Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ3½Ú

prior analytics-µÚ3½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






to¡¡that¡¡of¡¡the¡¡universal¡¡statement£º¡¡by¡¡'an¡¡opposite¡¡manner'¡¡I¡¡mean£»¡¡if



the¡¡universal¡¡statement¡¡is¡¡negative£»¡¡the¡¡particular¡¡is¡¡affirmative£º¡¡if



the¡¡universal¡¡is¡¡affirmative£»¡¡the¡¡particular¡¡is¡¡negative¡£¡¡For¡¡if¡¡M



belongs¡¡to¡¡no¡¡N£»¡¡but¡¡to¡¡some¡¡O£»¡¡it¡¡is¡¡necessary¡¡that¡¡N¡¡does¡¡not¡¡belong



to¡¡some¡¡O¡£¡¡For¡¡since¡¡the¡¡negative¡¡statement¡¡is¡¡convertible£»¡¡N¡¡will



belong¡¡to¡¡no¡¡M£º¡¡but¡¡M¡¡was¡¡admitted¡¡to¡¡belong¡¡to¡¡some¡¡O£º¡¡therefore¡¡N



will¡¡not¡¡belong¡¡to¡¡some¡¡O£º¡¡for¡¡the¡¡result¡¡is¡¡reached¡¡by¡¡means¡¡of¡¡the



first¡¡figure¡£¡¡Again¡¡if¡¡M¡¡belongs¡¡to¡¡all¡¡N£»¡¡but¡¡not¡¡to¡¡some¡¡O£»¡¡it¡¡is



necessary¡¡that¡¡N¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡O£º¡¡for¡¡if¡¡N¡¡belongs¡¡to¡¡all¡¡O£»



and¡¡M¡¡is¡¡predicated¡¡also¡¡of¡¡all¡¡N£»¡¡M¡¡must¡¡belong¡¡to¡¡all¡¡O£º¡¡but¡¡we



assumed¡¡that¡¡M¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡O¡£¡¡And¡¡if¡¡M¡¡belongs¡¡to¡¡all¡¡N



but¡¡not¡¡to¡¡all¡¡O£»¡¡we¡¡shall¡¡conclude¡¡that¡¡N¡¡does¡¡not¡¡belong¡¡to¡¡all¡¡O£º



the¡¡proof¡¡is¡¡the¡¡same¡¡as¡¡the¡¡above¡£¡¡But¡¡if¡¡M¡¡is¡¡predicated¡¡of¡¡all¡¡O£»



but¡¡not¡¡of¡¡all¡¡N£»¡¡there¡¡will¡¡be¡¡no¡¡syllogism¡£¡¡Take¡¡the¡¡terms¡¡animal£»



substance£»¡¡raven£»¡¡animal£»¡¡white£»¡¡raven¡£¡¡Nor¡¡will¡¡there¡¡be¡¡a¡¡conclusion



when¡¡M¡¡is¡¡predicated¡¡of¡¡no¡¡O£»¡¡but¡¡of¡¡some¡¡N¡£¡¡Terms¡¡to¡¡illustrate¡¡a



positive¡¡relation¡¡between¡¡the¡¡extremes¡¡are¡¡animal£»¡¡substance£»¡¡unit£º



a¡¡negative¡¡relation£»¡¡animal£»¡¡substance£»¡¡science¡£



¡¡¡¡If¡¡then¡¡the¡¡universal¡¡statement¡¡is¡¡opposed¡¡to¡¡the¡¡particular£»¡¡we



have¡¡stated¡¡when¡¡a¡¡syllogism¡¡will¡¡be¡¡possible¡¡and¡¡when¡¡not£º¡¡but¡¡if¡¡the



premisses¡¡are¡¡similar¡¡in¡¡form£»¡¡I¡¡mean¡¡both¡¡negative¡¡or¡¡both



affirmative£»¡¡a¡¡syllogism¡¡will¡¡not¡¡be¡¡possible¡¡anyhow¡£¡¡First¡¡let¡¡them



be¡¡negative£»¡¡and¡¡let¡¡the¡¡major¡¡premiss¡¡be¡¡universal£»¡¡e¡£g¡£¡¡let¡¡M¡¡belong



to¡¡no¡¡N£»¡¡and¡¡not¡¡to¡¡some¡¡O¡£¡¡It¡¡is¡¡possible¡¡then¡¡for¡¡N¡¡to¡¡belong¡¡either



to¡¡all¡¡O¡¡or¡¡to¡¡no¡¡O¡£¡¡Terms¡¡to¡¡illustrate¡¡the¡¡negative¡¡relation¡¡are



black£»¡¡snow£»¡¡animal¡£¡¡But¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡find¡¡terms¡¡of¡¡which¡¡the



extremes¡¡are¡¡related¡¡positively¡¡and¡¡universally£»¡¡if¡¡M¡¡belongs¡¡to



some¡¡O£»¡¡and¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡O¡£¡¡For¡¡if¡¡N¡¡belonged¡¡to¡¡all¡¡O£»¡¡but



M¡¡to¡¡no¡¡N£»¡¡then¡¡M¡¡would¡¡belong¡¡to¡¡no¡¡O£º¡¡but¡¡we¡¡assumed¡¡that¡¡it¡¡belongs



to¡¡some¡¡O¡£¡¡In¡¡this¡¡way¡¡then¡¡it¡¡is¡¡not¡¡admissible¡¡to¡¡take¡¡terms£º¡¡our



point¡¡must¡¡be¡¡proved¡¡from¡¡the¡¡indefinite¡¡nature¡¡of¡¡the¡¡particular



statement¡£¡¡For¡¡since¡¡it¡¡is¡¡true¡¡that¡¡M¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡O£»¡¡even



if¡¡it¡¡belongs¡¡to¡¡no¡¡O£»¡¡and¡¡since¡¡if¡¡it¡¡belongs¡¡to¡¡no¡¡O¡¡a¡¡syllogism



is¡¡£¨as¡¡we¡¡have¡¡seen£©¡¡not¡¡possible£»¡¡clearly¡¡it¡¡will¡¡not¡¡be¡¡possible¡¡now



either¡£



¡¡¡¡Again¡¡let¡¡the¡¡premisses¡¡be¡¡affirmative£»¡¡and¡¡let¡¡the¡¡major¡¡premiss¡¡as



before¡¡be¡¡universal£»¡¡e¡£g¡£¡¡let¡¡M¡¡belong¡¡to¡¡all¡¡N¡¡and¡¡to¡¡some¡¡O¡£¡¡It¡¡is



possible¡¡then¡¡for¡¡N¡¡to¡¡belong¡¡to¡¡all¡¡O¡¡or¡¡to¡¡no¡¡O¡£¡¡Terms¡¡to¡¡illustrate



the¡¡negative¡¡relation¡¡are¡¡white£»¡¡swan£»¡¡stone¡£¡¡But¡¡it¡¡is¡¡not¡¡possible



to¡¡take¡¡terms¡¡to¡¡illustrate¡¡the¡¡universal¡¡affirmative¡¡relation£»¡¡for



the¡¡reason¡¡already¡¡stated£º¡¡the¡¡point¡¡must¡¡be¡¡proved¡¡from¡¡the



indefinite¡¡nature¡¡of¡¡the¡¡particular¡¡statement¡£¡¡But¡¡if¡¡the¡¡minor



premiss¡¡is¡¡universal£»¡¡and¡¡M¡¡belongs¡¡to¡¡no¡¡O£»¡¡and¡¡not¡¡to¡¡some¡¡N£»¡¡it



is¡¡possible¡¡for¡¡N¡¡to¡¡belong¡¡either¡¡to¡¡all¡¡O¡¡or¡¡to¡¡no¡¡O¡£¡¡Terms¡¡for



the¡¡positive¡¡relation¡¡are¡¡white£»¡¡animal£»¡¡raven£º¡¡for¡¡the¡¡negative



relation£»¡¡white£»¡¡stone£»¡¡raven¡£¡¡If¡¡the¡¡premisses¡¡are¡¡affirmative£»¡¡terms



for¡¡the¡¡negative¡¡relation¡¡are¡¡white£»¡¡animal£»¡¡snow£»¡¡for¡¡the¡¡positive



relation£»¡¡white£»¡¡animal£»¡¡swan¡£¡¡Evidently¡¡then£»¡¡whenever¡¡the



premisses¡¡are¡¡similar¡¡in¡¡form£»¡¡and¡¡one¡¡is¡¡universal£»¡¡the¡¡other



particular£»¡¡a¡¡syllogism¡¡can£»¡¡not¡¡be¡¡formed¡¡anyhow¡£¡¡Nor¡¡is¡¡one¡¡possible



if¡¡the¡¡middle¡¡term¡¡belongs¡¡to¡¡some¡¡of¡¡each¡¡of¡¡the¡¡extremes£»¡¡or¡¡does



not¡¡belong¡¡to¡¡some¡¡of¡¡either£»¡¡or¡¡belongs¡¡to¡¡some¡¡of¡¡the¡¡one£»¡¡not¡¡to



some¡¡of¡¡the¡¡other£»¡¡or¡¡belongs¡¡to¡¡neither¡¡universally£»¡¡or¡¡is¡¡related¡¡to



them¡¡indefinitely¡£¡¡Common¡¡terms¡¡for¡¡all¡¡the¡¡above¡¡are¡¡white£»¡¡animal£»



man£º¡¡white£»¡¡animal£»¡¡inanimate¡£



It¡¡is¡¡clear¡¡then¡¡from¡¡what¡¡has¡¡been¡¡said¡¡that¡¡if¡¡the¡¡terms¡¡are¡¡related



to¡¡one¡¡another¡¡in¡¡the¡¡way¡¡stated£»¡¡a¡¡syllogism¡¡results¡¡of¡¡necessity£»



and¡¡if¡¡there¡¡is¡¡a¡¡syllogism£»¡¡the¡¡terms¡¡must¡¡be¡¡so¡¡related¡£¡¡But¡¡it¡¡is



evident¡¡also¡¡that¡¡all¡¡the¡¡syllogisms¡¡in¡¡this¡¡figure¡¡are¡¡imperfect£º¡¡for



all¡¡are¡¡made¡¡perfect¡¡by¡¡certain¡¡supplementary¡¡statements£»¡¡which¡¡either



are¡¡contained¡¡in¡¡the¡¡terms¡¡of¡¡necessity¡¡or¡¡are¡¡assumed¡¡as



hypotheses£»¡¡i¡£e¡£¡¡when¡¡we¡¡prove¡¡per¡¡impossibile¡£¡¡And¡¡it¡¡is¡¡evident¡¡that



an¡¡affirmative¡¡conclusion¡¡is¡¡not¡¡attained¡¡by¡¡means¡¡of¡¡this¡¡figure£»¡¡but



all¡¡are¡¡negative£»¡¡whether¡¡universal¡¡or¡¡particular¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6







¡¡¡¡But¡¡if¡¡one¡¡term¡¡belongs¡¡to¡¡all£»¡¡and¡¡another¡¡to¡¡none£»¡¡of¡¡a¡¡third£»



or¡¡if¡¡both¡¡belong¡¡to¡¡all£»¡¡or¡¡to¡¡none£»¡¡of¡¡it£»¡¡I¡¡call¡¡such¡¡a¡¡figure



the¡¡third£»¡¡by¡¡middle¡¡term¡¡in¡¡it¡¡I¡¡mean¡¡that¡¡of¡¡which¡¡both¡¡the



predicates¡¡are¡¡predicated£»¡¡by¡¡extremes¡¡I¡¡mean¡¡the¡¡predicates£»¡¡by¡¡the



major¡¡extreme¡¡that¡¡which¡¡is¡¡further¡¡from¡¡the¡¡middle£»¡¡by¡¡the¡¡minor¡¡that



which¡¡is¡¡nearer¡¡to¡¡it¡£¡¡The¡¡middle¡¡term¡¡stands¡¡outside¡¡the¡¡extremes£»



and¡¡is¡¡last¡¡in¡¡position¡£¡¡A¡¡syllogism¡¡cannot¡¡be¡¡perfect¡¡in¡¡this



figure¡¡either£»¡¡but¡¡it¡¡may¡¡be¡¡valid¡¡whether¡¡the¡¡terms¡¡are¡¡related



universally¡¡or¡¡not¡¡to¡¡the¡¡middle¡¡term¡£



¡¡¡¡If¡¡they¡¡are¡¡universal£»¡¡whenever¡¡both¡¡P¡¡and¡¡R¡¡belong¡¡to¡¡S£»¡¡it¡¡follows



that¡¡P¡¡will¡¡necessarily¡¡belong¡¡to¡¡some¡¡R¡£¡¡For£»¡¡since¡¡the¡¡affirmative



statement¡¡is¡¡convertible£»¡¡S¡¡will¡¡belong¡¡to¡¡some¡¡R£º¡¡consequently



since¡¡P¡¡belongs¡¡to¡¡all¡¡S£»¡¡and¡¡S¡¡to¡¡some¡¡R£»¡¡P¡¡must¡¡belong¡¡to¡¡some¡¡R£º



for¡¡a¡¡syllogism¡¡in¡¡the¡¡first¡¡figure¡¡is¡¡produced¡£¡¡It¡¡is¡¡possible¡¡to



demonstrate¡¡this¡¡also¡¡per¡¡impossibile¡¡and¡¡by¡¡exposition¡£¡¡For¡¡if¡¡both¡¡P



and¡¡R¡¡belong¡¡to¡¡all¡¡S£»¡¡should¡¡one¡¡of¡¡the¡¡Ss£»¡¡e¡£g¡£¡¡N£»¡¡be¡¡taken£»¡¡both



P¡¡and¡¡R¡¡will¡¡belong¡¡to¡¡this£»¡¡and¡¡thus¡¡P¡¡will¡¡belong¡¡to¡¡some¡¡R¡£



¡¡¡¡If¡¡R¡¡belongs¡¡to¡¡all¡¡S£»¡¡and¡¡P¡¡to¡¡no¡¡S£»¡¡there¡¡will¡¡be¡¡a¡¡syllogism¡¡to



prove¡¡that¡¡P¡¡will¡¡necessarily¡¡not¡¡belong¡¡to¡¡some¡¡R¡£¡¡This¡¡may¡¡be



demonstrated¡¡in¡¡the¡¡same¡¡way¡¡as¡¡before¡¡by¡¡converting¡¡the¡¡premiss¡¡RS¡£



It¡¡might¡¡be¡¡proved¡¡also¡¡per¡¡impossibile£»¡¡as¡¡in¡¡the¡¡former¡¡cases¡£¡¡But



if¡¡R¡¡belongs¡¡to¡¡no¡¡S£»¡¡P¡¡to¡¡all¡¡S£»¡¡there¡¡will¡¡be¡¡no¡¡syllogism¡£¡¡Terms



for¡¡the¡¡positive¡¡relation¡¡are¡¡animal£»¡¡horse£»¡¡man£º¡¡for¡¡the¡¡negative



relation¡¡animal£»¡¡inanimate£»¡¡man¡£



¡¡¡¡Nor¡¡can¡¡there¡¡be¡¡a¡¡syllogism¡¡when¡¡both¡¡terms¡¡are¡¡asserted¡¡of¡¡no¡¡S¡£



Terms¡¡for¡¡the¡¡positive¡¡relation¡¡are¡¡animal£»¡¡horse£»¡¡inanimate£»¡¡for



the¡¡negative¡¡relation¡¡man£»¡¡horse£»¡¡inanimate¡­inanimate¡¡being¡¡the¡¡middle



term¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡in¡¡this¡¡figure¡¡also¡¡when¡¡a¡¡syllogism¡¡will¡¡be



possible¡¡and¡¡when¡¡not£»¡¡if¡¡the¡¡terms¡¡are¡¡related¡¡universally¡£¡¡For



whenever¡¡both¡¡the¡¡terms¡¡are¡¡affirmative£»¡¡there¡¡will¡¡be¡¡a¡¡syllogism



to¡¡prove¡¡that¡¡one¡¡extreme¡¡belongs¡¡to¡¡some¡¡of¡¡the¡¡other£»¡¡but¡¡when



they¡¡are¡¡negative£»¡¡no¡¡syllogism¡¡will¡¡be¡¡possible¡£¡¡But¡¡when¡¡one¡¡is



negative£»¡¡the¡¡other¡¡affirmative£»¡¡if¡¡the¡¡major¡¡is¡¡negative£»¡¡the¡¡minor



affirmative£»¡¡there¡¡will¡¡be¡¡a¡¡syllogism¡¡to¡¡prove¡¡that¡¡the¡¡one¡¡extreme



does¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡other£º¡¡but¡¡if¡¡the¡¡relation¡¡is¡¡reversed£»



no¡¡syllogism¡¡will¡¡be¡¡possible¡£¡¡If¡¡one¡¡term¡¡is¡¡related¡¡universally¡¡to



the¡¡middle£»¡¡the¡¡other¡¡in¡¡part¡¡only£»¡¡when¡¡both¡¡are¡¡affirmative¡¡there



must¡¡be¡¡a¡¡syllogism£»¡¡no¡¡matter¡¡which¡¡of¡¡the¡¡premisses¡¡is¡¡universal¡£



For¡¡if¡¡R¡¡belongs¡¡to¡¡all¡¡S£»¡¡P¡¡to¡¡some¡¡S£»¡¡P¡¡must¡¡belong¡¡to¡¡some¡¡R¡£¡¡For



since¡¡the¡¡affirmative¡¡statement¡¡is¡¡convertible¡¡S¡¡will¡¡belong¡¡to¡¡some



P£º¡¡consequently¡¡since¡¡R¡¡belongs¡¡to¡¡all¡¡S£»¡¡and¡¡S¡¡to¡¡some¡¡P£»¡¡R¡¡must¡¡also



belong¡¡to¡¡some¡¡P£º¡¡therefore¡¡P¡¡must¡¡belong¡¡to¡¡some¡¡R¡£



¡¡¡¡Again¡¡if¡¡R¡¡belongs¡¡to¡¡some¡¡S£»¡¡and¡¡P¡¡to¡¡all¡¡S£»¡¡P¡¡must¡¡belong¡¡to



some¡¡R¡£¡¡This¡¡may¡¡be¡¡demonstrated¡¡in¡¡the¡¡same¡¡way¡¡as¡¡the¡¡preceding¡£¡¡And



it¡¡is¡¡possible¡¡to¡¡demonstrate¡¡it¡¡also¡¡per¡¡impossibile¡¡and¡¡by



exposition£»¡¡as¡¡in¡¡the¡¡former¡¡cases¡£¡¡But¡¡if¡¡one¡¡term¡¡is¡¡affirmative£»



the¡¡other¡¡negative£»¡¡and¡¡if¡¡the¡¡affirmative¡¡is¡¡universal£»¡¡a¡¡syllogism



will¡¡be¡¡possible¡¡whenever¡¡the¡¡minor¡¡term¡¡is¡¡affirmative¡£¡¡For¡¡if¡¡R



belongs¡¡to¡¡all¡¡S£»¡¡but¡¡P¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡S£»¡¡it¡¡is¡¡necessary



that¡¡P¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡R¡£¡¡For¡¡if¡¡P¡¡belongs¡¡to¡¡all¡¡R£»¡¡and¡¡R



belongs¡¡to¡¡all¡¡S£»¡¡then¡¡P¡¡will¡¡belong¡¡to¡¡all¡¡S£º¡¡but¡¡we¡¡assumed¡¡that



it¡¡did¡¡not¡£¡¡Proof¡¡is¡¡possible¡¡also¡¡without¡¡reduction¡¡ad¡¡impossibile£»



if¡¡one¡¡of¡¡the¡¡Ss¡¡be¡¡taken¡¡to¡¡which¡¡P¡¡does¡¡not¡¡belong¡£



¡¡¡¡But¡¡whenever¡¡the¡¡major¡¡is¡¡affirmative£»¡¡no¡¡syllogism¡¡will¡¡be



possible£»¡¡e¡£g¡£¡¡if¡¡P¡¡belongs¡¡to¡¡all¡¡S¡¡and¡¡R¡¡does¡¡not¡¡belong¡¡to¡¡some



S¡£¡¡Terms¡¡for¡¡the¡¡universal¡¡affirmative¡¡relation¡¡are¡¡animate£»¡¡man£»



animal¡£¡¡For¡¡the¡¡universal¡¡negative¡¡relation¡¡it¡¡is¡¡not¡¡possible¡¡to



get¡¡terms£»¡¡if¡¡R¡¡belongs¡¡to¡¡some¡¡S£»¡¡and¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡S¡£



For¡¡if¡¡P¡¡belongs¡¡to¡¡all¡¡S£»¡¡and¡¡R¡¡to¡¡some¡¡S£»¡¡then¡¡P¡¡will¡¡belong¡¡to¡¡some



R£º¡¡but¡¡we¡¡assumed¡¡that¡¡it¡¡belongs¡¡to¡¡no¡¡R¡£¡¡We¡¡must¡¡put¡¡the¡¡matter¡¡as



before¡£'¡¡Since¡¡the¡¡expression¡¡'it¡¡does¡¡not¡¡belong¡¡to¡¡some'¡¡is



indefinite£»¡¡it¡¡may¡¡be¡¡used¡¡truly¡¡of¡¡that¡¡also¡¡which¡¡belongs¡¡to¡¡none¡£



But¡¡if¡¡R¡¡belongs¡¡to¡¡no¡¡S£»¡¡no¡¡syllogism¡¡i

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ