prior analytics-µÚ29½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
conclusion¡¡would¡¡not¡¡depend¡¡on¡¡the¡¡original¡¡hypothesis¡£¡¡Or¡¡again¡¡trace
the¡¡connexion¡¡upwards£»¡¡e¡£g¡£¡¡suppose¡¡that¡¡A¡¡belongs¡¡to¡¡B£»¡¡E¡¡to¡¡A¡¡and
F¡¡to¡¡E£»¡¡it¡¡being¡¡false¡¡that¡¡F¡¡belongs¡¡to¡¡A¡£¡¡In¡¡this¡¡way¡¡too¡¡the
impossible¡¡conclusion¡¡would¡¡result£»¡¡though¡¡the¡¡original¡¡hypothesis
were¡¡eliminated¡£¡¡But¡¡the¡¡impossible¡¡conclusion¡¡ought¡¡to¡¡be¡¡connected
with¡¡the¡¡original¡¡terms£º¡¡in¡¡this¡¡way¡¡it¡¡will¡¡depend¡¡on¡¡the¡¡hypothesis£»
e¡£g¡£¡¡when¡¡one¡¡traces¡¡the¡¡connexion¡¡downwards£»¡¡the¡¡impossible
conclusion¡¡must¡¡be¡¡connected¡¡with¡¡that¡¡term¡¡which¡¡is¡¡predicate¡¡in
the¡¡hypothesis£º¡¡for¡¡if¡¡it¡¡is¡¡impossible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡D£»¡¡the
false¡¡conclusion¡¡will¡¡no¡¡longer¡¡result¡¡after¡¡A¡¡has¡¡been¡¡eliminated¡£¡¡If
one¡¡traces¡¡the¡¡connexion¡¡upwards£»¡¡the¡¡impossible¡¡conclusion¡¡must¡¡be
connected¡¡with¡¡that¡¡term¡¡which¡¡is¡¡subject¡¡in¡¡the¡¡hypothesis£º¡¡for¡¡if¡¡it
is¡¡impossible¡¡that¡¡F¡¡should¡¡belong¡¡to¡¡B£»¡¡the¡¡impossible¡¡conclusion
will¡¡disappear¡¡if¡¡B¡¡is¡¡eliminated¡£¡¡Similarly¡¡when¡¡the¡¡syllogisms¡¡are
negative¡£
¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡when¡¡the¡¡impossibility¡¡is¡¡not¡¡related¡¡to¡¡the
original¡¡terms£»¡¡the¡¡false¡¡conclusion¡¡does¡¡not¡¡result¡¡on¡¡account¡¡of¡¡the
assumption¡£¡¡Or¡¡perhaps¡¡even¡¡so¡¡it¡¡may¡¡sometimes¡¡be¡¡independent¡£¡¡For¡¡if
it¡¡were¡¡laid¡¡down¡¡that¡¡A¡¡belongs¡¡not¡¡to¡¡B¡¡but¡¡to¡¡K£»¡¡and¡¡that¡¡K¡¡belongs
to¡¡C¡¡and¡¡C¡¡to¡¡D£»¡¡the¡¡impossible¡¡conclusion¡¡would¡¡still¡¡stand¡£
Similarly¡¡if¡¡one¡¡takes¡¡the¡¡terms¡¡in¡¡an¡¡ascending¡¡series¡£
Consequently¡¡since¡¡the¡¡impossibility¡¡results¡¡whether¡¡the¡¡first
assumption¡¡is¡¡suppressed¡¡or¡¡not£»¡¡it¡¡would¡¡appear¡¡to¡¡be¡¡independent
of¡¡that¡¡assumption¡£¡¡Or¡¡perhaps¡¡we¡¡ought¡¡not¡¡to¡¡understand¡¡the
statement¡¡that¡¡the¡¡false¡¡conclusion¡¡results¡¡independently¡¡of¡¡the
assumption£»¡¡in¡¡the¡¡sense¡¡that¡¡if¡¡something¡¡else¡¡were¡¡supposed¡¡the
impossibility¡¡would¡¡result£»¡¡but¡¡rather¡¡we¡¡mean¡¡that¡¡when¡¡the¡¡first
assumption¡¡is¡¡eliminated£»¡¡the¡¡same¡¡impossibility¡¡results¡¡through¡¡the
remaining¡¡premisses£»¡¡since¡¡it¡¡is¡¡not¡¡perhaps¡¡absurd¡¡that¡¡the¡¡same
false¡¡result¡¡should¡¡follow¡¡from¡¡several¡¡hypotheses£»¡¡e¡£g¡£¡¡that
parallels¡¡meet£»¡¡both¡¡on¡¡the¡¡assumption¡¡that¡¡the¡¡interior¡¡angle¡¡is
greater¡¡than¡¡the¡¡exterior¡¡and¡¡on¡¡the¡¡assumption¡¡that¡¡a¡¡triangle
contains¡¡more¡¡than¡¡two¡¡right¡¡angles¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡18
¡¡¡¡A¡¡false¡¡argument¡¡depends¡¡on¡¡the¡¡first¡¡false¡¡statement¡¡in¡¡it¡£¡¡Every
syllogism¡¡is¡¡made¡¡out¡¡of¡¡two¡¡or¡¡more¡¡premisses¡£¡¡If¡¡then¡¡the¡¡false
conclusion¡¡is¡¡drawn¡¡from¡¡two¡¡premisses£»¡¡one¡¡or¡¡both¡¡of¡¡them¡¡must¡¡be
false£º¡¡for¡¡£¨as¡¡we¡¡proved£©¡¡a¡¡false¡¡syllogism¡¡cannot¡¡be¡¡drawn¡¡from¡¡two
premisses¡£¡¡But¡¡if¡¡the¡¡premisses¡¡are¡¡more¡¡than¡¡two£»¡¡e¡£g¡£¡¡if¡¡C¡¡is
established¡¡through¡¡A¡¡and¡¡B£»¡¡and¡¡these¡¡through¡¡D£»¡¡E£»¡¡F£»¡¡and¡¡G£»¡¡one
of¡¡these¡¡higher¡¡propositions¡¡must¡¡be¡¡false£»¡¡and¡¡on¡¡this¡¡the¡¡argument
depends£º¡¡for¡¡A¡¡and¡¡B¡¡are¡¡inferred¡¡by¡¡means¡¡of¡¡D£»¡¡E£»¡¡F£»¡¡and¡¡G¡£
Therefore¡¡the¡¡conclusion¡¡and¡¡the¡¡error¡¡results¡¡from¡¡one¡¡of¡¡them¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡19
¡¡¡¡In¡¡order¡¡to¡¡avoid¡¡having¡¡a¡¡syllogism¡¡drawn¡¡against¡¡us¡¡we¡¡must¡¡take
care£»¡¡whenever¡¡an¡¡opponent¡¡asks¡¡us¡¡to¡¡admit¡¡the¡¡reason¡¡without¡¡the
conclusions£»¡¡not¡¡to¡¡grant¡¡him¡¡the¡¡same¡¡term¡¡twice¡¡over¡¡in¡¡his
premisses£»¡¡since¡¡we¡¡know¡¡that¡¡a¡¡syllogism¡¡cannot¡¡be¡¡drawn¡¡without¡¡a
middle¡¡term£»¡¡and¡¡that¡¡term¡¡which¡¡is¡¡stated¡¡more¡¡than¡¡once¡¡is¡¡the
middle¡£¡¡How¡¡we¡¡ought¡¡to¡¡watch¡¡the¡¡middle¡¡in¡¡reference¡¡to¡¡each
conclusion£»¡¡is¡¡evident¡¡from¡¡our¡¡knowing¡¡what¡¡kind¡¡of¡¡thesis¡¡is
proved¡¡in¡¡each¡¡figure¡£¡¡This¡¡will¡¡not¡¡escape¡¡us¡¡since¡¡we¡¡know¡¡how¡¡we
are¡¡maintaining¡¡the¡¡argument¡£
¡¡¡¡That¡¡which¡¡we¡¡urge¡¡men¡¡to¡¡beware¡¡of¡¡in¡¡their¡¡admissions£»¡¡they
ought¡¡in¡¡attack¡¡to¡¡try¡¡to¡¡conceal¡£¡¡This¡¡will¡¡be¡¡possible¡¡first£»¡¡if£»
instead¡¡of¡¡drawing¡¡the¡¡conclusions¡¡of¡¡preliminary¡¡syllogisms£»¡¡they
take¡¡the¡¡necessary¡¡premisses¡¡and¡¡leave¡¡the¡¡conclusions¡¡in¡¡the¡¡dark£»
secondly¡¡if¡¡instead¡¡of¡¡inviting¡¡assent¡¡to¡¡propositions¡¡which¡¡are
closely¡¡connected¡¡they¡¡take¡¡as¡¡far¡¡as¡¡possible¡¡those¡¡that¡¡are¡¡not
connected¡¡by¡¡middle¡¡terms¡£¡¡For¡¡example¡¡suppose¡¡that¡¡A¡¡is¡¡to¡¡be
inferred¡¡to¡¡be¡¡true¡¡of¡¡F£»¡¡B£»¡¡C£»¡¡D£»¡¡and¡¡E¡¡being¡¡middle¡¡terms¡£¡¡One¡¡ought
then¡¡to¡¡ask¡¡whether¡¡A¡¡belongs¡¡to¡¡B£»¡¡and¡¡next¡¡whether¡¡D¡¡belongs¡¡to¡¡E£»
instead¡¡of¡¡asking¡¡whether¡¡B¡¡belongs¡¡to¡¡C£»¡¡after¡¡that¡¡he¡¡may¡¡ask
whether¡¡B¡¡belongs¡¡to¡¡C£»¡¡and¡¡so¡¡on¡£¡¡If¡¡the¡¡syllogism¡¡is¡¡drawn¡¡through
one¡¡middle¡¡term£»¡¡he¡¡ought¡¡to¡¡begin¡¡with¡¡that£º¡¡in¡¡this¡¡way¡¡he¡¡will¡¡most
likely¡¡deceive¡¡his¡¡opponent¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡20
¡¡¡¡Since¡¡we¡¡know¡¡when¡¡a¡¡syllogism¡¡can¡¡be¡¡formed¡¡and¡¡how¡¡its¡¡terms
must¡¡be¡¡related£»¡¡it¡¡is¡¡clear¡¡when¡¡refutation¡¡will¡¡be¡¡possible¡¡and¡¡when
impossible¡£¡¡A¡¡refutation¡¡is¡¡possible¡¡whether¡¡everything¡¡is¡¡conceded£»
or¡¡the¡¡answers¡¡alternate¡¡£¨one£»¡¡I¡¡mean£»¡¡being¡¡affirmative£»¡¡the¡¡other
negative£©¡£¡¡For¡¡as¡¡has¡¡been¡¡shown¡¡a¡¡syllogism¡¡is¡¡possible¡¡whether¡¡the
terms¡¡are¡¡related¡¡in¡¡affirmative¡¡propositions¡¡or¡¡one¡¡proposition¡¡is
affirmative£»¡¡the¡¡other¡¡negative£º¡¡consequently£»¡¡if¡¡what¡¡is¡¡laid¡¡down¡¡is
contrary¡¡to¡¡the¡¡conclusion£»¡¡a¡¡refutation¡¡must¡¡take¡¡place£º¡¡for¡¡a
refutation¡¡is¡¡a¡¡syllogism¡¡which¡¡establishes¡¡the¡¡contradictory¡£¡¡But
if¡¡nothing¡¡is¡¡conceded£»¡¡a¡¡refutation¡¡is¡¡impossible£º¡¡for¡¡no¡¡syllogism
is¡¡possible¡¡£¨as¡¡we¡¡saw£©¡¡when¡¡all¡¡the¡¡terms¡¡are¡¡negative£º¡¡therefore
no¡¡refutation¡¡is¡¡possible¡£¡¡For¡¡if¡¡a¡¡refutation¡¡were¡¡possible£»¡¡a
syllogism¡¡must¡¡be¡¡possible£»¡¡although¡¡if¡¡a¡¡syllogism¡¡is¡¡possible¡¡it
does¡¡not¡¡follow¡¡that¡¡a¡¡refutation¡¡is¡¡possible¡£¡¡Similarly¡¡refutation¡¡is
not¡¡possible¡¡if¡¡nothing¡¡is¡¡conceded¡¡universally£º¡¡since¡¡the¡¡fields¡¡of
refutation¡¡and¡¡syllogism¡¡are¡¡defined¡¡in¡¡the¡¡same¡¡way¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡21
¡¡¡¡It¡¡sometimes¡¡happens¡¡that¡¡just¡¡as¡¡we¡¡are¡¡deceived¡¡in¡¡the¡¡arrangement
of¡¡the¡¡terms£»¡¡so¡¡error¡¡may¡¡arise¡¡in¡¡our¡¡thought¡¡about¡¡them£»¡¡e¡£g¡£¡¡if¡¡it
is¡¡possible¡¡that¡¡the¡¡same¡¡predicate¡¡should¡¡belong¡¡to¡¡more¡¡than¡¡one
subject¡¡immediately£»¡¡but¡¡although¡¡knowing¡¡the¡¡one£»¡¡a¡¡man¡¡may¡¡forget
the¡¡other¡¡and¡¡think¡¡the¡¡opposite¡¡true¡£¡¡Suppose¡¡that¡¡A¡¡belongs¡¡to¡¡B¡¡and
to¡¡C¡¡in¡¡virtue¡¡of¡¡their¡¡nature£»¡¡and¡¡that¡¡B¡¡and¡¡C¡¡belong¡¡to¡¡all¡¡D¡¡in
the¡¡same¡¡way¡£¡¡If¡¡then¡¡a¡¡man¡¡thinks¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to
D£»¡¡but¡¡A¡¡to¡¡no¡¡C£»¡¡and¡¡C¡¡to¡¡all¡¡D£»¡¡he¡¡will¡¡both¡¡know¡¡and¡¡not¡¡know¡¡the
same¡¡thing¡¡in¡¡respect¡¡of¡¡the¡¡same¡¡thing¡£¡¡Again¡¡if¡¡a¡¡man¡¡were¡¡to¡¡make¡¡a
mistake¡¡about¡¡the¡¡members¡¡of¡¡a¡¡single¡¡series£»¡¡e¡£g¡£¡¡suppose¡¡A¡¡belongs
to¡¡B£»¡¡B¡¡to¡¡C£»¡¡and¡¡C¡¡to¡¡D£»¡¡but¡¡some¡¡one¡¡thinks¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»
but¡¡to¡¡no¡¡C£º¡¡he¡¡will¡¡both¡¡know¡¡that¡¡A¡¡belongs¡¡to¡¡D£»¡¡and¡¡think¡¡that
it¡¡does¡¡not¡£¡¡Does¡¡he¡¡then¡¡maintain¡¡after¡¡this¡¡simply¡¡that¡¡what¡¡he
knows£»¡¡he¡¡does¡¡not¡¡think£¿¡¡For¡¡he¡¡knows¡¡in¡¡a¡¡way¡¡that¡¡A¡¡belongs¡¡to¡¡C
through¡¡B£»¡¡since¡¡the¡¡part¡¡is¡¡included¡¡in¡¡the¡¡whole£»¡¡so¡¡that¡¡what¡¡he
knows¡¡in¡¡a¡¡way£»¡¡this¡¡he¡¡maintains¡¡he¡¡does¡¡not¡¡think¡¡at¡¡all£º¡¡but¡¡that
is¡¡impossible¡£
¡¡¡¡In¡¡the¡¡former¡¡case£»¡¡where¡¡the¡¡middle¡¡term¡¡does¡¡not¡¡belong¡¡to¡¡the
same¡¡series£»¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡think¡¡both¡¡the¡¡premisses¡¡with
reference¡¡to¡¡each¡¡of¡¡the¡¡two¡¡middle¡¡terms£º¡¡e¡£g¡£¡¡that¡¡A¡¡belongs¡¡to
all¡¡B£»¡¡but¡¡to¡¡no¡¡C£»¡¡and¡¡both¡¡B¡¡and¡¡C¡¡belong¡¡to¡¡all¡¡D¡£¡¡For¡¡it¡¡turns¡¡out
that¡¡the¡¡first¡¡premiss¡¡of¡¡the¡¡one¡¡syllogism¡¡is¡¡either¡¡wholly¡¡or
partially¡¡contrary¡¡to¡¡the¡¡first¡¡premiss¡¡of¡¡the¡¡other¡£¡¡For¡¡if¡¡he¡¡thinks
that¡¡A¡¡belongs¡¡to¡¡everything¡¡to¡¡which¡¡B¡¡belongs£»¡¡and¡¡he¡¡knows¡¡that¡¡B
belongs¡¡to¡¡D£»¡¡then¡¡he¡¡knows¡¡that¡¡A¡¡belongs¡¡to¡¡D¡£¡¡Consequently¡¡if¡¡again
he¡¡thinks¡¡that¡¡A¡¡belongs¡¡to¡¡nothing¡¡to¡¡which¡¡C¡¡belongs£»¡¡he¡¡thinks¡¡that
A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡that¡¡to¡¡which¡¡B¡¡belongs£»¡¡but¡¡if¡¡he¡¡thinks
that¡¡A¡¡belongs¡¡to¡¡everything¡¡to¡¡which¡¡B¡¡belongs£»¡¡and¡¡again¡¡thinks¡¡that
A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡that¡¡to¡¡which¡¡B¡¡belongs£»¡¡these¡¡beliefs
are¡¡wholly¡¡or¡¡partially¡¡contrary¡£¡¡In¡¡this¡¡way¡¡then¡¡it¡¡is¡¡not
possible¡¡to¡¡think£»¡¡but¡¡nothing¡¡prevents¡¡a¡¡man¡¡thinking¡¡one¡¡premiss
of¡¡each¡¡syllogism¡¡of¡¡both¡¡premisses¡¡of¡¡one¡¡of¡¡the¡¡two¡¡syllogisms£º¡¡e¡£g¡£
A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡D£»¡¡and¡¡again¡¡A¡¡belongs¡¡to¡¡no¡¡C¡£¡¡An
error¡¡of¡¡this¡¡kind¡¡is¡¡similar¡¡to¡¡the¡¡error¡¡into¡¡which¡¡we¡¡fall
concerning¡¡particulars£º¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»
A¡¡will¡¡belong¡¡to¡¡all¡¡C¡£¡¡If¡¡then¡¡a¡¡man¡¡knows¡¡that¡¡A¡¡belongs¡¡to
everything¡¡to¡¡which¡¡B¡¡belongs£»¡¡he¡¡knows¡¡that¡¡A¡¡belongs¡¡to¡¡C¡£¡¡But
nothing¡¡prevents¡¡his¡¡being¡¡ignorant¡¡that¡¡C¡¡exists£»¡¡e¡£g¡£¡¡let¡¡A¡¡stand
for¡¡two¡¡right¡¡angles£»¡¡B¡¡for¡¡triangle£»¡¡C¡¡for¡¡a¡¡particular¡¡diagram¡¡of
a¡¡triangle¡£¡¡A¡¡man¡¡might¡¡think¡¡that¡¡C¡¡did¡¡not¡¡exist£»¡¡though¡¡he¡¡knew
that¡¡every¡¡triangle¡¡contains¡¡two¡¡right¡¡angles£»¡¡consequently¡¡he¡¡will
know¡¡and¡¡not¡¡know¡¡the¡¡same¡¡thing¡¡at¡¡the¡¡same¡¡time¡£¡¡For¡¡the
expression¡¡'to¡¡know¡¡that¡¡every¡¡triangle¡¡has¡¡its¡¡angles¡¡equal¡¡to¡¡two
right¡¡angles'¡¡is¡¡ambiguous£»¡¡meaning¡¡to¡¡have¡¡the¡¡knowledge¡¡either¡¡of
the¡¡universal¡¡or¡¡of¡¡the¡¡particulars¡£¡¡Thus¡¡then¡¡he¡¡knows¡¡that¡¡C
contains¡¡two¡¡right¡¡angles¡¡with¡¡a