Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ28½Ú

prior analytics-µÚ28½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






it¡¡is¡¡possible¡¡to¡¡establish¡¡one¡¡part¡¡of¡¡a¡¡contradiction¡¡through



other¡¡premisses£»¡¡or¡¡to¡¡assume¡¡it¡¡in¡¡the¡¡way¡¡suggested¡¡in¡¡the¡¡Topics¡£



Since¡¡there¡¡are¡¡three¡¡oppositions¡¡to¡¡affirmative¡¡statements£»¡¡it



follows¡¡that¡¡opposite¡¡statements¡¡may¡¡be¡¡assumed¡¡as¡¡premisses¡¡in¡¡six



ways£»¡¡we¡¡may¡¡have¡¡either¡¡universal¡¡affirmative¡¡and¡¡negative£»¡¡or



universal¡¡affirmative¡¡and¡¡particular¡¡negative£»¡¡or¡¡particular



affirmative¡¡and¡¡universal¡¡negative£»¡¡and¡¡the¡¡relations¡¡between¡¡the



terms¡¡may¡¡be¡¡reversed£»¡¡e¡£g¡£¡¡A¡¡may¡¡belong¡¡to¡¡all¡¡B¡¡and¡¡to¡¡no¡¡C£»¡¡or¡¡to



all¡¡C¡¡and¡¡to¡¡no¡¡B£»¡¡or¡¡to¡¡all¡¡of¡¡the¡¡one£»¡¡not¡¡to¡¡all¡¡of¡¡the¡¡other£»¡¡here



too¡¡the¡¡relation¡¡between¡¡the¡¡terms¡¡may¡¡be¡¡reversed¡£¡¡Similarly¡¡in¡¡the



third¡¡figure¡£¡¡So¡¡it¡¡is¡¡clear¡¡in¡¡how¡¡many¡¡ways¡¡and¡¡in¡¡what¡¡figures¡¡a



syllogism¡¡can¡¡be¡¡made¡¡by¡¡means¡¡of¡¡premisses¡¡which¡¡are¡¡opposed¡£



¡¡¡¡It¡¡is¡¡clear¡¡too¡¡that¡¡from¡¡false¡¡premisses¡¡it¡¡is¡¡possible¡¡to¡¡draw¡¡a



true¡¡conclusion£»¡¡as¡¡has¡¡been¡¡said¡¡before£»¡¡but¡¡it¡¡is¡¡not¡¡possible¡¡if



the¡¡premisses¡¡are¡¡opposed¡£¡¡For¡¡the¡¡syllogism¡¡is¡¡always¡¡contrary¡¡to¡¡the



fact£»¡¡e¡£g¡£¡¡if¡¡a¡¡thing¡¡is¡¡good£»¡¡it¡¡is¡¡proved¡¡that¡¡it¡¡is¡¡not¡¡good£»¡¡if¡¡an



animal£»¡¡that¡¡it¡¡is¡¡not¡¡an¡¡animal¡¡because¡¡the¡¡syllogism¡¡springs¡¡out



of¡¡a¡¡contradiction¡¡and¡¡the¡¡terms¡¡presupposed¡¡are¡¡either¡¡identical¡¡or



related¡¡as¡¡whole¡¡and¡¡part¡£¡¡It¡¡is¡¡evident¡¡also¡¡that¡¡in¡¡fallacious



reasonings¡¡nothing¡¡prevents¡¡a¡¡contradiction¡¡to¡¡the¡¡hypothesis¡¡from



resulting£»¡¡e¡£g¡£¡¡if¡¡something¡¡is¡¡odd£»¡¡it¡¡is¡¡not¡¡odd¡£¡¡For¡¡the



syllogism¡¡owed¡¡its¡¡contrariety¡¡to¡¡its¡¡contradictory¡¡premisses£»¡¡if¡¡we



assume¡¡such¡¡premisses¡¡we¡¡shall¡¡get¡¡a¡¡result¡¡that¡¡contradicts¡¡our



hypothesis¡£¡¡But¡¡we¡¡must¡¡recognize¡¡that¡¡contraries¡¡cannot¡¡be¡¡inferred



from¡¡a¡¡single¡¡syllogism¡¡in¡¡such¡¡a¡¡way¡¡that¡¡we¡¡conclude¡¡that¡¡what¡¡is



not¡¡good¡¡is¡¡good£»¡¡or¡¡anything¡¡of¡¡that¡¡sort¡¡unless¡¡a¡¡self¡­contradictory



premiss¡¡is¡¡at¡¡once¡¡assumed£»¡¡e¡£g¡£¡¡'every¡¡animal¡¡is¡¡white¡¡and¡¡not



white'£»¡¡and¡¡we¡¡proceed¡¡'man¡¡is¡¡an¡¡animal'¡£¡¡Either¡¡we¡¡must¡¡introduce



the¡¡contradiction¡¡by¡¡an¡¡additional¡¡assumption£»¡¡assuming£»¡¡e¡£g¡££»¡¡that



every¡¡science¡¡is¡¡supposition£»¡¡and¡¡then¡¡assuming¡¡'Medicine¡¡is¡¡a



science£»¡¡but¡¡none¡¡of¡¡it¡¡is¡¡supposition'¡¡£¨which¡¡is¡¡the¡¡mode¡¡in¡¡which



refutations¡¡are¡¡made£©£»¡¡or¡¡we¡¡must¡¡argue¡¡from¡¡two¡¡syllogisms¡£¡¡In¡¡no



other¡¡way¡¡than¡¡this£»¡¡as¡¡was¡¡said¡¡before£»¡¡is¡¡it¡¡possible¡¡that¡¡the



premisses¡¡should¡¡be¡¡really¡¡contrary¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡16







¡¡¡¡To¡¡beg¡¡and¡¡assume¡¡the¡¡original¡¡question¡¡is¡¡a¡¡species¡¡of¡¡failure¡¡to



demonstrate¡¡the¡¡problem¡¡proposed£»¡¡but¡¡this¡¡happens¡¡in¡¡many¡¡ways¡£¡¡A¡¡man



may¡¡not¡¡reason¡¡syllogistically¡¡at¡¡all£»¡¡or¡¡he¡¡may¡¡argue¡¡from



premisses¡¡which¡¡are¡¡less¡¡known¡¡or¡¡equally¡¡unknown£»¡¡or¡¡he¡¡may¡¡establish



the¡¡antecedent¡¡by¡¡means¡¡of¡¡its¡¡consequents£»¡¡for¡¡demonstration¡¡proceeds



from¡¡what¡¡is¡¡more¡¡certain¡¡and¡¡is¡¡prior¡£¡¡Now¡¡begging¡¡the¡¡question¡¡is



none¡¡of¡¡these£º¡¡but¡¡since¡¡we¡¡get¡¡to¡¡know¡¡some¡¡things¡¡naturally



through¡¡themselves£»¡¡and¡¡other¡¡things¡¡by¡¡means¡¡of¡¡something¡¡else¡¡£¨the



first¡¡principles¡¡through¡¡themselves£»¡¡what¡¡is¡¡subordinate¡¡to¡¡them



through¡¡something¡¡else£©£»¡¡whenever¡¡a¡¡man¡¡tries¡¡to¡¡prove¡¡what¡¡is¡¡not



self¡­evident¡¡by¡¡means¡¡of¡¡itself£»¡¡then¡¡he¡¡begs¡¡the¡¡original¡¡question¡£



This¡¡may¡¡be¡¡done¡¡by¡¡assuming¡¡what¡¡is¡¡in¡¡question¡¡at¡¡once£»¡¡it¡¡is¡¡also



possible¡¡to¡¡make¡¡a¡¡transition¡¡to¡¡other¡¡things¡¡which¡¡would¡¡naturally¡¡be



proved¡¡through¡¡the¡¡thesis¡¡proposed£»¡¡and¡¡demonstrate¡¡it¡¡through¡¡them£»



e¡£g¡£¡¡if¡¡A¡¡should¡¡be¡¡proved¡¡through¡¡B£»¡¡and¡¡B¡¡through¡¡C£»¡¡though¡¡it¡¡was



natural¡¡that¡¡C¡¡should¡¡be¡¡proved¡¡through¡¡A£º¡¡for¡¡it¡¡turns¡¡out¡¡that¡¡those



who¡¡reason¡¡thus¡¡are¡¡proving¡¡A¡¡by¡¡means¡¡of¡¡itself¡£¡¡This¡¡is¡¡what¡¡those



persons¡¡do¡¡who¡¡suppose¡¡that¡¡they¡¡are¡¡constructing¡¡parallel¡¡straight



lines£º¡¡for¡¡they¡¡fail¡¡to¡¡see¡¡that¡¡they¡¡are¡¡assuming¡¡facts¡¡which¡¡it¡¡is



impossible¡¡to¡¡demonstrate¡¡unless¡¡the¡¡parallels¡¡exist¡£¡¡So¡¡it¡¡turns



out¡¡that¡¡those¡¡who¡¡reason¡¡thus¡¡merely¡¡say¡¡a¡¡particular¡¡thing¡¡is£»¡¡if¡¡it



is£º¡¡in¡¡this¡¡way¡¡everything¡¡will¡¡be¡¡self¡­evident¡£¡¡But¡¡that¡¡is



impossible¡£



¡¡¡¡If¡¡then¡¡it¡¡is¡¡uncertain¡¡whether¡¡A¡¡belongs¡¡to¡¡C£»¡¡and¡¡also¡¡whether¡¡A



belongs¡¡to¡¡B£»¡¡and¡¡if¡¡one¡¡should¡¡assume¡¡that¡¡A¡¡does¡¡belong¡¡to¡¡B£»¡¡it



is¡¡not¡¡yet¡¡clear¡¡whether¡¡he¡¡begs¡¡the¡¡original¡¡question£»¡¡but¡¡it¡¡is



evident¡¡that¡¡he¡¡is¡¡not¡¡demonstrating£º¡¡for¡¡what¡¡is¡¡as¡¡uncertain¡¡as



the¡¡question¡¡to¡¡be¡¡answered¡¡cannot¡¡be¡¡a¡¡principle¡¡of¡¡a



demonstration¡£¡¡If¡¡however¡¡B¡¡is¡¡so¡¡related¡¡to¡¡C¡¡that¡¡they¡¡are



identical£»¡¡or¡¡if¡¡they¡¡are¡¡plainly¡¡convertible£»¡¡or¡¡the¡¡one¡¡belongs¡¡to



the¡¡other£»¡¡the¡¡original¡¡question¡¡is¡¡begged¡£¡¡For¡¡one¡¡might¡¡equally¡¡well



prove¡¡that¡¡A¡¡belongs¡¡to¡¡B¡¡through¡¡those¡¡terms¡¡if¡¡they¡¡are¡¡convertible¡£



But¡¡if¡¡they¡¡are¡¡not¡¡convertible£»¡¡it¡¡is¡¡the¡¡fact¡¡that¡¡they¡¡are¡¡not¡¡that



prevents¡¡such¡¡a¡¡demonstration£»¡¡not¡¡the¡¡method¡¡of¡¡demonstrating¡£¡¡But¡¡if



one¡¡were¡¡to¡¡make¡¡the¡¡conversion£»¡¡then¡¡he¡¡would¡¡be¡¡doing¡¡what¡¡we¡¡have



described¡¡and¡¡effecting¡¡a¡¡reciprocal¡¡proof¡¡with¡¡three¡¡propositions¡£



¡¡¡¡Similarly¡¡if¡¡he¡¡should¡¡assume¡¡that¡¡B¡¡belongs¡¡to¡¡C£»¡¡this¡¡being¡¡as



uncertain¡¡as¡¡the¡¡question¡¡whether¡¡A¡¡belongs¡¡to¡¡C£»¡¡the¡¡question¡¡is



not¡¡yet¡¡begged£»¡¡but¡¡no¡¡demonstration¡¡is¡¡made¡£¡¡If¡¡however¡¡A¡¡and¡¡B¡¡are



identical¡¡either¡¡because¡¡they¡¡are¡¡convertible¡¡or¡¡because¡¡A¡¡follows



B£»¡¡then¡¡the¡¡question¡¡is¡¡begged¡¡for¡¡the¡¡same¡¡reason¡¡as¡¡before¡£¡¡For¡¡we



have¡¡explained¡¡the¡¡meaning¡¡of¡¡begging¡¡the¡¡question£»¡¡viz¡£¡¡proving



that¡¡which¡¡is¡¡not¡¡self¡­evident¡¡by¡¡means¡¡of¡¡itself¡£



¡¡¡¡If¡¡then¡¡begging¡¡the¡¡question¡¡is¡¡proving¡¡what¡¡is¡¡not¡¡self¡­evident



by¡¡means¡¡of¡¡itself£»¡¡in¡¡other¡¡words¡¡failing¡¡to¡¡prove¡¡when¡¡the¡¡failure



is¡¡due¡¡to¡¡the¡¡thesis¡¡to¡¡be¡¡proved¡¡and¡¡the¡¡premiss¡¡through¡¡which¡¡it



is¡¡proved¡¡being¡¡equally¡¡uncertain£»¡¡either¡¡because¡¡predicates¡¡which¡¡are



identical¡¡belong¡¡to¡¡the¡¡same¡¡subject£»¡¡or¡¡because¡¡the¡¡same¡¡predicate



belongs¡¡to¡¡subjects¡¡which¡¡are¡¡identical£»¡¡the¡¡question¡¡may¡¡be¡¡begged¡¡in



the¡¡middle¡¡and¡¡third¡¡figures¡¡in¡¡both¡¡ways£»¡¡though£»¡¡if¡¡the¡¡syllogism¡¡is



affirmative£»¡¡only¡¡in¡¡the¡¡third¡¡and¡¡first¡¡figures¡£¡¡If¡¡the¡¡syllogism



is¡¡negative£»¡¡the¡¡question¡¡is¡¡begged¡¡when¡¡identical¡¡predicates¡¡are



denied¡¡of¡¡the¡¡same¡¡subject£»¡¡and¡¡both¡¡premisses¡¡do¡¡not¡¡beg¡¡the¡¡question



indifferently¡¡£¨in¡¡a¡¡similar¡¡way¡¡the¡¡question¡¡may¡¡be¡¡begged¡¡in¡¡the



middle¡¡figure£©£»¡¡because¡¡the¡¡terms¡¡in¡¡negative¡¡syllogisms¡¡are¡¡not



convertible¡£¡¡In¡¡scientific¡¡demonstrations¡¡the¡¡question¡¡is¡¡begged



when¡¡the¡¡terms¡¡are¡¡really¡¡related¡¡in¡¡the¡¡manner¡¡described£»¡¡in



dialectical¡¡arguments¡¡when¡¡they¡¡are¡¡according¡¡to¡¡common¡¡opinion¡¡so



related¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡17







¡¡¡¡The¡¡objection¡¡that¡¡'this¡¡is¡¡not¡¡the¡¡reason¡¡why¡¡the¡¡result¡¡is¡¡false'£»



which¡¡we¡¡frequently¡¡make¡¡in¡¡argument£»¡¡is¡¡made¡¡primarily¡¡in¡¡the¡¡case¡¡of



a¡¡reductio¡¡ad¡¡impossibile£»¡¡to¡¡rebut¡¡the¡¡proposition¡¡which¡¡was¡¡being



proved¡¡by¡¡the¡¡reduction¡£¡¡For¡¡unless¡¡a¡¡man¡¡has¡¡contradicted¡¡this



proposition¡¡he¡¡will¡¡not¡¡say£»¡¡'False¡¡cause'£»¡¡but¡¡urge¡¡that¡¡something



false¡¡has¡¡been¡¡assumed¡¡in¡¡the¡¡earlier¡¡parts¡¡of¡¡the¡¡argument£»¡¡nor



will¡¡he¡¡use¡¡the¡¡formula¡¡in¡¡the¡¡case¡¡of¡¡an¡¡ostensive¡¡proof£»¡¡for¡¡here



what¡¡one¡¡denies¡¡is¡¡not¡¡assumed¡¡as¡¡a¡¡premiss¡£¡¡Further¡¡when¡¡anything



is¡¡refuted¡¡ostensively¡¡by¡¡the¡¡terms¡¡ABC£»¡¡it¡¡cannot¡¡be¡¡objected¡¡that



the¡¡syllogism¡¡does¡¡not¡¡depend¡¡on¡¡the¡¡assumption¡¡laid¡¡down¡£¡¡For¡¡we



use¡¡the¡¡expression¡¡'false¡¡cause'£»¡¡when¡¡the¡¡syllogism¡¡is¡¡concluded¡¡in



spite¡¡of¡¡the¡¡refutation¡¡of¡¡this¡¡position£»¡¡but¡¡that¡¡is¡¡not¡¡possible



in¡¡ostensive¡¡proofs£º¡¡since¡¡if¡¡an¡¡assumption¡¡is¡¡refuted£»¡¡a¡¡syllogism



can¡¡no¡¡longer¡¡be¡¡drawn¡¡in¡¡reference¡¡to¡¡it¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡the



expression¡¡'false¡¡cause'¡¡can¡¡only¡¡be¡¡used¡¡in¡¡the¡¡case¡¡of¡¡a¡¡reductio¡¡ad



impossibile£»¡¡and¡¡when¡¡the¡¡original¡¡hypothesis¡¡is¡¡so¡¡related¡¡to¡¡the



impossible¡¡conclusion£»¡¡that¡¡the¡¡conclusion¡¡results¡¡indifferently



whether¡¡the¡¡hypothesis¡¡is¡¡made¡¡or¡¡not¡£¡¡The¡¡most¡¡obvious¡¡case¡¡of¡¡the



irrelevance¡¡of¡¡an¡¡assumption¡¡to¡¡a¡¡conclusion¡¡which¡¡is¡¡false¡¡is¡¡when



a¡¡syllogism¡¡drawn¡¡from¡¡middle¡¡terms¡¡to¡¡an¡¡impossible¡¡conclusion¡¡is



independent¡¡of¡¡the¡¡hypothesis£»¡¡as¡¡we¡¡have¡¡explained¡¡in¡¡the¡¡Topics¡£¡¡For



to¡¡put¡¡that¡¡which¡¡is¡¡not¡¡the¡¡cause¡¡as¡¡the¡¡cause£»¡¡is¡¡just¡¡this£º¡¡e¡£g¡£¡¡if



a¡¡man£»¡¡wishing¡¡to¡¡prove¡¡that¡¡the¡¡diagonal¡¡of¡¡the¡¡square¡¡is



incommensurate¡¡with¡¡the¡¡side£»¡¡should¡¡try¡¡to¡¡prove¡¡Zeno's¡¡theorem



that¡¡motion¡¡is¡¡impossible£»¡¡and¡¡so¡¡establish¡¡a¡¡reductio¡¡ad¡¡impossibile£º



for¡¡Zeno's¡¡false¡¡theorem¡¡has¡¡no¡¡connexion¡¡at¡¡all¡¡with¡¡the¡¡original



assumption¡£¡¡Another¡¡case¡¡is¡¡where¡¡the¡¡impossible¡¡conclusion¡¡is



connected¡¡with¡¡the¡¡hypothesis£»¡¡but¡¡does¡¡not¡¡result¡¡from¡¡it¡£¡¡This¡¡may



happen¡¡whether¡¡one¡¡traces¡¡the¡¡connexion¡¡upwards¡¡or¡¡downwards£»¡¡e¡£g¡£



if¡¡it¡¡is¡¡laid¡¡down¡¡that¡¡A¡¡belongs¡¡to¡¡B£»¡¡B¡¡to¡¡C£»¡¡and¡¡C¡¡to¡¡D£»¡¡and¡¡it



should¡¡be¡¡false¡¡that¡¡B¡¡belongs¡¡to¡¡D£º¡¡for¡¡if¡¡we¡¡eliminated¡¡A¡¡and



assumed¡¡all¡¡the¡¡same¡¡that¡¡B¡¡belongs¡¡to¡¡C¡¡and¡¡C¡¡to¡¡D£»¡¡the¡¡false



conclusion¡¡would¡¡not¡¡depend¡¡on¡¡the¡¡original¡¡hypothesis¡£¡¡Or¡¡again¡¡

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ