Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ31½Ú

prior analytics-µÚ31½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






affection¡£¡¡And¡¡indeed¡¡the¡¡same¡¡is¡¡true¡¡of¡¡the¡¡other¡¡desires¡¡and¡¡arts¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡23







¡¡¡¡It¡¡is¡¡clear¡¡then¡¡how¡¡the¡¡terms¡¡are¡¡related¡¡in¡¡conversion£»¡¡and¡¡in



respect¡¡of¡¡being¡¡in¡¡a¡¡higher¡¡degree¡¡objects¡¡of¡¡aversion¡¡or¡¡of



desire¡£¡¡We¡¡must¡¡now¡¡state¡¡that¡¡not¡¡only¡¡dialectical¡¡and



demonstrative¡¡syllogisms¡¡are¡¡formed¡¡by¡¡means¡¡of¡¡the¡¡aforesaid¡¡figures£»



but¡¡also¡¡rhetorical¡¡syllogisms¡¡and¡¡in¡¡general¡¡any¡¡form¡¡of



persuasion£»¡¡however¡¡it¡¡may¡¡be¡¡presented¡£¡¡For¡¡every¡¡belief¡¡comes¡¡either



through¡¡syllogism¡¡or¡¡from¡¡induction¡£



¡¡¡¡Now¡¡induction£»¡¡or¡¡rather¡¡the¡¡syllogism¡¡which¡¡springs¡¡out¡¡of



induction£»¡¡consists¡¡in¡¡establishing¡¡syllogistically¡¡a¡¡relation¡¡between



one¡¡extreme¡¡and¡¡the¡¡middle¡¡by¡¡means¡¡of¡¡the¡¡other¡¡extreme£»¡¡e¡£g¡£¡¡if¡¡B¡¡is



the¡¡middle¡¡term¡¡between¡¡A¡¡and¡¡C£»¡¡it¡¡consists¡¡in¡¡proving¡¡through¡¡C¡¡that



A¡¡belongs¡¡to¡¡B¡£¡¡For¡¡this¡¡is¡¡the¡¡manner¡¡in¡¡which¡¡we¡¡make¡¡inductions¡£



For¡¡example¡¡let¡¡A¡¡stand¡¡for¡¡long¡­lived£»¡¡B¡¡for¡¡bileless£»¡¡and¡¡C¡¡for



the¡¡particular¡¡long¡­lived¡¡animals£»¡¡e¡£g¡£¡¡man£»¡¡horse£»¡¡mule¡£¡¡A¡¡then



belongs¡¡to¡¡the¡¡whole¡¡of¡¡C£º¡¡for¡¡whatever¡¡is¡¡bileless¡¡is¡¡long¡­lived¡£¡¡But



B¡¡also¡¡£¨'not¡¡possessing¡¡bile'£©¡¡belongs¡¡to¡¡all¡¡C¡£¡¡If¡¡then¡¡C¡¡is



convertible¡¡with¡¡B£»¡¡and¡¡the¡¡middle¡¡term¡¡is¡¡not¡¡wider¡¡in¡¡extension£»



it¡¡is¡¡necessary¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡B¡£¡¡For¡¡it¡¡has¡¡already¡¡been



proved¡¡that¡¡if¡¡two¡¡things¡¡belong¡¡to¡¡the¡¡same¡¡thing£»¡¡and¡¡the¡¡extreme¡¡is



convertible¡¡with¡¡one¡¡of¡¡them£»¡¡then¡¡the¡¡other¡¡predicate¡¡will¡¡belong



to¡¡the¡¡predicate¡¡that¡¡is¡¡converted¡£¡¡But¡¡we¡¡must¡¡apprehend¡¡C¡¡as¡¡made¡¡up



of¡¡all¡¡the¡¡particulars¡£¡¡For¡¡induction¡¡proceeds¡¡through¡¡an



enumeration¡¡of¡¡all¡¡the¡¡cases¡£



¡¡¡¡Such¡¡is¡¡the¡¡syllogism¡¡which¡¡establishes¡¡the¡¡first¡¡and¡¡immediate



premiss£º¡¡for¡¡where¡¡there¡¡is¡¡a¡¡middle¡¡term¡¡the¡¡syllogism¡¡proceeds



through¡¡the¡¡middle¡¡term£»¡¡when¡¡there¡¡is¡¡no¡¡middle¡¡term£»¡¡through



induction¡£¡¡And¡¡in¡¡a¡¡way¡¡induction¡¡is¡¡opposed¡¡to¡¡syllogism£º¡¡for¡¡the



latter¡¡proves¡¡the¡¡major¡¡term¡¡to¡¡belong¡¡to¡¡the¡¡third¡¡term¡¡by¡¡means¡¡of



the¡¡middle£»¡¡the¡¡former¡¡proves¡¡the¡¡major¡¡to¡¡belong¡¡to¡¡the¡¡middle¡¡by



means¡¡of¡¡the¡¡third¡£¡¡In¡¡the¡¡order¡¡of¡¡nature£»¡¡syllogism¡¡through¡¡the



middle¡¡term¡¡is¡¡prior¡¡and¡¡better¡¡known£»¡¡but¡¡syllogism¡¡through¡¡induction



is¡¡clearer¡¡to¡¡us¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡24







¡¡¡¡We¡¡have¡¡an¡¡'example'¡¡when¡¡the¡¡major¡¡term¡¡is¡¡proved¡¡to¡¡belong¡¡to



the¡¡middle¡¡by¡¡means¡¡of¡¡a¡¡term¡¡which¡¡resembles¡¡the¡¡third¡£¡¡It¡¡ought¡¡to



be¡¡known¡¡both¡¡that¡¡the¡¡middle¡¡belongs¡¡to¡¡the¡¡third¡¡term£»¡¡and¡¡that



the¡¡first¡¡belongs¡¡to¡¡that¡¡which¡¡resembles¡¡the¡¡third¡£¡¡For¡¡example¡¡let¡¡A



be¡¡evil£»¡¡B¡¡making¡¡war¡¡against¡¡neighbours£»¡¡C¡¡Athenians¡¡against¡¡Thebans£»



D¡¡Thebans¡¡against¡¡Phocians¡£¡¡If¡¡then¡¡we¡¡wish¡¡to¡¡prove¡¡that¡¡to¡¡fight



with¡¡the¡¡Thebans¡¡is¡¡an¡¡evil£»¡¡we¡¡must¡¡assume¡¡that¡¡to¡¡fight¡¡against



neighbours¡¡is¡¡an¡¡evil¡£¡¡Evidence¡¡of¡¡this¡¡is¡¡obtained¡¡from¡¡similar



cases£»¡¡e¡£g¡£¡¡that¡¡the¡¡war¡¡against¡¡the¡¡Phocians¡¡was¡¡an¡¡evil¡¡to¡¡the



Thebans¡£¡¡Since¡¡then¡¡to¡¡fight¡¡against¡¡neighbours¡¡is¡¡an¡¡evil£»¡¡and¡¡to



fight¡¡against¡¡the¡¡Thebans¡¡is¡¡to¡¡fight¡¡against¡¡neighbours£»¡¡it¡¡is



clear¡¡that¡¡to¡¡fight¡¡against¡¡the¡¡Thebans¡¡is¡¡an¡¡evil¡£¡¡Now¡¡it¡¡is¡¡clear



that¡¡B¡¡belongs¡¡to¡¡C¡¡and¡¡to¡¡D¡¡£¨for¡¡both¡¡are¡¡cases¡¡of¡¡making¡¡war¡¡upon



one's¡¡neighbours£©¡¡and¡¡that¡¡A¡¡belongs¡¡to¡¡D¡¡£¨for¡¡the¡¡war¡¡against¡¡the



Phocians¡¡did¡¡not¡¡turn¡¡out¡¡well¡¡for¡¡the¡¡Thebans£©£º¡¡but¡¡that¡¡A¡¡belongs¡¡to



B¡¡will¡¡be¡¡proved¡¡through¡¡D¡£¡¡Similarly¡¡if¡¡the¡¡belief¡¡in¡¡the¡¡relation¡¡of



the¡¡middle¡¡term¡¡to¡¡the¡¡extreme¡¡should¡¡be¡¡produced¡¡by¡¡several¡¡similar



cases¡£¡¡Clearly¡¡then¡¡to¡¡argue¡¡by¡¡example¡¡is¡¡neither¡¡like¡¡reasoning¡¡from



part¡¡to¡¡whole£»¡¡nor¡¡like¡¡reasoning¡¡from¡¡whole¡¡to¡¡part£»¡¡but¡¡rather



reasoning¡¡from¡¡part¡¡to¡¡part£»¡¡when¡¡both¡¡particulars¡¡are¡¡subordinate



to¡¡the¡¡same¡¡term£»¡¡and¡¡one¡¡of¡¡them¡¡is¡¡known¡£¡¡It¡¡differs¡¡from¡¡induction£»



because¡¡induction¡¡starting¡¡from¡¡all¡¡the¡¡particular¡¡cases¡¡proves¡¡£¨as¡¡we



saw£©¡¡that¡¡the¡¡major¡¡term¡¡belongs¡¡to¡¡the¡¡middle£»¡¡and¡¡does¡¡not¡¡apply¡¡the



syllogistic¡¡conclusion¡¡to¡¡the¡¡minor¡¡term£»¡¡whereas¡¡argument¡¡by



example¡¡does¡¡make¡¡this¡¡application¡¡and¡¡does¡¡not¡¡draw¡¡its¡¡proof¡¡from



all¡¡the¡¡particular¡¡cases¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡25







¡¡¡¡By¡¡reduction¡¡we¡¡mean¡¡an¡¡argument¡¡in¡¡which¡¡the¡¡first¡¡term¡¡clearly



belongs¡¡to¡¡the¡¡middle£»¡¡but¡¡the¡¡relation¡¡of¡¡the¡¡middle¡¡to¡¡the¡¡last¡¡term



is¡¡uncertain¡¡though¡¡equally¡¡or¡¡more¡¡probable¡¡than¡¡the¡¡conclusion£»¡¡or



again¡¡an¡¡argument¡¡in¡¡which¡¡the¡¡terms¡¡intermediate¡¡between¡¡the¡¡last



term¡¡and¡¡the¡¡middle¡¡are¡¡few¡£¡¡For¡¡in¡¡any¡¡of¡¡these¡¡cases¡¡it¡¡turns¡¡out



that¡¡we¡¡approach¡¡more¡¡nearly¡¡to¡¡knowledge¡£¡¡For¡¡example¡¡let¡¡A¡¡stand¡¡for



what¡¡can¡¡be¡¡taught£»¡¡B¡¡for¡¡knowledge£»¡¡C¡¡for¡¡justice¡£¡¡Now¡¡it¡¡is¡¡clear



that¡¡knowledge¡¡can¡¡be¡¡taught£º¡¡but¡¡it¡¡is¡¡uncertain¡¡whether¡¡virtue¡¡is



knowledge¡£¡¡If¡¡now¡¡the¡¡statement¡¡BC¡¡is¡¡equally¡¡or¡¡more¡¡probable¡¡than



AC£»¡¡we¡¡have¡¡a¡¡reduction£º¡¡for¡¡we¡¡are¡¡nearer¡¡to¡¡knowledge£»¡¡since¡¡we¡¡have



taken¡¡a¡¡new¡¡term£»¡¡being¡¡so¡¡far¡¡without¡¡knowledge¡¡that¡¡A¡¡belongs¡¡to



C¡£¡¡Or¡¡again¡¡suppose¡¡that¡¡the¡¡terms¡¡intermediate¡¡between¡¡B¡¡and¡¡C¡¡are



few£º¡¡for¡¡thus¡¡too¡¡we¡¡are¡¡nearer¡¡knowledge¡£¡¡For¡¡example¡¡let¡¡D¡¡stand¡¡for



squaring£»¡¡E¡¡for¡¡rectilinear¡¡figure£»¡¡F¡¡for¡¡circle¡£¡¡If¡¡there¡¡were¡¡only



one¡¡term¡¡intermediate¡¡between¡¡E¡¡and¡¡F¡¡£¨viz¡£¡¡that¡¡the¡¡circle¡¡is¡¡made



equal¡¡to¡¡a¡¡rectilinear¡¡figure¡¡by¡¡the¡¡help¡¡of¡¡lunules£©£»¡¡we¡¡should¡¡be



near¡¡to¡¡knowledge¡£¡¡But¡¡when¡¡BC¡¡is¡¡not¡¡more¡¡probable¡¡than¡¡AC£»¡¡and¡¡the



intermediate¡¡terms¡¡are¡¡not¡¡few£»¡¡I¡¡do¡¡not¡¡call¡¡this¡¡reduction£º¡¡nor



again¡¡when¡¡the¡¡statement¡¡BC¡¡is¡¡immediate£º¡¡for¡¡such¡¡a¡¡statement¡¡is



knowledge¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡26







¡¡¡¡An¡¡objection¡¡is¡¡a¡¡premiss¡¡contrary¡¡to¡¡a¡¡premiss¡£¡¡It¡¡differs¡¡from¡¡a



premiss£»¡¡because¡¡it¡¡may¡¡be¡¡particular£»¡¡but¡¡a¡¡premiss¡¡either¡¡cannot



be¡¡particular¡¡at¡¡all¡¡or¡¡not¡¡in¡¡universal¡¡syllogisms¡£¡¡An¡¡objection¡¡is



brought¡¡in¡¡two¡¡ways¡¡and¡¡through¡¡two¡¡figures£»¡¡in¡¡two¡¡ways¡¡because¡¡every



objection¡¡is¡¡either¡¡universal¡¡or¡¡particular£»¡¡by¡¡two¡¡figures¡¡because



objections¡¡are¡¡brought¡¡in¡¡opposition¡¡to¡¡the¡¡premiss£»¡¡and¡¡opposites¡¡can



be¡¡proved¡¡only¡¡in¡¡the¡¡first¡¡and¡¡third¡¡figures¡£¡¡If¡¡a¡¡man¡¡maintains¡¡a



universal¡¡affirmative£»¡¡we¡¡reply¡¡with¡¡a¡¡universal¡¡or¡¡a¡¡particular



negative£»¡¡the¡¡former¡¡is¡¡proved¡¡from¡¡the¡¡first¡¡figure£»¡¡the¡¡latter



from¡¡the¡¡third¡£¡¡For¡¡example¡¡let¡¡stand¡¡for¡¡there¡¡being¡¡a¡¡single



science£»¡¡B¡¡for¡¡contraries¡£¡¡If¡¡a¡¡man¡¡premises¡¡that¡¡contraries¡¡are



subjects¡¡of¡¡a¡¡single¡¡science£»¡¡the¡¡objection¡¡may¡¡be¡¡either¡¡that



opposites¡¡are¡¡never¡¡subjects¡¡of¡¡a¡¡single¡¡science£»¡¡and¡¡contraries¡¡are



opposites£»¡¡so¡¡that¡¡we¡¡get¡¡the¡¡first¡¡figure£»¡¡or¡¡that¡¡the¡¡knowable¡¡and



the¡¡unknowable¡¡are¡¡not¡¡subjects¡¡of¡¡a¡¡single¡¡science£º¡¡this¡¡proof¡¡is



in¡¡the¡¡third¡¡figure£º¡¡for¡¡it¡¡is¡¡true¡¡of¡¡C¡¡£¨the¡¡knowable¡¡and¡¡the



unknowable£©¡¡that¡¡they¡¡are¡¡contraries£»¡¡and¡¡it¡¡is¡¡false¡¡that¡¡they¡¡are



the¡¡subjects¡¡of¡¡a¡¡single¡¡science¡£



¡¡¡¡Similarly¡¡if¡¡the¡¡premiss¡¡objected¡¡to¡¡is¡¡negative¡£¡¡For¡¡if¡¡a¡¡man



maintains¡¡that¡¡contraries¡¡are¡¡not¡¡subjects¡¡of¡¡a¡¡single¡¡science£»¡¡we



reply¡¡either¡¡that¡¡all¡¡opposites¡¡or¡¡that¡¡certain¡¡contraries£»¡¡e¡£g¡£



what¡¡is¡¡healthy¡¡and¡¡what¡¡is¡¡sickly£»¡¡are¡¡subjects¡¡of¡¡the¡¡same



science£º¡¡the¡¡former¡¡argument¡¡issues¡¡from¡¡the¡¡first£»¡¡the¡¡latter¡¡from



the¡¡third¡¡figure¡£



¡¡¡¡In¡¡general¡¡if¡¡a¡¡man¡¡urges¡¡a¡¡universal¡¡objection¡¡he¡¡must¡¡frame¡¡his



contradiction¡¡with¡¡reference¡¡to¡¡the¡¡universal¡¡of¡¡the¡¡terms¡¡taken¡¡by



his¡¡opponent£»¡¡e¡£g¡£¡¡if¡¡a¡¡man¡¡maintains¡¡that¡¡contraries¡¡are¡¡not¡¡subjects



of¡¡the¡¡same¡¡science£»¡¡his¡¡opponent¡¡must¡¡reply¡¡that¡¡there¡¡is¡¡a¡¡single



science¡¡of¡¡all¡¡opposites¡£¡¡Thus¡¡we¡¡must¡¡have¡¡the¡¡first¡¡figure£º¡¡for



the¡¡term¡¡which¡¡embraces¡¡the¡¡original¡¡subject¡¡becomes¡¡the¡¡middle¡¡term¡£



¡¡¡¡If¡¡the¡¡objection¡¡is¡¡particular£»¡¡the¡¡objector¡¡must¡¡frame¡¡his



contradiction¡¡with¡¡reference¡¡to¡¡a¡¡term¡¡relatively¡¡to¡¡which¡¡the¡¡subject



of¡¡his¡¡opponent's¡¡premiss¡¡is¡¡universal£»¡¡e¡£g¡£¡¡he¡¡will¡¡point¡¡out¡¡that



the¡¡knowable¡¡and¡¡the¡¡unknowable¡¡are¡¡not¡¡subjects¡¡of¡¡the¡¡same



science£º¡¡'contraries'¡¡is¡¡universal¡¡relatively¡¡to¡¡these¡£¡¡And¡¡we¡¡have



the¡¡third¡¡figure£º¡¡for¡¡the¡¡particular¡¡term¡¡assumed¡¡is¡¡middle£»¡¡e¡£g¡£



the¡¡knowable¡¡and¡¡the¡¡unknowable¡£¡¡Premisses¡¡from¡¡which¡¡it¡¡is¡¡possible



to¡¡draw¡¡the¡¡contrary¡¡conclusion¡¡are¡¡what¡¡we¡¡start¡¡from¡¡when¡¡we¡¡try



to¡¡make¡¡objections¡£¡¡Consequently¡¡we¡¡bring¡¡objections¡¡in¡¡these



figures¡¡only£º¡¡for¡¡in¡¡them¡¡only¡¡are¡¡opposite¡¡syllogisms¡¡possible£»¡¡since



the¡¡second¡¡figure¡¡cannot¡¡produce¡¡an¡¡affirmative¡¡conclusion¡£



¡¡¡¡Besides£»¡¡an¡¡objection¡¡in¡¡the¡¡middle¡¡figure¡¡would¡¡require¡¡a¡¡fuller



argument£»¡¡e¡£g¡£¡¡if¡¡it¡¡should¡¡not¡¡be¡¡granted¡¡that¡¡A¡¡belongs¡¡to¡¡B£»



because¡¡C¡¡does¡¡not¡¡follow¡¡B¡£¡¡This¡¡can¡¡be¡¡made¡¡clear¡¡only¡¡by¡¡other



premisses¡£¡¡But¡¡an¡¡objection¡¡ought¡¡not¡¡to¡¡turn¡¡off¡¡into¡¡other¡¡things£»



but¡¡have¡¡its¡¡new¡¡premiss¡¡quite¡¡clear¡¡immediately¡£¡¡For¡¡this¡¡reason¡¡also



this¡¡is¡¡the¡¡only¡¡figure¡¡from¡¡which¡¡proof¡¡by¡¡signs¡¡cannot¡¡be¡¡obtained¡£



¡¡¡¡We¡¡must¡¡consider

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ