Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ24½Ú

prior analytics-µÚ24½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



the¡¡conclusion¡¡is¡¡retained£»¡¡B¡¡will¡¡belong¡¡to¡¡some¡¡C£º¡¡for¡¡we¡¡obtain¡¡the



first¡¡figure¡¡and¡¡A¡¡is¡¡middle¡£¡¡But¡¡if¡¡the¡¡syllogism¡¡is¡¡negative£»¡¡it



is¡¡not¡¡possible¡¡to¡¡prove¡¡the¡¡universal¡¡premiss£»¡¡for¡¡the¡¡reason¡¡given



above¡£¡¡But¡¡it¡¡is¡¡possible¡¡to¡¡prove¡¡the¡¡particular¡¡premiss£»¡¡if¡¡the



proposition¡¡AB¡¡is¡¡converted¡¡as¡¡in¡¡the¡¡universal¡¡syllogism£»¡¡i¡£e¡¡'B



belongs¡¡to¡¡some¡¡of¡¡that¡¡to¡¡some¡¡of¡¡which¡¡A¡¡does¡¡not¡¡belong'£º¡¡otherwise



no¡¡syllogism¡¡results¡¡because¡¡the¡¡particular¡¡premiss¡¡is¡¡negative¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6







¡¡¡¡In¡¡the¡¡second¡¡figure¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡prove¡¡an¡¡affirmative



proposition¡¡in¡¡this¡¡way£»¡¡but¡¡a¡¡negative¡¡proposition¡¡may¡¡be¡¡proved¡£



An¡¡affirmative¡¡proposition¡¡is¡¡not¡¡proved¡¡because¡¡both¡¡premisses¡¡of¡¡the



new¡¡syllogism¡¡are¡¡not¡¡affirmative¡¡£¨for¡¡the¡¡conclusion¡¡is¡¡negative£©¡¡but



an¡¡affirmative¡¡proposition¡¡is¡¡£¨as¡¡we¡¡saw£©¡¡proved¡¡from¡¡premisses



which¡¡are¡¡both¡¡affirmative¡£¡¡The¡¡negative¡¡is¡¡proved¡¡as¡¡follows¡£¡¡Let¡¡A



belong¡¡to¡¡all¡¡B£»¡¡and¡¡to¡¡no¡¡C£º¡¡we¡¡conclude¡¡that¡¡B¡¡belongs¡¡to¡¡no¡¡C¡£¡¡If



then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A£»¡¡it¡¡is¡¡necessary¡¡that¡¡A



should¡¡belong¡¡to¡¡no¡¡C£º¡¡for¡¡we¡¡get¡¡the¡¡second¡¡figure£»¡¡with¡¡B¡¡as¡¡middle¡£



But¡¡if¡¡the¡¡premiss¡¡AB¡¡was¡¡negative£»¡¡and¡¡the¡¡other¡¡affirmative£»¡¡we



shall¡¡have¡¡the¡¡first¡¡figure¡£¡¡For¡¡C¡¡belongs¡¡to¡¡all¡¡A¡¡and¡¡B¡¡to¡¡no¡¡C£»



consequently¡¡B¡¡belongs¡¡to¡¡no¡¡A£º¡¡neither¡¡then¡¡does¡¡A¡¡belong¡¡to¡¡B¡£



Through¡¡the¡¡conclusion£»¡¡therefore£»¡¡and¡¡one¡¡premiss£»¡¡we¡¡get¡¡no



syllogism£»¡¡but¡¡if¡¡another¡¡premiss¡¡is¡¡assumed¡¡in¡¡addition£»¡¡a



syllogism¡¡will¡¡be¡¡possible¡£¡¡But¡¡if¡¡the¡¡syllogism¡¡not¡¡universal£»¡¡the



universal¡¡premiss¡¡cannot¡¡be¡¡proved£»¡¡for¡¡the¡¡same¡¡reason¡¡as¡¡we¡¡gave



above£»¡¡but¡¡the¡¡particular¡¡premiss¡¡can¡¡be¡¡proved¡¡whenever¡¡the¡¡universal



statement¡¡is¡¡affirmative¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡not¡¡to¡¡all¡¡C£º¡¡the



conclusion¡¡is¡¡BC¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡all¡¡A£»¡¡but



not¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡B¡¡being¡¡middle¡£¡¡But¡¡if



the¡¡universal¡¡premiss¡¡is¡¡negative£»¡¡the¡¡premiss¡¡AC¡¡will¡¡not¡¡be



demonstrated¡¡by¡¡the¡¡conversion¡¡of¡¡AB£º¡¡for¡¡it¡¡turns¡¡out¡¡that¡¡either



both¡¡or¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡negative£»¡¡consequently¡¡a¡¡syllogism



will¡¡not¡¡be¡¡possible¡£¡¡But¡¡the¡¡proof¡¡will¡¡proceed¡¡as¡¡in¡¡the¡¡universal



syllogisms£»¡¡if¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡of¡¡that¡¡to¡¡some¡¡of



which¡¡B¡¡does¡¡not¡¡belong¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7







¡¡¡¡In¡¡the¡¡third¡¡figure£»¡¡when¡¡both¡¡premisses¡¡are¡¡taken¡¡universally£»¡¡it



is¡¡not¡¡possible¡¡to¡¡prove¡¡them¡¡reciprocally£º¡¡for¡¡that¡¡which¡¡is



universal¡¡is¡¡proved¡¡through¡¡statements¡¡which¡¡are¡¡universal£»¡¡but¡¡the



conclusion¡¡in¡¡this¡¡figure¡¡is¡¡always¡¡particular£»¡¡so¡¡that¡¡it¡¡is¡¡clear



that¡¡it¡¡is¡¡not¡¡possible¡¡at¡¡all¡¡to¡¡prove¡¡through¡¡this¡¡figure¡¡the



universal¡¡premiss¡£¡¡But¡¡if¡¡one¡¡premiss¡¡is¡¡universal£»¡¡the¡¡other



particular£»¡¡proof¡¡of¡¡the¡¡latter¡¡will¡¡sometimes¡¡be¡¡possible£»



sometimes¡¡not¡£¡¡When¡¡both¡¡the¡¡premisses¡¡assumed¡¡are¡¡affirmative£»¡¡and



the¡¡universal¡¡concerns¡¡the¡¡minor¡¡extreme£»¡¡proof¡¡will¡¡be¡¡possible£»



but¡¡when¡¡it¡¡concerns¡¡the¡¡other¡¡extreme£»¡¡impossible¡£¡¡Let¡¡A¡¡belong¡¡to



all¡¡C¡¡and¡¡B¡¡to¡¡some¡¡C£º¡¡the¡¡conclusion¡¡is¡¡the¡¡statement¡¡AB¡£¡¡If¡¡then



it¡¡is¡¡assumed¡¡that¡¡C¡¡belongs¡¡to¡¡all¡¡A£»¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡C



belongs¡¡to¡¡some¡¡B£»¡¡but¡¡that¡¡B¡¡belongs¡¡to¡¡some¡¡C¡¡has¡¡not¡¡been¡¡proved¡£



And¡¡yet¡¡it¡¡is¡¡necessary£»¡¡if¡¡C¡¡belongs¡¡to¡¡some¡¡B£»¡¡that¡¡B¡¡should



belong¡¡to¡¡some¡¡C¡£¡¡But¡¡it¡¡is¡¡not¡¡the¡¡same¡¡that¡¡this¡¡should¡¡belong¡¡to



that£»¡¡and¡¡that¡¡to¡¡this£º¡¡but¡¡we¡¡must¡¡assume¡¡besides¡¡that¡¡if¡¡this



belongs¡¡to¡¡some¡¡of¡¡that£»¡¡that¡¡belongs¡¡to¡¡some¡¡of¡¡this¡£¡¡But¡¡if¡¡this



is¡¡assumed¡¡the¡¡syllogism¡¡no¡¡longer¡¡results¡¡from¡¡the¡¡conclusion¡¡and¡¡the



other¡¡premiss¡£¡¡But¡¡if¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡to¡¡some¡¡C£»¡¡it¡¡will



be¡¡possible¡¡to¡¡prove¡¡the¡¡proposition¡¡AC£»¡¡when¡¡it¡¡is¡¡assumed¡¡that¡¡C



belongs¡¡to¡¡all¡¡B£»¡¡and¡¡A¡¡to¡¡some¡¡B¡£¡¡For¡¡if¡¡C¡¡belongs¡¡to¡¡all¡¡B¡¡and¡¡A



to¡¡some¡¡B£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡some¡¡C£»¡¡B¡¡being



middle¡£¡¡And¡¡whenever¡¡one¡¡premiss¡¡is¡¡affirmative¡¡the¡¡other¡¡negative£»



and¡¡the¡¡affirmative¡¡is¡¡universal£»¡¡the¡¡other¡¡premiss¡¡can¡¡be¡¡proved¡£¡¡Let



B¡¡belong¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡not¡¡to¡¡some¡¡C£º¡¡the¡¡conclusion¡¡is¡¡that¡¡A



does¡¡not¡¡belong¡¡to¡¡some¡¡B¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡further¡¡that¡¡C



belongs¡¡to¡¡all¡¡B£»¡¡it¡¡is¡¡necessary¡¡that¡¡A¡¡should¡¡not¡¡belong¡¡to¡¡some



C£»¡¡B¡¡being¡¡middle¡£¡¡But¡¡when¡¡the¡¡negative¡¡premiss¡¡is¡¡universal£»¡¡the



other¡¡premiss¡¡is¡¡not¡¡except¡¡as¡¡before£»¡¡viz¡£¡¡if¡¡it¡¡is¡¡assumed¡¡that¡¡that



belongs¡¡to¡¡some¡¡of¡¡that£»¡¡to¡¡some¡¡of¡¡which¡¡this¡¡does¡¡not¡¡belong£»¡¡e¡£g¡£



if¡¡A¡¡belongs¡¡to¡¡no¡¡C£»¡¡and¡¡B¡¡to¡¡some¡¡C£º¡¡the¡¡conclusion¡¡is¡¡that¡¡A¡¡does



not¡¡belong¡¡to¡¡some¡¡B¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡C¡¡belongs¡¡to¡¡some



of¡¡that¡¡to¡¡some¡¡of¡¡which¡¡does¡¡not¡¡belong£»¡¡it¡¡is¡¡necessary¡¡that¡¡C



should¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Bs¡£¡¡In¡¡no¡¡other¡¡way¡¡is¡¡it¡¡possible¡¡by



converting¡¡the¡¡universal¡¡premiss¡¡to¡¡prove¡¡the¡¡other£º¡¡for¡¡in¡¡no¡¡other



way¡¡can¡¡a¡¡syllogism¡¡be¡¡formed¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡in¡¡the¡¡first¡¡figure¡¡reciprocal¡¡proof¡¡is¡¡made



both¡¡through¡¡the¡¡third¡¡and¡¡through¡¡the¡¡first¡¡figure¡­if¡¡the



conclusion¡¡is¡¡affirmative¡¡through¡¡the¡¡first£»¡¡if¡¡the¡¡conclusion¡¡is



negative¡¡through¡¡the¡¡last¡£¡¡For¡¡it¡¡is¡¡assumed¡¡that¡¡that¡¡belongs¡¡to



all¡¡of¡¡that¡¡to¡¡none¡¡of¡¡which¡¡this¡¡belongs¡£¡¡In¡¡the¡¡middle¡¡figure£»



when¡¡the¡¡syllogism¡¡is¡¡universal£»¡¡proof¡¡is¡¡possible¡¡through¡¡the



second¡¡figure¡¡and¡¡through¡¡the¡¡first£»¡¡but¡¡when¡¡particular¡¡through¡¡the



second¡¡and¡¡the¡¡last¡£¡¡In¡¡the¡¡third¡¡figure¡¡all¡¡proofs¡¡are¡¡made¡¡through



itself¡£¡¡It¡¡is¡¡clear¡¡also¡¡that¡¡in¡¡the¡¡third¡¡figure¡¡and¡¡in¡¡the¡¡middle



figure¡¡those¡¡syllogisms¡¡which¡¡are¡¡not¡¡made¡¡through¡¡those¡¡figures



themselves¡¡either¡¡are¡¡not¡¡of¡¡the¡¡nature¡¡of¡¡circular¡¡proof¡¡or¡¡are



imperfect¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8







¡¡¡¡To¡¡convert¡¡a¡¡syllogism¡¡means¡¡to¡¡alter¡¡the¡¡conclusion¡¡and¡¡make



another¡¡syllogism¡¡to¡¡prove¡¡that¡¡either¡¡the¡¡extreme¡¡cannot¡¡belong¡¡to



the¡¡middle¡¡or¡¡the¡¡middle¡¡to¡¡the¡¡last¡¡term¡£¡¡For¡¡it¡¡is¡¡necessary£»¡¡if¡¡the



conclusion¡¡has¡¡been¡¡changed¡¡into¡¡its¡¡opposite¡¡and¡¡one¡¡of¡¡the¡¡premisses



stands£»¡¡that¡¡the¡¡other¡¡premiss¡¡should¡¡be¡¡destroyed¡£¡¡For¡¡if¡¡it¡¡should



stand£»¡¡the¡¡conclusion¡¡also¡¡must¡¡stand¡£¡¡It¡¡makes¡¡a¡¡difference¡¡whether



the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its¡¡contradictory¡¡or¡¡into¡¡its



contrary¡£¡¡For¡¡the¡¡same¡¡syllogism¡¡does¡¡not¡¡result¡¡whichever¡¡form¡¡the



conversion¡¡takes¡£¡¡This¡¡will¡¡be¡¡made¡¡clear¡¡by¡¡the¡¡sequel¡£¡¡By



contradictory¡¡opposition¡¡I¡¡mean¡¡the¡¡opposition¡¡of¡¡'to¡¡all'¡¡to¡¡'not



to¡¡all'£»¡¡and¡¡of¡¡'to¡¡some'¡¡to¡¡'to¡¡none'£»¡¡by¡¡contrary¡¡opposition¡¡I



mean¡¡the¡¡opposition¡¡of¡¡'to¡¡all'¡¡to¡¡'to¡¡none'£»¡¡and¡¡of¡¡'to¡¡some'¡¡to¡¡'not



to¡¡some'¡£¡¡Suppose¡¡that¡¡A¡¡been¡¡proved¡¡of¡¡C£»¡¡through¡¡B¡¡as¡¡middle¡¡term¡£



If¡¡then¡¡it¡¡should¡¡be¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡C£»¡¡but¡¡to¡¡all¡¡B£»¡¡B



will¡¡belong¡¡to¡¡no¡¡C¡£¡¡And¡¡if¡¡A¡¡belongs¡¡to¡¡no¡¡C£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡A



will¡¡belong£»¡¡not¡¡to¡¡no¡¡B¡¡at¡¡all£»¡¡but¡¡not¡¡to¡¡all¡¡B¡£¡¡For¡¡£¨as¡¡we¡¡saw£©¡¡the



universal¡¡is¡¡not¡¡proved¡¡through¡¡the¡¡last¡¡figure¡£¡¡In¡¡a¡¡word¡¡it¡¡is¡¡not



possible¡¡to¡¡refute¡¡universally¡¡by¡¡conversion¡¡the¡¡premiss¡¡which



concerns¡¡the¡¡major¡¡extreme£º¡¡for¡¡the¡¡refutation¡¡always¡¡proceeds¡¡through



the¡¡third¡¡since¡¡it¡¡is¡¡necessary¡¡to¡¡take¡¡both¡¡premisses¡¡in¡¡reference¡¡to



the¡¡minor¡¡extreme¡£¡¡Similarly¡¡if¡¡the¡¡syllogism¡¡is¡¡negative¡£¡¡Suppose



it¡¡has¡¡been¡¡proved¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡C¡¡through¡¡B¡£¡¡Then¡¡if¡¡it¡¡is



assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡to¡¡no¡¡B£»¡¡B¡¡will¡¡belong¡¡to¡¡none¡¡of



the¡¡Cs¡£¡¡And¡¡if¡¡A¡¡and¡¡B¡¡belong¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong¡¡to¡¡some¡¡B£º¡¡but



in¡¡the¡¡original¡¡premiss¡¡it¡¡belonged¡¡to¡¡no¡¡B¡£



¡¡¡¡If¡¡the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its¡¡contradictory£»¡¡the



syllogisms¡¡will¡¡be¡¡contradictory¡¡and¡¡not¡¡universal¡£¡¡For¡¡one¡¡premiss¡¡is



particular£»¡¡so¡¡that¡¡the¡¡conclusion¡¡also¡¡will¡¡be¡¡particular¡£¡¡Let¡¡the



syllogism¡¡be¡¡affirmative£»¡¡and¡¡let¡¡it¡¡be¡¡converted¡¡as¡¡stated¡£¡¡Then¡¡if¡¡A



belongs¡¡not¡¡to¡¡all¡¡C£»¡¡but¡¡to¡¡all¡¡B£»¡¡B¡¡will¡¡belong¡¡not¡¡to¡¡all¡¡C¡£¡¡And¡¡if



A¡¡belongs¡¡not¡¡to¡¡all¡¡C£»¡¡but¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong¡¡not¡¡to



all¡¡B¡£¡¡Similarly¡¡if¡¡the¡¡syllogism¡¡is¡¡negative¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to



some¡¡C£»¡¡and¡¡to¡¡no¡¡B£»¡¡B¡¡will¡¡belong£»¡¡not¡¡to¡¡no¡¡C¡¡at¡¡all£»¡¡but¡­not¡¡to



some¡¡C¡£¡¡And¡¡if¡¡A¡¡belongs¡¡to¡¡some¡¡C£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡as¡¡was



originally¡¡assumed£»¡¡A¡¡will¡¡belong¡¡to¡¡some¡¡B¡£



¡¡¡¡In¡¡particular¡¡syllogisms¡¡when¡¡the¡¡conclusion¡¡is¡¡converted¡¡into¡¡its



contradictory£»¡¡both¡¡premisses¡¡may¡¡be¡¡refuted£»¡¡but¡¡when¡¡it¡¡is¡¡converted



into¡¡its¡¡contrary£»¡¡neither¡£¡¡For¡¡the¡¡result¡¡is¡¡no¡¡longer£»¡¡as¡¡in¡¡the



universal¡¡syllogisms£»¡¡refutation¡¡in¡¡which¡¡the¡¡conclusion¡¡reached¡¡by¡¡O£»



conversion¡¡lacks¡¡universality£»¡¡but¡¡no¡¡refutation¡¡at¡¡all¡£¡¡Suppose



that¡¡A¡¡has¡¡been¡¡proved¡¡of¡¡some¡¡C¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs



to¡¡no¡¡C£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡B£º¡¡and¡¡if¡¡A



belongs¡¡to¡¡no¡¡C£»¡¡but¡¡to¡¡all¡¡B£»¡¡B¡¡will¡¡belong¡¡to¡¡no¡¡C¡£¡¡Thus¡¡both



premisses¡¡are¡¡refuted¡£¡¡But¡¡neither¡¡can¡¡be¡¡refuted¡¡if¡¡the¡¡conclusion¡¡is



converted¡¡into¡¡its¡¡contrary¡£¡¡For¡¡if¡¡A¡¡does¡¡not¡¡

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ