prior analytics-µÚ25½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
converted¡¡into¡¡its¡¡contrary¡£¡¡For¡¡if¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡but
to¡¡all¡¡B£»¡¡then¡¡B¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C¡£¡¡But¡¡the¡¡original¡¡premiss
is¡¡not¡¡yet¡¡refuted£º¡¡for¡¡it¡¡is¡¡possible¡¡that¡¡B¡¡should¡¡belong¡¡to¡¡some¡¡C£»
and¡¡should¡¡not¡¡belong¡¡to¡¡some¡¡C¡£¡¡The¡¡universal¡¡premiss¡¡AB¡¡cannot¡¡be
affected¡¡by¡¡a¡¡syllogism¡¡at¡¡all£º¡¡for¡¡if¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡of
the¡¡Cs£»¡¡but¡¡B¡¡belongs¡¡to¡¡some¡¡of¡¡the¡¡Cs£»¡¡neither¡¡of¡¡the¡¡premisses¡¡is
universal¡£¡¡Similarly¡¡if¡¡the¡¡syllogism¡¡is¡¡negative£º¡¡for¡¡if¡¡it¡¡should¡¡be
assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡C£»¡¡both¡¡premisses¡¡are¡¡refuted£º¡¡but¡¡if
the¡¡assumption¡¡is¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡C£»¡¡neither¡¡premiss¡¡is
refuted¡£¡¡The¡¡proof¡¡is¡¡the¡¡same¡¡as¡¡before¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡9
¡¡¡¡In¡¡the¡¡second¡¡figure¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡refute¡¡the¡¡premiss
which¡¡concerns¡¡the¡¡major¡¡extreme¡¡by¡¡establishing¡¡something¡¡contrary¡¡to
it£»¡¡whichever¡¡form¡¡the¡¡conversion¡¡of¡¡the¡¡conclusion¡¡may¡¡take¡£¡¡For
the¡¡conclusion¡¡of¡¡the¡¡refutation¡¡will¡¡always¡¡be¡¡in¡¡the¡¡third¡¡figure£»
and¡¡in¡¡this¡¡figure¡¡£¨as¡¡we¡¡saw£©¡¡there¡¡is¡¡no¡¡universal¡¡syllogism¡£¡¡The
other¡¡premiss¡¡can¡¡be¡¡refuted¡¡in¡¡a¡¡manner¡¡similar¡¡to¡¡the¡¡conversion£º
I¡¡mean£»¡¡if¡¡the¡¡conclusion¡¡of¡¡the¡¡first¡¡syllogism¡¡is¡¡converted¡¡into¡¡its
contrary£»¡¡the¡¡conclusion¡¡of¡¡the¡¡refutation¡¡will¡¡be¡¡the¡¡contrary¡¡of¡¡the
minor¡¡premiss¡¡of¡¡the¡¡first£»¡¡if¡¡into¡¡its¡¡contradictory£»¡¡the
contradictory¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B¡¡and¡¡to¡¡no¡¡C£º¡¡conclusion¡¡BC¡£¡¡If
then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡the¡¡proposition¡¡AB
stands£»¡¡A¡¡will¡¡belong¡¡to¡¡all¡¡C£»¡¡since¡¡the¡¡first¡¡figure¡¡is¡¡produced¡£¡¡If
B¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡to¡¡no¡¡C£»¡¡then¡¡A¡¡belongs¡¡not¡¡to¡¡all¡¡B£º¡¡the
figure¡¡is¡¡the¡¡last¡£¡¡But¡¡if¡¡the¡¡conclusion¡¡BC¡¡is¡¡converted¡¡into¡¡its
contradictory£»¡¡the¡¡premiss¡¡AB¡¡will¡¡be¡¡refuted¡¡as¡¡before£»¡¡the
premiss£»¡¡AC¡¡by¡¡its¡¡contradictory¡£¡¡For¡¡if¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡and¡¡A¡¡to
no¡¡C£»¡¡then¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡B¡£¡¡Again¡¡if¡¡B¡¡belongs¡¡to¡¡some
C£»¡¡and¡¡A¡¡to¡¡all¡¡B£»¡¡A¡¡will¡¡belong¡¡to¡¡some¡¡C£»¡¡so¡¡that¡¡the¡¡syllogism
results¡¡in¡¡the¡¡contradictory¡¡of¡¡the¡¡minor¡¡premiss¡£¡¡A¡¡similar¡¡proof¡¡can
be¡¡given¡¡if¡¡the¡¡premisses¡¡are¡¡transposed¡¡in¡¡respect¡¡of¡¡their¡¡quality¡£
¡¡¡¡If¡¡the¡¡syllogism¡¡is¡¡particular£»¡¡when¡¡the¡¡conclusion¡¡is¡¡converted
into¡¡its¡¡contrary¡¡neither¡¡premiss¡¡can¡¡be¡¡refuted£»¡¡as¡¡also¡¡happened
in¡¡the¡¡first¡¡figure£»'¡¡if¡¡the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its
contradictory£»¡¡both¡¡premisses¡¡can¡¡be¡¡refuted¡£¡¡Suppose¡¡that¡¡A¡¡belongs
to¡¡no¡¡B£»¡¡and¡¡to¡¡some¡¡C£º¡¡the¡¡conclusion¡¡is¡¡BC¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed
that¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡and¡¡the¡¡statement¡¡AB¡¡stands£»¡¡the
conclusion¡¡will¡¡be¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡C¡£¡¡But¡¡the
original¡¡statement¡¡has¡¡not¡¡been¡¡refuted£º¡¡for¡¡it¡¡is¡¡possible¡¡that¡¡A
should¡¡belong¡¡to¡¡some¡¡C¡¡and¡¡also¡¡not¡¡to¡¡some¡¡C¡£¡¡Again¡¡if¡¡B¡¡belongs
to¡¡some¡¡C¡¡and¡¡A¡¡to¡¡some¡¡C£»¡¡no¡¡syllogism¡¡will¡¡be¡¡possible£º¡¡for
neither¡¡of¡¡the¡¡premisses¡¡taken¡¡is¡¡universal¡£¡¡Consequently¡¡the
proposition¡¡AB¡¡is¡¡not¡¡refuted¡£¡¡But¡¡if¡¡the¡¡conclusion¡¡is¡¡converted¡¡into
its¡¡contradictory£»¡¡both¡¡premisses¡¡can¡¡be¡¡refuted¡£¡¡For¡¡if¡¡B¡¡belongs
to¡¡all¡¡C£»¡¡and¡¡A¡¡to¡¡no¡¡B£»¡¡A¡¡will¡¡belong¡¡to¡¡no¡¡C£º¡¡but¡¡it¡¡was¡¡assumed
to¡¡belong¡¡to¡¡some¡¡C¡£¡¡Again¡¡if¡¡B¡¡belongs¡¡to¡¡all¡¡C¡¡and¡¡A¡¡to¡¡some¡¡C£»¡¡A
will¡¡belong¡¡to¡¡some¡¡B¡£¡¡The¡¡same¡¡proof¡¡can¡¡be¡¡given¡¡if¡¡the¡¡universal
statement¡¡is¡¡affirmative¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10
¡¡¡¡In¡¡the¡¡third¡¡figure¡¡when¡¡the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its
contrary£»¡¡neither¡¡of¡¡the¡¡premisses¡¡can¡¡be¡¡refuted¡¡in¡¡any¡¡of¡¡the
syllogisms£»¡¡but¡¡when¡¡the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its
contradictory£»¡¡both¡¡premisses¡¡may¡¡be¡¡refuted¡¡and¡¡in¡¡all¡¡the¡¡moods¡£
Suppose¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡C¡¡being¡¡taken
as¡¡middle£»¡¡and¡¡the¡¡premisses¡¡being¡¡universal¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed
that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B£»¡¡but¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡no¡¡syllogism
is¡¡formed¡¡about¡¡A¡¡and¡¡C¡£¡¡Nor¡¡if¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B£»¡¡but
belongs¡¡to¡¡all¡¡C£»¡¡will¡¡a¡¡syllogism¡¡be¡¡possible¡¡about¡¡B¡¡and¡¡C¡£¡¡A
similar¡¡proof¡¡can¡¡be¡¡given¡¡if¡¡the¡¡premisses¡¡are¡¡not¡¡universal¡£¡¡For
either¡¡both¡¡premisses¡¡arrived¡¡at¡¡by¡¡the¡¡conversion¡¡must¡¡be¡¡particular£»
or¡¡the¡¡universal¡¡premiss¡¡must¡¡refer¡¡to¡¡the¡¡minor¡¡extreme¡£¡¡But¡¡we¡¡found
that¡¡no¡¡syllogism¡¡is¡¡possible¡¡thus¡¡either¡¡in¡¡the¡¡first¡¡or¡¡in¡¡the
middle¡¡figure¡£¡¡But¡¡if¡¡the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its
contradictory£»¡¡both¡¡the¡¡premisses¡¡can¡¡be¡¡refuted¡£¡¡For¡¡if¡¡A¡¡belongs
to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡then¡¡A¡¡belongs¡¡to¡¡no¡¡C£º¡¡again¡¡if¡¡A¡¡belongs¡¡to
no¡¡B£»¡¡and¡¡to¡¡all¡¡C£»¡¡B¡¡belongs¡¡to¡¡no¡¡C¡£¡¡And¡¡similarly¡¡if¡¡one¡¡of¡¡the
premisses¡¡is¡¡not¡¡universal¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»
A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£º¡¡if¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡to¡¡C£»¡¡B¡¡will
belong¡¡to¡¡no¡¡C¡£
¡¡¡¡Similarly¡¡if¡¡the¡¡original¡¡syllogism¡¡is¡¡negative¡£¡¡Suppose¡¡it¡¡has¡¡been
proved¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B£»¡¡BC¡¡being¡¡affirmative£»¡¡AC
being¡¡negative£º¡¡for¡¡it¡¡was¡¡thus¡¡that£»¡¡as¡¡we¡¡saw£»¡¡a¡¡syllogism¡¡could
be¡¡made¡£¡¡Whenever¡¡then¡¡the¡¡contrary¡¡of¡¡the¡¡conclusion¡¡is¡¡assumed¡¡a
syllogism¡¡will¡¡not¡¡be¡¡possible¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡B¡¡to
all¡¡C£»¡¡no¡¡syllogism¡¡is¡¡possible¡¡£¨as¡¡we¡¡saw£©¡¡about¡¡A¡¡and¡¡C¡£¡¡Nor£»¡¡if¡¡A
belongs¡¡to¡¡some¡¡B£»¡¡and¡¡to¡¡no¡¡C£»¡¡was¡¡a¡¡syllogism¡¡possible¡¡concerning
B¡¡and¡¡C¡£¡¡Therefore¡¡the¡¡premisses¡¡are¡¡not¡¡refuted¡£¡¡But¡¡when¡¡the
contradictory¡¡of¡¡the¡¡conclusion¡¡is¡¡assumed£»¡¡they¡¡are¡¡refuted¡£¡¡For¡¡if¡¡A
belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡C£»¡¡A¡¡belongs¡¡to¡¡all¡¡C£º¡¡but¡¡A¡¡was¡¡supposed
originally¡¡to¡¡belong¡¡to¡¡no¡¡C¡£¡¡Again¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡to¡¡no
C£»¡¡then¡¡B¡¡belongs¡¡to¡¡no¡¡C£º¡¡but¡¡it¡¡was¡¡supposed¡¡to¡¡belong¡¡to¡¡all¡¡C¡£¡¡A
similar¡¡proof¡¡is¡¡possible¡¡if¡¡the¡¡premisses¡¡are¡¡not¡¡universal¡£¡¡For¡¡AC
becomes¡¡universal¡¡and¡¡negative£»¡¡the¡¡other¡¡premiss¡¡particular¡¡and
affirmative¡£¡¡If¡¡then¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡it¡¡results
that¡¡A¡¡belongs¡¡to¡¡some¡¡C£º¡¡but¡¡it¡¡was¡¡supposed¡¡to¡¡belong¡¡to¡¡no¡¡C¡£¡¡Again
if¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡to¡¡no¡¡C£»¡¡then¡¡B¡¡belongs¡¡to¡¡no¡¡C£º¡¡but¡¡it¡¡was
assumed¡¡to¡¡belong¡¡to¡¡some¡¡C¡£¡¡If¡¡A¡¡belongs¡¡to¡¡some¡¡B¡¡and¡¡B¡¡to¡¡some¡¡C£»
no¡¡syllogism¡¡results£º¡¡nor¡¡yet¡¡if¡¡A¡¡belongs¡¡to¡¡some¡¡B£»¡¡and¡¡to¡¡no¡¡C¡£
Thus¡¡in¡¡one¡¡way¡¡the¡¡premisses¡¡are¡¡refuted£»¡¡in¡¡the¡¡other¡¡way¡¡they¡¡are
not¡£
¡¡¡¡From¡¡what¡¡has¡¡been¡¡said¡¡it¡¡is¡¡clear¡¡how¡¡a¡¡syllogism¡¡results¡¡in
each¡¡figure¡¡when¡¡the¡¡conclusion¡¡is¡¡converted£»¡¡when¡¡a¡¡result¡¡contrary
to¡¡the¡¡premiss£»¡¡and¡¡when¡¡a¡¡result¡¡contradictory¡¡to¡¡the¡¡premiss£»¡¡is
obtained¡£¡¡It¡¡is¡¡clear¡¡that¡¡in¡¡the¡¡first¡¡figure¡¡the¡¡syllogisms¡¡are
formed¡¡through¡¡the¡¡middle¡¡and¡¡the¡¡last¡¡figures£»¡¡and¡¡the¡¡premiss
which¡¡concerns¡¡the¡¡minor¡¡extreme¡¡is¡¡alway¡¡refuted¡¡through¡¡the¡¡middle
figure£»¡¡the¡¡premiss¡¡which¡¡concerns¡¡the¡¡major¡¡through¡¡the¡¡last
figure¡£¡¡In¡¡the¡¡second¡¡figure¡¡syllogisms¡¡proceed¡¡through¡¡the¡¡first
and¡¡the¡¡last¡¡figures£»¡¡and¡¡the¡¡premiss¡¡which¡¡concerns¡¡the¡¡minor¡¡extreme
is¡¡always¡¡refuted¡¡through¡¡the¡¡first¡¡figure£»¡¡the¡¡premiss¡¡which¡¡concerns
the¡¡major¡¡extreme¡¡through¡¡the¡¡last¡£¡¡In¡¡the¡¡third¡¡figure¡¡the¡¡refutation
proceeds¡¡through¡¡the¡¡first¡¡and¡¡the¡¡middle¡¡figures£»¡¡the¡¡premiss¡¡which
concerns¡¡the¡¡major¡¡is¡¡always¡¡refuted¡¡through¡¡the¡¡first¡¡figure£»¡¡the
premiss¡¡which¡¡concerns¡¡the¡¡minor¡¡through¡¡the¡¡middle¡¡figure¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡11
¡¡¡¡It¡¡is¡¡clear¡¡then¡¡what¡¡conversion¡¡is£»¡¡how¡¡it¡¡is¡¡effected¡¡in¡¡each
figure£»¡¡and¡¡what¡¡syllogism¡¡results¡£¡¡The¡¡syllogism¡¡per¡¡impossibile¡¡is
proved¡¡when¡¡the¡¡contradictory¡¡of¡¡the¡¡conclusion¡¡stated¡¡and¡¡another
premiss¡¡is¡¡assumed£»¡¡it¡¡can¡¡be¡¡made¡¡in¡¡all¡¡the¡¡figures¡£¡¡For¡¡it
resembles¡¡conversion£»¡¡differing¡¡only¡¡in¡¡this£º¡¡conversion¡¡takes¡¡place
after¡¡a¡¡syllogism¡¡has¡¡been¡¡formed¡¡and¡¡both¡¡the¡¡premisses¡¡have¡¡been
taken£»¡¡but¡¡a¡¡reduction¡¡to¡¡the¡¡impossible¡¡takes¡¡place¡¡not¡¡because¡¡the
contradictory¡¡has¡¡been¡¡agreed¡¡to¡¡already£»¡¡but¡¡because¡¡it¡¡is¡¡clear¡¡that
it¡¡is¡¡true¡£¡¡The¡¡terms¡¡are¡¡alike¡¡in¡¡both£»¡¡and¡¡the¡¡premisses¡¡of¡¡both¡¡are
taken¡¡in¡¡the¡¡same¡¡way¡£¡¡For¡¡example¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡C¡¡being
middle£»¡¡then¡¡if¡¡it¡¡is¡¡supposed¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡all¡¡B¡¡or
belongs¡¡to¡¡no¡¡B£»¡¡but¡¡to¡¡all¡¡C¡¡£¨which¡¡was¡¡admitted¡¡to¡¡be¡¡true£©£»¡¡it
follows¡¡that¡¡C¡¡belongs¡¡to¡¡no¡¡B¡¡or¡¡not¡¡to¡¡all¡¡B¡£¡¡But¡¡this¡¡is
impossible£º¡¡consequently¡¡the¡¡supposition¡¡is¡¡false£º¡¡its¡¡contradictory
then¡¡is¡¡true¡£¡¡Similarly¡¡in¡¡the¡¡other¡¡figures£º¡¡for¡¡whatever¡¡moods¡¡admit
of¡¡conversion¡¡admit¡¡also¡¡of¡¡the¡¡reduction¡¡per¡¡impossibile¡£
¡¡¡¡All¡¡the¡¡problems¡¡can¡¡be¡¡proved¡¡per¡¡impossibile¡¡in¡¡all¡¡the¡¡figures£»
excepting¡¡the¡¡universal¡¡affirmative£»¡¡which¡¡is¡¡proved¡¡in¡¡the¡¡middle¡¡and
third¡¡figures£»¡¡but¡¡not¡¡in¡¡the¡¡first¡£¡¡Suppose¡¡that¡¡A¡¡belongs¡¡not¡¡to¡¡all
B£»¡¡or¡¡to¡¡no¡¡B£»¡¡and¡¡take¡¡besides¡¡another¡¡premiss¡¡concerning¡¡either¡¡of
the¡¡terms£»¡¡viz¡£¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡A£»¡¡or¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡D£»
thus¡¡we¡¡get¡¡the¡¡first¡¡figure¡£¡¡If¡¡then¡¡it¡¡is¡¡supposed¡¡that¡¡A¡¡does¡¡not
belong¡¡to¡¡all¡¡B£»¡¡no¡¡syllogism¡¡results¡¡whichever¡¡term¡¡the¡¡assumed
premiss¡¡concerns£»¡¡but¡¡if¡¡it¡¡is¡¡suppos