Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ26½Ú

prior analytics-µÚ26½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






belong¡¡to¡¡all¡¡B£»¡¡no¡¡syllogism¡¡results¡¡whichever¡¡term¡¡the¡¡assumed



premiss¡¡concerns£»¡¡but¡¡if¡¡it¡¡is¡¡supposed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡when



the¡¡premiss¡¡BD¡¡is¡¡assumed¡¡as¡¡well¡¡we¡¡shall¡¡prove¡¡syllogistically



what¡¡is¡¡false£»¡¡but¡¡not¡¡the¡¡problem¡¡proposed¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡no¡¡B£»



and¡¡B¡¡belongs¡¡to¡¡all¡¡D£»¡¡A¡¡belongs¡¡to¡¡no¡¡D¡£¡¡Let¡¡this¡¡be¡¡impossible£º



it¡¡is¡¡false¡¡then¡¡A¡¡belongs¡¡to¡¡no¡¡B¡£¡¡But¡¡the¡¡universal¡¡affirmative¡¡is



not¡¡necessarily¡¡true¡¡if¡¡the¡¡universal¡¡negative¡¡is¡¡false¡£¡¡But¡¡if¡¡the



premiss¡¡CA¡¡is¡¡assumed¡¡as¡¡well£»¡¡no¡¡syllogism¡¡results£»¡¡nor¡¡does¡¡it¡¡do¡¡so



when¡¡it¡¡is¡¡supposed¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡all¡¡B¡£¡¡Consequently¡¡it



is¡¡clear¡¡that¡¡the¡¡universal¡¡affirmative¡¡cannot¡¡be¡¡proved¡¡in¡¡the



first¡¡figure¡¡per¡¡impossibile¡£



¡¡¡¡But¡¡the¡¡particular¡¡affirmative¡¡and¡¡the¡¡universal¡¡and¡¡particular



negatives¡¡can¡¡all¡¡be¡¡proved¡£¡¡Suppose¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡let



it¡¡have¡¡been¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡or¡¡to¡¡some¡¡C¡£¡¡Then¡¡it¡¡is



necessary¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡no¡¡C¡¡or¡¡not¡¡to¡¡all¡¡C¡£¡¡But¡¡this¡¡is



impossible¡¡£¨for¡¡let¡¡it¡¡be¡¡true¡¡and¡¡clear¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡C£©£º



consequently¡¡if¡¡this¡¡is¡¡false£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should¡¡belong¡¡to



some¡¡B¡£¡¡But¡¡if¡¡the¡¡other¡¡premiss¡¡assumed¡¡relates¡¡to¡¡A£»¡¡no¡¡syllogism



will¡¡be¡¡possible¡£¡¡Nor¡¡can¡¡a¡¡conclusion¡¡be¡¡drawn¡¡when¡¡the¡¡contrary¡¡of



the¡¡conclusion¡¡is¡¡supposed£»¡¡e¡£g¡£¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B¡£



Clearly¡¡then¡¡we¡¡must¡¡suppose¡¡the¡¡contradictory¡£



¡¡¡¡Again¡¡suppose¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡let¡¡it¡¡have¡¡been¡¡assumed



that¡¡C¡¡belongs¡¡to¡¡all¡¡A¡£¡¡It¡¡is¡¡necessary¡¡then¡¡that¡¡C¡¡should¡¡belong



to¡¡some¡¡B¡£¡¡But¡¡let¡¡this¡¡be¡¡impossible£»¡¡so¡¡that¡¡the¡¡supposition¡¡is



false£º¡¡in¡¡that¡¡case¡¡it¡¡is¡¡true¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B¡£¡¡We¡¡may



proceed¡¡in¡¡the¡¡same¡¡way¡¡if¡¡the¡¡proposition¡¡CA¡¡has¡¡been¡¡taken¡¡as



negative¡£¡¡But¡¡if¡¡the¡¡premiss¡¡assumed¡¡concerns¡¡B£»¡¡no¡¡syllogism¡¡will



be¡¡possible¡£¡¡If¡¡the¡¡contrary¡¡is¡¡supposed£»¡¡we¡¡shall¡¡have¡¡a¡¡syllogism



and¡¡an¡¡impossible¡¡conclusion£»¡¡but¡¡the¡¡problem¡¡in¡¡hand¡¡is¡¡not¡¡proved¡£



Suppose¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡let¡¡it¡¡have¡¡been¡¡assumed¡¡that¡¡C



belongs¡¡to¡¡all¡¡A¡£¡¡It¡¡is¡¡necessary¡¡then¡¡that¡¡C¡¡should¡¡belong¡¡to¡¡all



B¡£¡¡But¡¡this¡¡is¡¡impossible£»¡¡so¡¡that¡¡it¡¡is¡¡false¡¡that¡¡A¡¡belongs¡¡to¡¡all



B¡£¡¡But¡¡we¡¡have¡¡not¡¡yet¡¡shown¡¡it¡¡to¡¡be¡¡necessary¡¡that¡¡A¡¡belongs¡¡to¡¡no



B£»¡¡if¡¡it¡¡does¡¡not¡¡belong¡¡to¡¡all¡¡B¡£¡¡Similarly¡¡if¡¡the¡¡other¡¡premiss



taken¡¡concerns¡¡B£»¡¡we¡¡shall¡¡have¡¡a¡¡syllogism¡¡and¡¡a¡¡conclusion¡¡which



is¡¡impossible£»¡¡but¡¡the¡¡hypothesis¡¡is¡¡not¡¡refuted¡£¡¡Therefore¡¡it¡¡is



the¡¡contradictory¡¡that¡¡we¡¡must¡¡suppose¡£



¡¡¡¡To¡¡prove¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡all¡¡B£»¡¡we¡¡must¡¡suppose¡¡that¡¡it



belongs¡¡to¡¡all¡¡B£º¡¡for¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡C¡¡to¡¡all¡¡A£»¡¡then¡¡C



belongs¡¡to¡¡all¡¡B£»¡¡so¡¡that¡¡if¡¡this¡¡is¡¡impossible£»¡¡the¡¡hypothesis¡¡is



false¡£¡¡Similarly¡¡if¡¡the¡¡other¡¡premiss¡¡assumed¡¡concerns¡¡B¡£¡¡The¡¡same



results¡¡if¡¡the¡¡original¡¡proposition¡¡CA¡¡was¡¡negative£º¡¡for¡¡thus¡¡also



we¡¡get¡¡a¡¡syllogism¡£¡¡But¡¡if¡¡the¡¡negative¡¡proposition¡¡concerns¡¡B£»



nothing¡¡is¡¡proved¡£¡¡If¡¡the¡¡hypothesis¡¡is¡¡that¡¡A¡¡belongs¡¡not¡¡to¡¡all



but¡¡to¡¡some¡¡B£»¡¡it¡¡is¡¡not¡¡proved¡¡that¡¡A¡¡belongs¡¡not¡¡to¡¡all¡¡B£»¡¡but



that¡¡it¡¡belongs¡¡to¡¡no¡¡B¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡C¡¡to¡¡all¡¡A£»



then¡¡C¡¡will¡¡belong¡¡to¡¡some¡¡B¡£¡¡If¡¡then¡¡this¡¡is¡¡impossible£»¡¡it¡¡is



false¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡consequently¡¡it¡¡is¡¡true¡¡that¡¡A¡¡belongs



to¡¡no¡¡B¡£¡¡But¡¡if¡¡this¡¡is¡¡proved£»¡¡the¡¡truth¡¡is¡¡refuted¡¡as¡¡well£»¡¡for



the¡¡original¡¡conclusion¡¡was¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡does¡¡not



belong¡¡to¡¡some¡¡B¡£¡¡Further¡¡the¡¡impossible¡¡does¡¡not¡¡result¡¡from¡¡the



hypothesis£º¡¡for¡¡then¡¡the¡¡hypothesis¡¡would¡¡be¡¡false£»¡¡since¡¡it¡¡is



impossible¡¡to¡¡draw¡¡a¡¡false¡¡conclusion¡¡from¡¡true¡¡premisses£º¡¡but¡¡in¡¡fact



it¡¡is¡¡true£º¡¡for¡¡A¡¡belongs¡¡to¡¡some¡¡B¡£¡¡Consequently¡¡we¡¡must¡¡not



suppose¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡but¡¡that¡¡it¡¡belongs¡¡to¡¡all¡¡B¡£



Similarly¡¡if¡¡we¡¡should¡¡be¡¡proving¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B£º



for¡¡if¡¡'not¡¡to¡¡belong¡¡to¡¡some'¡¡and¡¡'to¡¡belong¡¡not¡¡to¡¡all'¡¡have¡¡the



same¡¡meaning£»¡¡the¡¡demonstration¡¡of¡¡both¡¡will¡¡be¡¡identical¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡not¡¡the¡¡contrary¡¡but¡¡the¡¡contradictory¡¡ought



to¡¡be¡¡supposed¡¡in¡¡all¡¡the¡¡syllogisms¡£¡¡For¡¡thus¡¡we¡¡shall¡¡have¡¡necessity



of¡¡inference£»¡¡and¡¡the¡¡claim¡¡we¡¡make¡¡is¡¡one¡¡that¡¡will¡¡be¡¡generally



accepted¡£¡¡For¡¡if¡¡of¡¡everything¡¡one¡¡or¡¡other¡¡of¡¡two¡¡contradictory



statements¡¡holds¡¡good£»¡¡then¡¡if¡¡it¡¡is¡¡proved¡¡that¡¡the¡¡negation¡¡does¡¡not



hold£»¡¡the¡¡affirmation¡¡must¡¡be¡¡true¡£¡¡Again¡¡if¡¡it¡¡is¡¡not¡¡admitted¡¡that



the¡¡affirmation¡¡is¡¡true£»¡¡the¡¡claim¡¡that¡¡the¡¡negation¡¡is¡¡true¡¡will¡¡be



generally¡¡accepted¡£¡¡But¡¡in¡¡neither¡¡way¡¡does¡¡it¡¡suit¡¡to¡¡maintain¡¡the



contrary£º¡¡for¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡if¡¡the¡¡universal¡¡negative¡¡is



false£»¡¡the¡¡universal¡¡affirmative¡¡should¡¡be¡¡true£»¡¡nor¡¡is¡¡it¡¡generally



accepted¡¡that¡¡if¡¡the¡¡one¡¡is¡¡false¡¡the¡¡other¡¡is¡¡true¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡12







¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡in¡¡the¡¡first¡¡figure¡¡all¡¡problems¡¡except¡¡the



universal¡¡affirmative¡¡are¡¡proved¡¡per¡¡impossibile¡£¡¡But¡¡in¡¡the¡¡middle



and¡¡the¡¡last¡¡figures¡¡this¡¡also¡¡is¡¡proved¡£¡¡Suppose¡¡that¡¡A¡¡does¡¡not



belong¡¡to¡¡all¡¡B£»¡¡and¡¡let¡¡it¡¡have¡¡been¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡C¡£



If¡¡then¡¡A¡¡belongs¡¡not¡¡to¡¡all¡¡B£»¡¡but¡¡to¡¡all¡¡C£»¡¡C¡¡will¡¡not¡¡belong¡¡to¡¡all



B¡£¡¡But¡¡this¡¡is¡¡impossible¡¡£¨for¡¡suppose¡¡it¡¡to¡¡be¡¡clear¡¡that¡¡C¡¡belongs



to¡¡all¡¡B£©£º¡¡consequently¡¡the¡¡hypothesis¡¡is¡¡false¡£¡¡It¡¡is¡¡true¡¡then



that¡¡A¡¡belongs¡¡to¡¡all¡¡B¡£¡¡But¡¡if¡¡the¡¡contrary¡¡is¡¡supposed£»¡¡we¡¡shall



have¡¡a¡¡syllogism¡¡and¡¡a¡¡result¡¡which¡¡is¡¡impossible£º¡¡but¡¡the¡¡problem



in¡¡hand¡¡is¡¡not¡¡proved¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡to¡¡all¡¡C£»¡¡C



will¡¡belong¡¡to¡¡no¡¡B¡£¡¡This¡¡is¡¡impossible£»¡¡so¡¡that¡¡it¡¡is¡¡false¡¡that¡¡A



belongs¡¡to¡¡no¡¡B¡£¡¡But¡¡though¡¡this¡¡is¡¡false£»¡¡it¡¡does¡¡not¡¡follow¡¡that



it¡¡is¡¡true¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B¡£



¡¡¡¡When¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡suppose¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡let



A¡¡belong¡¡to¡¡all¡¡C¡£¡¡It¡¡is¡¡necessary¡¡then¡¡that¡¡C¡¡should¡¡belong¡¡to¡¡no



B¡£¡¡Consequently£»¡¡if¡¡this¡¡is¡¡impossible£»¡¡A¡¡must¡¡belong¡¡to¡¡some¡¡B¡£¡¡But



if¡¡it¡¡is¡¡supposed¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B£»¡¡we¡¡shall¡¡have



the¡¡same¡¡results¡¡as¡¡in¡¡the¡¡first¡¡figure¡£



¡¡¡¡Again¡¡suppose¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡let¡¡A¡¡belong¡¡to¡¡no¡¡C¡£¡¡It



is¡¡necessary¡¡then¡¡that¡¡C¡¡should¡¡not¡¡belong¡¡to¡¡some¡¡B¡£¡¡But¡¡originally



it¡¡belonged¡¡to¡¡all¡¡B£»¡¡consequently¡¡the¡¡hypothesis¡¡is¡¡false£º¡¡A¡¡then



will¡¡belong¡¡to¡¡no¡¡B¡£



¡¡¡¡When¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡an¡¡B£»¡¡suppose¡¡it¡¡does¡¡belong¡¡to¡¡all¡¡B£»¡¡and



to¡¡no¡¡C¡£¡¡It¡¡is¡¡necessary¡¡then¡¡that¡¡C¡¡should¡¡belong¡¡to¡¡no¡¡B¡£¡¡But¡¡this



is¡¡impossible£º¡¡so¡¡that¡¡it¡¡is¡¡true¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡all¡¡B¡£



It¡¡is¡¡clear¡¡then¡¡that¡¡all¡¡the¡¡syllogisms¡¡can¡¡be¡¡formed¡¡in¡¡the¡¡middle



figure¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡13







¡¡¡¡Similarly¡¡they¡¡can¡¡all¡¡be¡¡formed¡¡in¡¡the¡¡last¡¡figure¡£¡¡Suppose¡¡that



A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B£»¡¡but¡¡C¡¡belongs¡¡to¡¡all¡¡B£º¡¡then¡¡A¡¡does¡¡not



belong¡¡to¡¡some¡¡C¡£¡¡If¡¡then¡¡this¡¡is¡¡impossible£»¡¡it¡¡is¡¡false¡¡that¡¡A



does¡¡not¡¡belong¡¡to¡¡some¡¡B£»¡¡so¡¡that¡¡it¡¡is¡¡true¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B¡£



But¡¡if¡¡it¡¡is¡¡supposed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡we¡¡shall¡¡have¡¡a



syllogism¡¡and¡¡a¡¡conclusion¡¡which¡¡is¡¡impossible£º¡¡but¡¡the¡¡problem¡¡in



hand¡¡is¡¡not¡¡proved£º¡¡for¡¡if¡¡the¡¡contrary¡¡is¡¡supposed£»¡¡we¡¡shall¡¡have¡¡the



same¡¡results¡¡as¡¡before¡£



¡¡¡¡But¡¡to¡¡prove¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡this¡¡hypothesis¡¡must¡¡be¡¡made¡£



If¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡C¡¡to¡¡some¡¡B£»¡¡A¡¡will¡¡belong¡¡not¡¡to¡¡all¡¡C¡£



If¡¡then¡¡this¡¡is¡¡false£»¡¡it¡¡is¡¡true¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B¡£



¡¡¡¡When¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡suppose¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡let¡¡it¡¡have



been¡¡assumed¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡B¡£¡¡Then¡¡it¡¡is¡¡necessary¡¡that¡¡A



should¡¡belong¡¡to¡¡some¡¡C¡£¡¡But¡¡ex¡¡hypothesi¡¡it¡¡belongs¡¡to¡¡no¡¡C£»¡¡so



that¡¡it¡¡is¡¡false¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B¡£¡¡But¡¡if¡¡it¡¡is¡¡supposed



that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡the¡¡problem¡¡is¡¡not¡¡proved¡£



¡¡¡¡But¡¡this¡¡hypothesis¡¡must¡¡be¡¡made¡¡if¡¡we¡¡are¡¡prove¡¡that¡¡A¡¡belongs



not¡¡to¡¡all¡¡B¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡B¡¡and¡¡C¡¡to¡¡some¡¡B£»¡¡then¡¡A



belongs¡¡to¡¡some¡¡C¡£¡¡But¡¡this¡¡we¡¡assumed¡¡not¡¡to¡¡be¡¡so£»¡¡so¡¡it¡¡is¡¡false



that¡¡A¡¡belongs¡¡to¡¡all¡¡B¡£¡¡But¡¡in¡¡that¡¡case¡¡it¡¡is¡¡true¡¡that¡¡A¡¡belongs



not¡¡to¡¡all¡¡B¡£¡¡If¡¡however¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡we



shall¡¡have¡¡the¡¡same¡¡result¡¡as¡¡before¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡in¡¡all¡¡the¡¡syllogisms¡¡which¡¡proceed¡¡per



impossibile¡¡the¡¡contradictory¡¡must¡¡be¡¡assumed¡£¡¡And¡¡it¡¡is¡¡plain¡¡that¡¡in



the¡¡middle¡¡figure¡¡an¡¡affirmative¡¡conclusion£»¡¡and¡¡in¡¡the¡¡last¡¡figure



a¡¡universal¡¡conclusion£»¡¡are¡¡proved¡¡in¡¡a¡¡way¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡14







¡¡¡¡Demonstration¡¡per¡¡impossibile¡¡differs¡¡from¡¡ostensive¡¡proof¡¡in¡¡that



it¡¡posits¡¡what¡¡it¡¡wishes¡¡to¡¡refute¡¡by¡¡reduction¡¡to¡¡a¡¡statement



admitted¡¡to¡¡be¡¡false£»¡¡whereas¡¡ostensive¡¡proof¡¡starts¡¡from¡¡admitted



positions¡£¡¡Both£»¡¡indeed£»¡¡take¡¡two¡¡premisses¡¡that¡¡are¡¡admitted£»¡¡but¡¡the



latter¡¡takes¡¡the¡¡premisses¡¡from¡¡which¡¡the¡¡syllogism¡¡starts£»¡¡the¡¡former



takes¡¡one¡¡of¡¡these£»¡¡along¡¡with¡¡the¡¡contradictory¡¡of¡¡the¡¡o

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ