¡is¡¡necessary£»¡¡another¡¡from¡¡what¡¡is£»¡¡a



third¡¡from¡¡what¡¡is¡¡possible¡£



¡¡¡¡There¡¡is¡¡hardly¡¡any¡¡difference¡¡between¡¡syllogisms¡¡from¡¡necessary



premisses¡¡and¡¡syllogisms¡¡from¡¡premisses¡¡which¡¡merely¡¡assert¡£¡¡When



the¡¡terms¡¡are¡¡put¡¡in¡¡the¡¡same¡¡way£»¡¡then£»¡¡whether¡¡something¡¡belongs



or¡¡necessarily¡¡belongs¡¡£¨or¡¡does¡¡not¡¡belong£©¡¡to¡¡something¡¡else£»¡¡a



syllogism¡¡will¡¡or¡¡will¡¡not¡¡result¡¡alike¡¡in¡¡both¡¡cases£»¡¡the¡¡only



difference¡¡being¡¡the¡¡addition¡¡of¡¡the¡¡expression¡¡'necessarily'¡¡to¡¡the



terms¡£¡¡For¡¡the¡¡negative¡¡statement¡¡is¡¡convertible¡¡alike¡¡in¡¡both



cases£»¡¡and¡¡we¡¡should¡¡give¡¡the¡¡same¡¡account¡¡of¡¡the¡¡expressions¡¡'to¡¡be



contained¡¡in¡¡something¡¡as¡¡in¡¡a¡¡whole'¡¡and¡¡'to¡¡be¡¡predicated¡¡of¡¡all



of¡¡something'¡£¡¡With¡¡the¡¡exceptions¡¡to¡¡be¡¡made¡¡below£»¡¡the¡¡conclusion



will¡¡be¡¡proved¡¡to¡¡be¡¡necessary¡¡by¡¡means¡¡of¡¡conversion£»¡¡in¡¡the¡¡same



manner¡¡as¡¡in¡¡the¡¡case¡¡of¡¡simple¡¡predication¡£¡¡But¡¡in¡¡the¡¡middle



figure¡¡when¡¡the¡¡universal¡¡statement¡¡is¡¡affirmative£»¡¡and¡¡the¡¡particular



negative£»¡¡and¡¡again¡¡in¡¡the¡¡third¡¡figure¡¡when¡¡the¡¡universal¡¡is



affirmative¡¡and¡¡the¡¡particular¡¡negative£»¡¡the¡¡demonstration¡¡will¡¡not



take¡¡the¡¡same¡¡form£»¡¡but¡¡it¡¡is¡¡necessary¡¡by¡¡the¡¡'exposition'¡¡of¡¡a



part¡¡of¡¡the¡¡subject¡¡of¡¡the¡¡particular¡¡negative¡¡proposition£»¡¡to¡¡which



the¡¡predicate¡¡does¡¡not¡¡belong£»¡¡to¡¡make¡¡the¡¡syllogism¡¡in¡¡reference¡¡to



this£º¡¡with¡¡terms¡¡so¡¡chosen¡¡the¡¡conclusion¡¡will¡¡necessarily¡¡follow¡£¡¡But



if¡¡the¡¡relation¡¡is¡¡necessary¡¡in¡¡respect¡¡of¡¡the¡¡part¡¡taken£»¡¡it¡¡must



hold¡¡of¡¡some¡¡of¡¡that¡¡term¡¡in¡¡which¡¡this¡¡part¡¡is¡¡included£º¡¡for¡¡the¡¡part



taken¡¡is¡¡just¡¡some¡¡of¡¡that¡£¡¡And¡¡each¡¡of¡¡the¡¡resulting¡¡syllogisms¡¡is¡¡in



the¡¡appropriate¡¡figure¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡9







¡¡¡¡It¡¡happens¡¡sometimes¡¡also¡¡that¡¡when¡¡one¡¡premiss¡¡is¡¡necessary¡¡the



conclusion¡¡is¡¡necessary£»¡¡not¡¡however¡¡when¡¡either¡¡premiss¡¡is¡¡necessary£»



but¡¡only¡¡when¡¡the¡¡major¡¡is£»¡¡e¡£g¡£¡¡if¡¡A¡¡is¡¡taken¡¡as¡¡necessarily



belonging¡¡or¡¡not¡¡belonging¡¡to¡¡B£»¡¡but¡¡B¡¡is¡¡taken¡¡as¡¡simply¡¡belonging¡¡to



C£º¡¡for¡¡if¡¡the¡¡premisses¡¡are¡¡taken¡¡in¡¡this¡¡way£»¡¡A¡¡will¡¡necessarily



belong¡¡or¡¡not¡¡belong¡¡to¡¡C¡£¡¡For¡¡since¡¡necessarily¡¡belongs£»¡¡or¡¡does



not¡¡belong£»¡¡to¡¡every¡¡B£»¡¡and¡¡since¡¡C¡¡is¡¡one¡¡of¡¡the¡¡Bs£»¡¡it¡¡is¡¡clear¡¡that



for¡¡C¡¡also¡¡the¡¡positive¡¡or¡¡the¡¡negative¡¡relation¡¡to¡¡A¡¡will¡¡hold



necessarily¡£¡¡But¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡not¡¡necessary£»¡¡but¡¡the



minor¡¡i

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ