prior analytics-µÚ24½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
the¡¡conclusion¡¡is¡¡retained£»¡¡B¡¡will¡¡belong¡¡to¡¡some¡¡C£º¡¡for¡¡we¡¡obtain¡¡the
first¡¡figure¡¡and¡¡A¡¡is¡¡middle¡£¡¡But¡¡if¡¡the¡¡syllogism¡¡is¡¡negative£»¡¡it
is¡¡not¡¡possible¡¡to¡¡prove¡¡the¡¡universal¡¡premiss£»¡¡for¡¡the¡¡reason¡¡given
above¡£¡¡But¡¡it¡¡is¡¡possible¡¡to¡¡prove¡¡the¡¡particular¡¡premiss£»¡¡if¡¡the
proposition¡¡AB¡¡is¡¡converted¡¡as¡¡in¡¡the¡¡universal¡¡syllogism£»¡¡i¡£e¡¡'B
belongs¡¡to¡¡some¡¡of¡¡that¡¡to¡¡some¡¡of¡¡which¡¡A¡¡does¡¡not¡¡belong'£º¡¡otherwise
no¡¡syllogism¡¡results¡¡because¡¡the¡¡particular¡¡premiss¡¡is¡¡negative¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6
¡¡¡¡In¡¡the¡¡second¡¡figure¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡prove¡¡an¡¡affirmative
proposition¡¡in¡¡this¡¡way£»¡¡but¡¡a¡¡negative¡¡proposition¡¡may¡¡be¡¡proved¡£
An¡¡affirmative¡¡proposition¡¡is¡¡not¡¡proved¡¡because¡¡both¡¡premisses¡¡of¡¡the
new¡¡syllogism¡¡are¡¡not¡¡affirmative¡¡£¨for¡¡the¡¡conclusion¡¡is¡¡negative£©¡¡but
an¡¡affirmative¡¡proposition¡¡is¡¡£¨as¡¡we¡¡saw£©¡¡proved¡¡from¡¡premisses
which¡¡are¡¡both¡¡affirmative¡£¡¡The¡¡negative¡¡is¡¡proved¡¡as¡¡follows¡£¡¡Let¡¡A
belong¡¡to¡¡all¡¡B£»¡¡and¡¡to¡¡no¡¡C£º¡¡we¡¡conclude¡¡that¡¡B¡¡belongs¡¡to¡¡no¡¡C¡£¡¡If
then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A£»¡¡it¡¡is¡¡necessary¡¡that¡¡A
should¡¡belong¡¡to¡¡no¡¡C£º¡¡for¡¡we¡¡get¡¡the¡¡second¡¡figure£»¡¡with¡¡B¡¡as¡¡middle¡£
But¡¡if¡¡the¡¡premiss¡¡AB¡¡was¡¡negative£»¡¡and¡¡the¡¡other¡¡affirmative£»¡¡we
shall¡¡have¡¡the¡¡first¡¡figure¡£¡¡For¡¡C¡¡belongs¡¡to¡¡all¡¡A¡¡and¡¡B¡¡to¡¡no¡¡C£»
consequently¡¡B¡¡belongs¡¡to¡¡no¡¡A£º¡¡neither¡¡then¡¡does¡¡A¡¡belong¡¡to¡¡B¡£
Through¡¡the¡¡conclusion£»¡¡therefore£»¡¡and¡¡one¡¡premiss£»¡¡we¡¡get¡¡no
syllogism£»¡¡but¡¡if¡¡another¡¡premiss¡¡is¡¡assumed¡¡in¡¡addition£»¡¡a
syllogism¡¡will¡¡be¡¡possible¡£¡¡But¡¡if¡¡the¡¡syllogism¡¡not¡¡universal£»¡¡the
universal¡¡premiss¡¡cannot¡¡be¡¡proved£»¡¡for¡¡the¡¡same¡¡reason¡¡as¡¡we¡¡gave
above£»¡¡but¡¡the¡¡particular¡¡premiss¡¡can¡¡be¡¡proved¡¡whenever¡¡the¡¡universal
statement¡¡is¡¡affirmative¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡not¡¡to¡¡all¡¡C£º¡¡the
conclusion¡¡is¡¡BC¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A£»¡¡but
not¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡B¡¡being¡¡middle¡£¡¡But¡¡if
the¡¡universal¡¡premiss¡¡is¡¡negative£»¡¡the¡¡premiss¡¡AC¡¡will¡¡not¡¡be
demonstrated¡¡by¡¡the¡¡conversion¡¡of¡¡AB£º¡¡for¡¡it¡¡turns¡¡out¡¡that¡¡either
both¡¡or¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡negative£»¡¡consequently¡¡a¡¡syllogism
will¡¡not¡¡be¡¡possible¡£¡¡But¡¡the¡¡proof¡¡will¡¡proceed¡¡as¡¡in¡¡the¡¡universal
syllogisms£»¡¡if¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡of¡¡that¡¡to¡¡some¡¡of
which¡¡B¡¡does¡¡not¡¡belong¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7
¡¡¡¡In¡¡the¡¡third¡¡figure£»¡¡when¡¡both¡¡premisses¡¡are¡¡taken¡¡universally£»¡¡it
is¡¡not¡¡possible¡¡to¡¡prove¡¡them¡¡reciprocally£º¡¡for¡¡that¡¡which¡¡is
universal¡¡is¡¡proved¡¡through¡¡statements¡¡which¡¡are¡¡universal£»¡¡but¡¡the
conclusion¡¡in¡¡this¡¡figure¡¡is¡¡always¡¡particular£»¡¡so¡¡that¡¡it¡¡is¡¡clear
that¡¡it¡¡is¡¡not¡¡possible¡¡at¡¡all¡¡to¡¡prove¡¡through¡¡this¡¡figure¡¡the
universal¡¡premiss¡£¡¡But¡¡if¡¡one¡¡premiss¡¡is¡¡universal£»¡¡the¡¡other
particular£»¡¡proof¡¡of¡¡the¡¡latter¡¡will¡¡sometimes¡¡be¡¡possible£»
sometimes¡¡not¡£¡¡When¡¡both¡¡the¡¡premisses¡¡assumed¡¡are¡¡affirmative£»¡¡and
the¡¡universal¡¡concerns¡¡the¡¡minor¡¡extreme£»¡¡proof¡¡will¡¡be¡¡possible£»
but¡¡when¡¡it¡¡concerns¡¡the¡¡other¡¡extreme£»¡¡impossible¡£¡¡Let¡¡A¡¡belong¡¡to
all¡¡C¡¡and¡¡B¡¡to¡¡some¡¡C£º¡¡the¡¡conclusion¡¡is¡¡the¡¡statement¡¡AB¡£¡¡If¡¡then
it¡¡is¡¡assumed¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡A£»¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡C
belongs¡¡to¡¡some¡¡B£»¡¡but¡¡that¡¡B¡¡belongs¡¡to¡¡some¡¡C¡¡has¡¡not¡¡been¡¡proved¡£
And¡¡yet¡¡it¡¡is¡¡necessary£»¡¡if¡¡C¡¡belongs¡¡to¡¡some¡¡B£»¡¡that¡¡B¡¡should
belong¡¡to¡¡some¡¡C¡£¡¡But¡¡it¡¡is¡¡not¡¡the¡¡same¡¡that¡¡this¡¡should¡¡belong¡¡to
that£»¡¡and¡¡that¡¡to¡¡this£º¡¡but¡¡we¡¡must¡¡assume¡¡besides¡¡that¡¡if¡¡this
belongs¡¡to¡¡some¡¡of¡¡that£»¡¡that¡¡belongs¡¡to¡¡some¡¡of¡¡this¡£¡¡But¡¡if¡¡this
is¡¡assumed¡¡the¡¡syllogism¡¡no¡¡longer¡¡results¡¡from¡¡the¡¡conclusion¡¡and¡¡the
other¡¡premiss¡£¡¡But¡¡if¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡to¡¡some¡¡C£»¡¡it¡¡will
be¡¡possible¡¡to¡¡prove¡¡the¡¡proposition¡¡AC£»¡¡when¡¡it¡¡is¡¡assumed¡¡that¡¡C
belongs¡¡to¡¡all¡¡B£»¡¡and¡¡A¡¡to¡¡some¡¡B¡£¡¡For¡¡if¡¡C¡¡belongs¡¡to¡¡all¡¡B¡¡and¡¡A
to¡¡some¡¡B£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡some¡¡C£»¡¡B¡¡being
middle¡£¡¡And¡¡whenever¡¡one¡¡premiss¡¡is¡¡affirmative¡¡the¡¡other¡¡negative£»
and¡¡the¡¡affirmative¡¡is¡¡universal£»¡¡the¡¡other¡¡premiss¡¡can¡¡be¡¡proved¡£¡¡Let
B¡¡belong¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡not¡¡to¡¡some¡¡C£º¡¡the¡¡conclusion¡¡is¡¡that¡¡A
does¡¡not¡¡belong¡¡to¡¡some¡¡B¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡further¡¡that¡¡C
belongs¡¡to¡¡all¡¡B£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should¡¡not¡¡belong¡¡to¡¡some
C£»¡¡B¡¡being¡¡middle¡£¡¡But¡¡when¡¡the¡¡negative¡¡premiss¡¡is¡¡universal£»¡¡the
other¡¡premiss¡¡is¡¡not¡¡except¡¡as¡¡before£»¡¡viz¡£¡¡if¡¡it¡¡is¡¡assumed¡¡that¡¡that
belongs¡¡to¡¡some¡¡of¡¡that£»¡¡to¡¡some¡¡of¡¡which¡¡this¡¡does¡¡not¡¡belong£»¡¡e¡£g¡£
if¡¡A¡¡belongs¡¡to¡¡no¡¡C£»¡¡and¡¡B¡¡to¡¡some¡¡C£º¡¡the¡¡conclusion¡¡is¡¡that¡¡A¡¡does
not¡¡belong¡¡to¡¡some¡¡B¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡C¡¡belongs¡¡to¡¡some
of¡¡that¡¡to¡¡some¡¡of¡¡which¡¡does¡¡not¡¡belong£»¡¡it¡¡is¡¡necessary¡¡that¡¡C
should¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Bs¡£¡¡In¡¡no¡¡other¡¡way¡¡is¡¡it¡¡possible¡¡by
converting¡¡the¡¡universal¡¡premiss¡¡to¡¡prove¡¡the¡¡other£º¡¡for¡¡in¡¡no¡¡other
way¡¡can¡¡a¡¡syllogism¡¡be¡¡formed¡£
¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡in¡¡the¡¡first¡¡figure¡¡reciprocal¡¡proof¡¡is¡¡made
both¡¡through¡¡the¡¡third¡¡and¡¡through¡¡the¡¡first¡¡figure¡if¡¡the
conclusion¡¡is¡¡affirmative¡¡through¡¡the¡¡first£»¡¡if¡¡the¡¡conclusion¡¡is
negative¡¡through¡¡the¡¡last¡£¡¡For¡¡it¡¡is¡¡assumed¡¡that¡¡that¡¡belongs¡¡to
all¡¡of¡¡that¡¡to¡¡none¡¡of¡¡which¡¡this¡¡belongs¡£¡¡In¡¡the¡¡middle¡¡figure£»
when¡¡the¡¡syllogism¡¡is¡¡universal£»¡¡proof¡¡is¡¡possible¡¡through¡¡the
second¡¡figure¡¡and¡¡through¡¡the¡¡first£»¡¡but¡¡when¡¡particular¡¡through¡¡the
second¡¡and¡¡the¡¡last¡£¡¡In¡¡the¡¡third¡¡figure¡¡all¡¡proofs¡¡are¡¡made¡¡through
itself¡£¡¡It¡¡is¡¡clear¡¡also¡¡that¡¡in¡¡the¡¡third¡¡figure¡¡and¡¡in¡¡the¡¡middle
figure¡¡those¡¡syllogisms¡¡which¡¡are¡¡not¡¡made¡¡through¡¡those¡¡figures
themselves¡¡either¡¡are¡¡not¡¡of¡¡the¡¡nature¡¡of¡¡circular¡¡proof¡¡or¡¡are
imperfect¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8
¡¡¡¡To¡¡convert¡¡a¡¡syllogism¡¡means¡¡to¡¡alter¡¡the¡¡conclusion¡¡and¡¡make
another¡¡syllogism¡¡to¡¡prove¡¡that¡¡either¡¡the¡¡extreme¡¡cannot¡¡belong¡¡to
the¡¡middle¡¡or¡¡the¡¡middle¡¡to¡¡the¡¡last¡¡term¡£¡¡For¡¡it¡¡is¡¡necessary£»¡¡if¡¡the
conclusion¡¡has¡¡been¡¡changed¡¡into¡¡its¡¡opposite¡¡and¡¡one¡¡of¡¡the¡¡premisses
stands£»¡¡that¡¡the¡¡other¡¡premiss¡¡should¡¡be¡¡destroyed¡£¡¡For¡¡if¡¡it¡¡should
stand£»¡¡the¡¡conclusion¡¡also¡¡must¡¡stand¡£¡¡It¡¡makes¡¡a¡¡difference¡¡whether
the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its¡¡contradictory¡¡or¡¡into¡¡its
contrary¡£¡¡For¡¡the¡¡same¡¡syllogism¡¡does¡¡not¡¡result¡¡whichever¡¡form¡¡the
conversion¡¡takes¡£¡¡This¡¡will¡¡be¡¡made¡¡clear¡¡by¡¡the¡¡sequel¡£¡¡By
contradictory¡¡opposition¡¡I¡¡mean¡¡the¡¡opposition¡¡of¡¡'to¡¡all'¡¡to¡¡'not
to¡¡all'£»¡¡and¡¡of¡¡'to¡¡some'¡¡to¡¡'to¡¡none'£»¡¡by¡¡contrary¡¡opposition¡¡I
mean¡¡the¡¡opposition¡¡of¡¡'to¡¡all'¡¡to¡¡'to¡¡none'£»¡¡and¡¡of¡¡'to¡¡some'¡¡to¡¡'not
to¡¡some'¡£¡¡Suppose¡¡that¡¡A¡¡been¡¡proved¡¡of¡¡C£»¡¡through¡¡B¡¡as¡¡middle¡¡term¡£
If¡¡then¡¡it¡¡should¡¡be¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡C£»¡¡but¡¡to¡¡all¡¡B£»¡¡B
will¡¡belong¡¡to¡¡no¡¡C¡£¡¡And¡¡if¡¡A¡¡belongs¡¡to¡¡no¡¡C£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡A
will¡¡belong£»¡¡not¡¡to¡¡no¡¡B¡¡at¡¡all£»¡¡but¡¡not¡¡to¡¡all¡¡B¡£¡¡For¡¡£¨as¡¡we¡¡saw£©¡¡the
universal¡¡is¡¡not¡¡proved¡¡through¡¡the¡¡last¡¡figure¡£¡¡In¡¡a¡¡word¡¡it¡¡is¡¡not
possible¡¡to¡¡refute¡¡universally¡¡by¡¡conversion¡¡the¡¡premiss¡¡which
concerns¡¡the¡¡major¡¡extreme£º¡¡for¡¡the¡¡refutation¡¡always¡¡proceeds¡¡through
the¡¡third¡¡since¡¡it¡¡is¡¡necessary¡¡to¡¡take¡¡both¡¡premisses¡¡in¡¡reference¡¡to
the¡¡minor¡¡extreme¡£¡¡Similarly¡¡if¡¡the¡¡syllogism¡¡is¡¡negative¡£¡¡Suppose
it¡¡has¡¡been¡¡proved¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡C¡¡through¡¡B¡£¡¡Then¡¡if¡¡it¡¡is
assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡to¡¡no¡¡B£»¡¡B¡¡will¡¡belong¡¡to¡¡none¡¡of
the¡¡Cs¡£¡¡And¡¡if¡¡A¡¡and¡¡B¡¡belong¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong¡¡to¡¡some¡¡B£º¡¡but
in¡¡the¡¡original¡¡premiss¡¡it¡¡belonged¡¡to¡¡no¡¡B¡£
¡¡¡¡If¡¡the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its¡¡contradictory£»¡¡the
syllogisms¡¡will¡¡be¡¡contradictory¡¡and¡¡not¡¡universal¡£¡¡For¡¡one¡¡premiss¡¡is
particular£»¡¡so¡¡that¡¡the¡¡conclusion¡¡also¡¡will¡¡be¡¡particular¡£¡¡Let¡¡the
syllogism¡¡be¡¡affirmative£»¡¡and¡¡let¡¡it¡¡be¡¡converted¡¡as¡¡stated¡£¡¡Then¡¡if¡¡A
belongs¡¡not¡¡to¡¡all¡¡C£»¡¡but¡¡to¡¡all¡¡B£»¡¡B¡¡will¡¡belong¡¡not¡¡to¡¡all¡¡C¡£¡¡And¡¡if
A¡¡belongs¡¡not¡¡to¡¡all¡¡C£»¡¡but¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong¡¡not¡¡to
all¡¡B¡£¡¡Similarly¡¡if¡¡the¡¡syllogism¡¡is¡¡negative¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to
some¡¡C£»¡¡and¡¡to¡¡no¡¡B£»¡¡B¡¡will¡¡belong£»¡¡not¡¡to¡¡no¡¡C¡¡at¡¡all£»¡¡but¡not¡¡to
some¡¡C¡£¡¡And¡¡if¡¡A¡¡belongs¡¡to¡¡some¡¡C£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡as¡¡was
originally¡¡assumed£»¡¡A¡¡will¡¡belong¡¡to¡¡some¡¡B¡£
¡¡¡¡In¡¡particular¡¡syllogisms¡¡when¡¡the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its
contradictory£»¡¡both¡¡premisses¡¡may¡¡be¡¡refuted£»¡¡but¡¡when¡¡it¡¡is¡¡converted
into¡¡its¡¡contrary£»¡¡neither¡£¡¡For¡¡the¡¡result¡¡is¡¡no¡¡longer£»¡¡as¡¡in¡¡the
universal¡¡syllogisms£»¡¡refutation¡¡in¡¡which¡¡the¡¡conclusion¡¡reached¡¡by¡¡O£»
conversion¡¡lacks¡¡universality£»¡¡but¡¡no¡¡refutation¡¡at¡¡all¡£¡¡Suppose
that¡¡A¡¡has¡¡been¡¡proved¡¡of¡¡some¡¡C¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs
to¡¡no¡¡C£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡B£º¡¡and¡¡if¡¡A
belongs¡¡to¡¡no¡¡C£»¡¡but¡¡to¡¡all¡¡B£»¡¡B¡¡will¡¡belong¡¡to¡¡no¡¡C¡£¡¡Thus¡¡both
premisses¡¡are¡¡refuted¡£¡¡But¡¡neither¡¡can¡¡be¡¡refuted¡¡if¡¡the¡¡conclusion¡¡is
converted¡¡into¡¡its¡¡contrary¡£¡¡For¡¡if¡¡A¡¡does¡¡not¡¡