Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ27½Ú

prior analytics-µÚ27½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






takes¡¡one¡¡of¡¡these£»¡¡along¡¡with¡¡the¡¡contradictory¡¡of¡¡the¡¡original



conclusion¡£¡¡Also¡¡in¡¡the¡¡ostensive¡¡proof¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡the



conclusion¡¡should¡¡be¡¡known£»¡¡nor¡¡that¡¡one¡¡should¡¡suppose¡¡beforehand



that¡¡it¡¡is¡¡true¡¡or¡¡not£º¡¡in¡¡the¡¡other¡¡it¡¡is¡¡necessary¡¡to¡¡suppose



beforehand¡¡that¡¡it¡¡is¡¡not¡¡true¡£¡¡It¡¡makes¡¡no¡¡difference¡¡whether¡¡the



conclusion¡¡is¡¡affirmative¡¡or¡¡negative£»¡¡the¡¡method¡¡is¡¡the¡¡same¡¡in



both¡¡cases¡£¡¡Everything¡¡which¡¡is¡¡concluded¡¡ostensively¡¡can¡¡be¡¡proved



per¡¡impossibile£»¡¡and¡¡that¡¡which¡¡is¡¡proved¡¡per¡¡impossibile¡¡can¡¡be



proved¡¡ostensively£»¡¡through¡¡the¡¡same¡¡terms¡£¡¡Whenever¡¡the¡¡syllogism



is¡¡formed¡¡in¡¡the¡¡first¡¡figure£»¡¡the¡¡truth¡¡will¡¡be¡¡found¡¡in¡¡the¡¡middle



or¡¡the¡¡last¡¡figure£»¡¡if¡¡negative¡¡in¡¡the¡¡middle£»¡¡if¡¡affirmative¡¡in¡¡the



last¡£¡¡Whenever¡¡the¡¡syllogism¡¡is¡¡formed¡¡in¡¡the¡¡middle¡¡figure£»¡¡the¡¡truth



will¡¡be¡¡found¡¡in¡¡the¡¡first£»¡¡whatever¡¡the¡¡problem¡¡may¡¡be¡£¡¡Whenever



the¡¡syllogism¡¡is¡¡formed¡¡in¡¡the¡¡last¡¡figure£»¡¡the¡¡truth¡¡will¡¡be¡¡found¡¡in



the¡¡first¡¡and¡¡middle¡¡figures£»¡¡if¡¡affirmative¡¡in¡¡first£»¡¡if¡¡negative



in¡¡the¡¡middle¡£¡¡Suppose¡¡that¡¡A¡¡has¡¡been¡¡proved¡¡to¡¡belong¡¡to¡¡no¡¡B£»¡¡or



not¡¡to¡¡all¡¡B£»¡¡through¡¡the¡¡first¡¡figure¡£¡¡Then¡¡the¡¡hypothesis¡¡must



have¡¡been¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡the¡¡original¡¡premisses¡¡that



C¡¡belongs¡¡to¡¡all¡¡A¡¡and¡¡to¡¡no¡¡B¡£¡¡For¡¡thus¡¡the¡¡syllogism¡¡was¡¡made¡¡and



the¡¡impossible¡¡conclusion¡¡reached¡£¡¡But¡¡this¡¡is¡¡the¡¡middle¡¡figure£»¡¡if¡¡C



belongs¡¡to¡¡all¡¡A¡¡and¡¡to¡¡no¡¡B¡£¡¡And¡¡it¡¡is¡¡clear¡¡from¡¡these¡¡premisses



that¡¡A¡¡belongs¡¡to¡¡no¡¡B¡£¡¡Similarly¡¡if¡¡has¡¡been¡¡proved¡¡not¡¡to¡¡belong



to¡¡all¡¡B¡£¡¡For¡¡the¡¡hypothesis¡¡is¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡the



original¡¡premisses¡¡are¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡A¡¡but¡¡not¡¡to¡¡all¡¡B¡£



Similarly¡¡too£»¡¡if¡¡the¡¡premiss¡¡CA¡¡should¡¡be¡¡negative£º¡¡for¡¡thus¡¡also



we¡¡have¡¡the¡¡middle¡¡figure¡£¡¡Again¡¡suppose¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡A



belongs¡¡to¡¡some¡¡B¡£¡¡The¡¡hypothesis¡¡here¡¡is¡¡that¡¡is¡¡that¡¡A¡¡belongs¡¡to¡¡no



B£»¡¡and¡¡the¡¡original¡¡premisses¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡either¡¡to



all¡¡or¡¡to¡¡some¡¡C£º¡¡for¡¡in¡¡this¡¡way¡¡we¡¡shall¡¡get¡¡what¡¡is¡¡impossible¡£¡¡But



if¡¡A¡¡and¡¡B¡¡belong¡¡to¡¡all¡¡C£»¡¡we¡¡have¡¡the¡¡last¡¡figure¡£¡¡And¡¡it¡¡is¡¡clear



from¡¡these¡¡premisses¡¡that¡¡A¡¡must¡¡belong¡¡to¡¡some¡¡B¡£¡¡Similarly¡¡if¡¡B¡¡or¡¡A



should¡¡be¡¡assumed¡¡to¡¡belong¡¡to¡¡some¡¡C¡£



¡¡¡¡Again¡¡suppose¡¡it¡¡has¡¡been¡¡proved¡¡in¡¡the¡¡middle¡¡figure¡¡that¡¡A¡¡belongs



to¡¡all¡¡B¡£¡¡Then¡¡the¡¡hypothesis¡¡must¡¡have¡¡been¡¡that¡¡A¡¡belongs¡¡not¡¡to¡¡all



B£»¡¡and¡¡the¡¡original¡¡premisses¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡C¡¡to¡¡all¡¡B£º



for¡¡thus¡¡we¡¡shall¡¡get¡¡what¡¡is¡¡impossible¡£¡¡But¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡C£»



and¡¡C¡¡to¡¡all¡¡B£»¡¡we¡¡have¡¡the¡¡first¡¡figure¡£¡¡Similarly¡¡if¡¡it¡¡has¡¡been



proved¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£º¡¡for¡¡the¡¡hypothesis¡¡then¡¡must¡¡have



been¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡the¡¡original¡¡premisses¡¡that¡¡A¡¡belongs



to¡¡all¡¡C£»¡¡and¡¡C¡¡to¡¡some¡¡B¡£¡¡If¡¡the¡¡syllogism¡¡is¡¡negative£»¡¡the



hypothesis¡¡must¡¡have¡¡been¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡the¡¡original



premisses¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡C£»¡¡and¡¡C¡¡to¡¡all¡¡B£»¡¡so¡¡that¡¡the¡¡first



figure¡¡results¡£¡¡If¡¡the¡¡syllogism¡¡is¡¡not¡¡universal£»¡¡but¡¡proof¡¡has



been¡¡given¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B£»¡¡we¡¡may¡¡infer¡¡in¡¡the



same¡¡way¡£¡¡The¡¡hypothesis¡¡is¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡the¡¡original



premisses¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡C£»¡¡and¡¡C¡¡belongs¡¡to¡¡some¡¡B£º¡¡for¡¡thus¡¡we



get¡¡the¡¡first¡¡figure¡£



¡¡¡¡Again¡¡suppose¡¡it¡¡has¡¡been¡¡proved¡¡in¡¡the¡¡third¡¡figure¡¡that¡¡A



belongs¡¡to¡¡all¡¡B¡£¡¡Then¡¡the¡¡hypothesis¡¡must¡¡have¡¡been¡¡that¡¡A¡¡belongs



not¡¡to¡¡all¡¡B£»¡¡and¡¡the¡¡original¡¡premisses¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡B£»



and¡¡A¡¡belongs¡¡to¡¡all¡¡C£»¡¡for¡¡thus¡¡we¡¡shall¡¡get¡¡what¡¡is¡¡impossible¡£



And¡¡the¡¡original¡¡premisses¡¡form¡¡the¡¡first¡¡figure¡£¡¡Similarly¡¡if¡¡the



demonstration¡¡establishes¡¡a¡¡particular¡¡proposition£º¡¡the¡¡hypothesis



then¡¡must¡¡have¡¡been¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡the¡¡original¡¡premisses



that¡¡C¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡A¡¡to¡¡all¡¡C¡£¡¡If¡¡the¡¡syllogism¡¡is



negative£»¡¡the¡¡hypothesis¡¡must¡¡have¡¡been¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»



and¡¡the¡¡original¡¡premisses¡¡that¡¡C¡¡belongs¡¡to¡¡no¡¡A¡¡and¡¡to¡¡all¡¡B£»¡¡and



this¡¡is¡¡the¡¡middle¡¡figure¡£¡¡Similarly¡¡if¡¡the¡¡demonstration¡¡is¡¡not



universal¡£¡¡The¡¡hypothesis¡¡will¡¡then¡¡be¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡the



premisses¡¡that¡¡C¡¡belongs¡¡to¡¡no¡¡A¡¡and¡¡to¡¡some¡¡B£º¡¡and¡¡this¡¡is¡¡the¡¡middle



figure¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡it¡¡is¡¡possible¡¡through¡¡the¡¡same¡¡terms¡¡to¡¡prove



each¡¡of¡¡the¡¡problems¡¡ostensively¡¡as¡¡well¡£¡¡Similarly¡¡it¡¡will¡¡be



possible¡¡if¡¡the¡¡syllogisms¡¡are¡¡ostensive¡¡to¡¡reduce¡¡them¡¡ad¡¡impossibile



in¡¡the¡¡terms¡¡which¡¡have¡¡been¡¡taken£»¡¡whenever¡¡the¡¡contradictory¡¡of



the¡¡conclusion¡¡of¡¡the¡¡ostensive¡¡syllogism¡¡is¡¡taken¡¡as¡¡a¡¡premiss¡£¡¡For



the¡¡syllogisms¡¡become¡¡identical¡¡with¡¡those¡¡which¡¡are¡¡obtained¡¡by¡¡means



of¡¡conversion£»¡¡so¡¡that¡¡we¡¡obtain¡¡immediately¡¡the¡¡figures¡¡through¡¡which



each¡¡problem¡¡will¡¡be¡¡solved¡£¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡every¡¡thesis¡¡can¡¡be



proved¡¡in¡¡both¡¡ways£»¡¡i¡£e¡£¡¡per¡¡impossibile¡¡and¡¡ostensively£»¡¡and¡¡it¡¡is



not¡¡possible¡¡to¡¡separate¡¡one¡¡method¡¡from¡¡the¡¡other¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡15







¡¡¡¡In¡¡what¡¡figure¡¡it¡¡is¡¡possible¡¡to¡¡draw¡¡a¡¡conclusion¡¡from¡¡premisses



which¡¡are¡¡opposed£»¡¡and¡¡in¡¡what¡¡figure¡¡this¡¡is¡¡not¡¡possible£»¡¡will¡¡be



made¡¡clear¡¡in¡¡this¡¡way¡£¡¡Verbally¡¡four¡¡kinds¡¡of¡¡opposition¡¡are



possible£»¡¡viz¡£¡¡universal¡¡affirmative¡¡to¡¡universal¡¡negative£»



universal¡¡affirmative¡¡to¡¡particular¡¡negative£»¡¡particular¡¡affirmative



to¡¡universal¡¡negative£»¡¡and¡¡particular¡¡affirmative¡¡to¡¡particular



negative£º¡¡but¡¡really¡¡there¡¡are¡¡only¡¡three£º¡¡for¡¡the¡¡particular



affirmative¡¡is¡¡only¡¡verbally¡¡opposed¡¡to¡¡the¡¡particular¡¡negative¡£¡¡Of



the¡¡genuine¡¡opposites¡¡I¡¡call¡¡those¡¡which¡¡are¡¡universal¡¡contraries£»¡¡the



universal¡¡affirmative¡¡and¡¡the¡¡universal¡¡negative£»¡¡e¡£g¡£¡¡'every



science¡¡is¡¡good'£»¡¡'no¡¡science¡¡is¡¡good'£»¡¡the¡¡others¡¡I¡¡call



contradictories¡£



¡¡¡¡In¡¡the¡¡first¡¡figure¡¡no¡¡syllogism¡¡whether¡¡affirmative¡¡or¡¡negative¡¡can



be¡¡made¡¡out¡¡of¡¡opposed¡¡premisses£º¡¡no¡¡affirmative¡¡syllogism¡¡is¡¡possible



because¡¡both¡¡premisses¡¡must¡¡be¡¡affirmative£»¡¡but¡¡opposites¡¡are£»¡¡the¡¡one



affirmative£»¡¡the¡¡other¡¡negative£º¡¡no¡¡negative¡¡syllogism¡¡is¡¡possible



because¡¡opposites¡¡affirm¡¡and¡¡deny¡¡the¡¡same¡¡predicate¡¡of¡¡the¡¡same



subject£»¡¡and¡¡the¡¡middle¡¡term¡¡in¡¡the¡¡first¡¡figure¡¡is¡¡not¡¡predicated



of¡¡both¡¡extremes£»¡¡but¡¡one¡¡thing¡¡is¡¡denied¡¡of¡¡it£»¡¡and¡¡it¡¡is¡¡affirmed¡¡of



something¡¡else£º¡¡but¡¡such¡¡premisses¡¡are¡¡not¡¡opposed¡£



¡¡¡¡In¡¡the¡¡middle¡¡figure¡¡a¡¡syllogism¡¡can¡¡be¡¡made¡¡both



oLcontradictories¡¡and¡¡of¡¡contraries¡£¡¡Let¡¡A¡¡stand¡¡for¡¡good£»¡¡let¡¡B¡¡and¡¡C



stand¡¡for¡¡science¡£¡¡If¡¡then¡¡one¡¡assumes¡¡that¡¡every¡¡science¡¡is¡¡good£»¡¡and



no¡¡science¡¡is¡¡good£»¡¡A¡¡belongs¡¡to¡¡all¡¡B¡¡and¡¡to¡¡no¡¡C£»¡¡so¡¡that¡¡B



belongs¡¡to¡¡no¡¡C£º¡¡no¡¡science¡¡then¡¡is¡¡a¡¡science¡£¡¡Similarly¡¡if¡¡after



taking¡¡'every¡¡science¡¡is¡¡good'¡¡one¡¡took¡¡'the¡¡science¡¡of¡¡medicine¡¡is



not¡¡good'£»¡¡for¡¡A¡¡belongs¡¡to¡¡all¡¡B¡¡but¡¡to¡¡no¡¡C£»¡¡so¡¡that¡¡a¡¡particular



science¡¡will¡¡not¡¡be¡¡a¡¡science¡£¡¡Again£»¡¡a¡¡particular¡¡science¡¡will¡¡not¡¡be



a¡¡science¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡C¡¡but¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡is¡¡science£»¡¡C



medicine£»¡¡and¡¡A¡¡supposition£º¡¡for¡¡after¡¡taking¡¡'no¡¡science¡¡is



supposition'£»¡¡one¡¡has¡¡assumed¡¡that¡¡a¡¡particular¡¡science¡¡is



supposition¡£¡¡This¡¡syllogism¡¡differs¡¡from¡¡the¡¡preceding¡¡because¡¡the



relations¡¡between¡¡the¡¡terms¡¡are¡¡reversed£º¡¡before£»¡¡the¡¡affirmative



statement¡¡concerned¡¡B£»¡¡now¡¡it¡¡concerns¡¡C¡£¡¡Similarly¡¡if¡¡one¡¡premiss



is¡¡not¡¡universal£º¡¡for¡¡the¡¡middle¡¡term¡¡is¡¡always¡¡that¡¡which¡¡is¡¡stated



negatively¡¡of¡¡one¡¡extreme£»¡¡and¡¡affirmatively¡¡of¡¡the¡¡other¡£



Consequently¡¡it¡¡is¡¡possible¡¡that¡¡contradictories¡¡may¡¡lead¡¡to¡¡a



conclusion£»¡¡though¡¡not¡¡always¡¡or¡¡in¡¡every¡¡mood£»¡¡but¡¡only¡¡if¡¡the



terms¡¡subordinate¡¡to¡¡the¡¡middle¡¡are¡¡such¡¡that¡¡they¡¡are¡¡either



identical¡¡or¡¡related¡¡as¡¡whole¡¡to¡¡part¡£¡¡Otherwise¡¡it¡¡is¡¡impossible£º¡¡for



the¡¡premisses¡¡cannot¡¡anyhow¡¡be¡¡either¡¡contraries¡¡or¡¡contradictories¡£



¡¡¡¡In¡¡the¡¡third¡¡figure¡¡an¡¡affirmative¡¡syllogism¡¡can¡¡never¡¡be¡¡made¡¡out



of¡¡opposite¡¡premisses£»¡¡for¡¡the¡¡reason¡¡given¡¡in¡¡reference¡¡to¡¡the



first¡¡figure£»¡¡but¡¡a¡¡negative¡¡syllogism¡¡is¡¡possible¡¡whether¡¡the¡¡terms



are¡¡universal¡¡or¡¡not¡£¡¡Let¡¡B¡¡and¡¡C¡¡stand¡¡for¡¡science£»¡¡A¡¡for¡¡medicine¡£



If¡¡then¡¡one¡¡should¡¡assume¡¡that¡¡all¡¡medicine¡¡is¡¡science¡¡and¡¡that¡¡no



medicine¡¡is¡¡science£»¡¡he¡¡has¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A¡¡and¡¡C¡¡to



no¡¡A£»¡¡so¡¡that¡¡a¡¡particular¡¡science¡¡will¡¡not¡¡be¡¡a¡¡science¡£¡¡Similarly¡¡if



the¡¡premiss¡¡BA¡¡is¡¡not¡¡assumed¡¡universally¡£¡¡For¡¡if¡¡some¡¡medicine¡¡is



science¡¡and¡¡again¡¡no¡¡medicine¡¡is¡¡science£»¡¡it¡¡results¡¡that¡¡some¡¡science



is¡¡not¡¡science£»¡¡The¡¡premisses¡¡are¡¡contrary¡¡if¡¡the¡¡terms¡¡are¡¡taken



universally£»¡¡if¡¡one¡¡is¡¡particular£»¡¡they¡¡are¡¡contradictory¡£



¡¡¡¡We¡¡must¡¡recognize¡¡that¡¡it¡¡is¡¡possible¡¡to¡¡take¡¡opposites¡¡in¡¡the¡¡way



we¡¡said£»¡¡viz¡£¡¡'all¡¡science¡¡is¡¡good'¡¡and¡¡'no¡¡science¡¡is¡¡good'¡¡or



'some¡¡science¡¡is¡¡not¡¡good'¡£¡¡This¡¡does¡¡not¡¡usually¡¡escape¡¡notice¡£¡¡But



it¡¡is¡¡possible¡¡to¡¡establish¡¡one¡¡part¡¡of¡¡a¡¡contradiction¡¡through



other¡¡premisses£»¡¡or¡¡to¡¡assume¡¡it¡¡in¡¡the¡¡way¡¡suggested¡¡in¡¡t

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ