prior analytics-µÚ21½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
animal¡¡belongs¡¡to¡¡no¡¡stone£»¡¡nor¡¡stone¡¡to¡¡any¡¡man¡£¡¡If¡¡then¡¡A¡¡is¡¡taken
to¡¡belong¡¡to¡¡all¡¡B¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong¡¡to¡¡all¡¡C£»
consequently¡¡though¡¡both¡¡the¡¡premisses¡¡are¡¡false¡¡the¡¡conclusion¡¡is
true£º¡¡for¡¡every¡¡man¡¡is¡¡an¡¡animal¡£¡¡Similarly¡¡with¡¡the¡¡negative¡£¡¡For
it¡¡is¡¡possible¡¡that¡¡neither¡¡A¡¡nor¡¡B¡¡should¡¡belong¡¡to¡¡any¡¡C£»¡¡although¡¡A
belongs¡¡to¡¡all¡¡B£»¡¡e¡£g¡£¡¡if¡¡the¡¡same¡¡terms¡¡are¡¡taken¡¡and¡¡man¡¡is¡¡put¡¡as
middle£º¡¡for¡¡neither¡¡animal¡¡nor¡¡man¡¡belongs¡¡to¡¡any¡¡stone£»¡¡but¡¡animal
belongs¡¡to¡¡every¡¡man¡£¡¡Consequently¡¡if¡¡one¡¡term¡¡is¡¡taken¡¡to¡¡belong¡¡to
none¡¡of¡¡that¡¡to¡¡which¡¡it¡¡does¡¡belong£»¡¡and¡¡the¡¡other¡¡term¡¡is¡¡taken¡¡to
belong¡¡to¡¡all¡¡of¡¡that¡¡to¡¡which¡¡it¡¡does¡¡not¡¡belong£»¡¡though¡¡both¡¡the
premisses¡¡are¡¡false¡¡the¡¡conclusion¡¡will¡¡be¡¡true¡£¡¡£¨2£©¡¡A¡¡similar¡¡proof
may¡¡be¡¡given¡¡if¡¡each¡¡premiss¡¡is¡¡partially¡¡false¡£
¡¡¡¡£¨3£©¡¡But¡¡if¡¡one¡¡only¡¡of¡¡the¡¡premisses¡¡is¡¡false£»¡¡when¡¡the¡¡first
premiss¡¡is¡¡wholly¡¡false£»¡¡e¡£g¡£¡¡AB£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡true£»¡¡but
if¡¡the¡¡premiss¡¡BC¡¡is¡¡wholly¡¡false£»¡¡a¡¡true¡¡conclusion¡¡will¡¡be¡¡possible¡£
I¡¡mean¡¡by¡¡'wholly¡¡false'¡¡the¡¡contrary¡¡of¡¡the¡¡truth£»¡¡e¡£g¡£¡¡if¡¡what
belongs¡¡to¡¡none¡¡is¡¡assumed¡¡to¡¡belong¡¡to¡¡all£»¡¡or¡¡if¡¡what¡¡belongs¡¡to¡¡all
is¡¡assumed¡¡to¡¡belong¡¡to¡¡none¡£¡¡Let¡¡A¡¡belong¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C¡£¡¡If
then¡¡the¡¡premiss¡¡BC¡¡which¡¡I¡¡take¡¡is¡¡true£»¡¡and¡¡the¡¡premiss¡¡AB¡¡is¡¡wholly
false£»¡¡viz¡£¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡it¡¡is¡¡impossible¡¡that¡¡the
conclusion¡¡should¡¡be¡¡true£º¡¡for¡¡A¡¡belonged¡¡to¡¡none¡¡of¡¡the¡¡Cs£»¡¡since¡¡A
belonged¡¡to¡¡nothing¡¡to¡¡which¡¡B¡¡belonged£»¡¡and¡¡B¡¡belonged¡¡to¡¡all¡¡C¡£
Similarly¡¡there¡¡cannot¡¡be¡¡a¡¡true¡¡conclusion¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and
B¡¡to¡¡all¡¡C£»¡¡but¡¡while¡¡the¡¡true¡¡premiss¡¡BC¡¡is¡¡assumed£»¡¡the¡¡wholly¡¡false
premiss¡¡AB¡¡is¡¡also¡¡assumed£»¡¡viz¡£¡¡that¡¡A¡¡belongs¡¡to¡¡nothing¡¡to¡¡which
B¡¡belongs£º¡¡here¡¡the¡¡conclusion¡¡must¡¡be¡¡false¡£¡¡For¡¡A¡¡will¡¡belong¡¡to¡¡all
C£»¡¡since¡¡A¡¡belongs¡¡to¡¡everything¡¡to¡¡which¡¡B¡¡belongs£»¡¡and¡¡B¡¡to¡¡all¡¡C¡£
It¡¡is¡¡clear¡¡then¡¡that¡¡when¡¡the¡¡first¡¡premiss¡¡is¡¡wholly¡¡false£»
whether¡¡affirmative¡¡or¡¡negative£»¡¡and¡¡the¡¡other¡¡premiss¡¡is¡¡true£»¡¡the
conclusion¡¡cannot¡¡be¡¡true¡£
¡¡¡¡£¨4£©¡¡But¡¡if¡¡the¡¡premiss¡¡is¡¡not¡¡wholly¡¡false£»¡¡a¡¡true¡¡conclusion¡¡is
possible¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡C¡¡and¡¡to¡¡some¡¡B£»¡¡and¡¡if¡¡B¡¡belongs¡¡to
all¡¡C£»¡¡e¡£g¡£¡¡animal¡¡to¡¡every¡¡swan¡¡and¡¡to¡¡some¡¡white¡¡thing£»¡¡and¡¡white¡¡to
every¡¡swan£»¡¡then¡¡if¡¡we¡¡take¡¡as¡¡premisses¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»
and¡¡B¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong¡¡to¡¡all¡¡C¡¡truly£º¡¡for¡¡every¡¡swan¡¡is¡¡an
animal¡£¡¡Similarly¡¡if¡¡the¡¡statement¡¡AB¡¡is¡¡negative¡£¡¡For¡¡it¡¡is
possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡some¡¡B¡¡and¡¡to¡¡no¡¡C£»¡¡and¡¡that¡¡B¡¡should
belong¡¡to¡¡all¡¡C£»¡¡e¡£g¡£¡¡animal¡¡to¡¡some¡¡white¡¡thing£»¡¡but¡¡to¡¡no¡¡snow£»
and¡¡white¡¡to¡¡all¡¡snow¡£¡¡If¡¡then¡¡one¡¡should¡¡assume¡¡that¡¡A¡¡belongs¡¡to
no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡then¡¡will¡¡belong¡¡to¡¡no¡¡C¡£
¡¡¡¡£¨5£©¡¡But¡¡if¡¡the¡¡premiss¡¡AB£»¡¡which¡¡is¡¡assumed£»¡¡is¡¡wholly¡¡true£»¡¡and¡¡the
premiss¡¡BC¡¡is¡¡wholly¡¡false£»¡¡a¡¡true¡¡syllogism¡¡will¡¡be¡¡possible£º¡¡for
nothing¡¡prevents¡¡A¡¡belonging¡¡to¡¡all¡¡B¡¡and¡¡to¡¡all¡¡C£»¡¡though¡¡B¡¡belongs
to¡¡no¡¡C£»¡¡e¡£g¡£¡¡these¡¡being¡¡species¡¡of¡¡the¡¡same¡¡genus¡¡which¡¡are¡¡not
subordinate¡¡one¡¡to¡¡the¡¡other£º¡¡for¡¡animal¡¡belongs¡¡both¡¡to¡¡horse¡¡and
to¡¡man£»¡¡but¡¡horse¡¡to¡¡no¡¡man¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to
all¡¡B¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true£»¡¡although¡¡the
premiss¡¡BC¡¡is¡¡wholly¡¡false¡£¡¡Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative¡£
For¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡should¡¡belong¡¡neither¡¡to¡¡any¡¡B¡¡nor¡¡to¡¡any¡¡C£»
and¡¡that¡¡B¡¡should¡¡not¡¡belong¡¡to¡¡any¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡to¡¡species¡¡of
another¡¡genus£º¡¡for¡¡animal¡¡belongs¡¡neither¡¡to¡¡music¡¡nor¡¡to¡¡the¡¡art¡¡of
healing£»¡¡nor¡¡does¡¡music¡¡belong¡¡to¡¡the¡¡art¡¡of¡¡healing¡£¡¡If¡¡then¡¡it¡¡is
assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be
true¡£
¡¡¡¡£¨6£©¡¡And¡¡if¡¡the¡¡premiss¡¡BC¡¡is¡¡not¡¡wholly¡¡false¡¡but¡¡in¡¡part¡¡only£»¡¡even
so¡¡the¡¡conclusion¡¡may¡¡be¡¡true¡£¡¡For¡¡nothing¡¡prevents¡¡A¡¡belonging¡¡to¡¡the
whole¡¡of¡¡B¡¡and¡¡of¡¡C£»¡¡while¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡to¡¡its
species¡¡and¡¡difference£º¡¡for¡¡animal¡¡belongs¡¡to¡¡every¡¡man¡¡and¡¡to¡¡every
footed¡¡thing£»¡¡and¡¡man¡¡to¡¡some¡¡footed¡¡things¡¡though¡¡not¡¡to¡¡all¡£¡¡If¡¡then
it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong
to¡¡all¡¡C£º¡¡and¡¡this¡¡ex¡¡hypothesi¡¡is¡¡true¡£¡¡Similarly¡¡if¡¡the¡¡premiss¡¡AB
is¡¡negative¡£¡¡For¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡should¡¡neither¡¡belong¡¡to¡¡any
B¡¡nor¡¡to¡¡any¡¡C£»¡¡though¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡to¡¡the
species¡¡of¡¡another¡¡genus¡¡and¡¡its¡¡difference£º¡¡for¡¡animal¡¡neither
belongs¡¡to¡¡any¡¡wisdom¡¡nor¡¡to¡¡any¡¡instance¡¡of¡¡'speculative'£»¡¡but¡¡wisdom
belongs¡¡to¡¡some¡¡instance¡¡of¡¡'speculative'¡£¡¡If¡¡then¡¡it¡¡should¡¡be
assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡will¡¡belong¡¡to¡¡no¡¡C£º
and¡¡this¡¡ex¡¡hypothesi¡¡is¡¡true¡£
¡¡¡¡In¡¡particular¡¡syllogisms¡¡it¡¡is¡¡possible¡¡when¡¡the¡¡first¡¡premiss¡¡is
wholly¡¡false£»¡¡and¡¡the¡¡other¡¡true£»¡¡that¡¡the¡¡conclusion¡¡should¡¡be
true£»¡¡also¡¡when¡¡the¡¡first¡¡premiss¡¡is¡¡false¡¡in¡¡part£»¡¡and¡¡the¡¡other
true£»¡¡and¡¡when¡¡the¡¡first¡¡is¡¡true£»¡¡and¡¡the¡¡particular¡¡is¡¡false£»¡¡and
when¡¡both¡¡are¡¡false¡£¡¡£¨7£©¡¡For¡¡nothing¡¡prevents¡¡A¡¡belonging¡¡to¡¡no¡¡B£»¡¡but
to¡¡some¡¡C£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡e¡£g¡£¡¡animal¡¡belongs¡¡to¡¡no¡¡snow£»¡¡but¡¡to
some¡¡white¡¡thing£»¡¡and¡¡snow¡¡to¡¡some¡¡white¡¡thing¡£¡¡If¡¡then¡¡snow¡¡is
taken¡¡as¡¡middle£»¡¡and¡¡animal¡¡as¡¡first¡¡term£»¡¡and¡¡it¡¡is¡¡assumed¡¡that¡¡A
belongs¡¡to¡¡the¡¡whole¡¡of¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡then¡¡the¡¡premiss¡¡BC¡¡is
wholly¡¡false£»¡¡the¡¡premiss¡¡BC¡¡true£»¡¡and¡¡the¡¡conclusion¡¡true¡£
Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative£º¡¡for¡¡it¡¡is¡¡possible¡¡that¡¡A
should¡¡belong¡¡to¡¡the¡¡whole¡¡of¡¡B£»¡¡but¡¡not¡¡to¡¡some¡¡C£»¡¡although¡¡B¡¡belongs
to¡¡some¡¡C£»¡¡e¡£g¡£¡¡animal¡¡belongs¡¡to¡¡every¡¡man£»¡¡but¡¡does¡¡not¡¡follow
some¡¡white£»¡¡but¡¡man¡¡belongs¡¡to¡¡some¡¡white£»¡¡consequently¡¡if¡¡man¡¡be
taken¡¡as¡¡middle¡¡term¡¡and¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B¡¡but¡¡B
belongs¡¡to¡¡some¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true¡¡although¡¡the¡¡premiss¡¡AB
is¡¡wholly¡¡false¡£¡¡£¨If¡¡the¡¡premiss¡¡AB¡¡is¡¡false¡¡in¡¡part£»¡¡the¡¡conclusion
may¡¡be¡¡true¡£¡¡For¡¡nothing¡¡prevents¡¡A¡¡belonging¡¡both¡¡to¡¡B¡¡and¡¡to¡¡some¡¡C£»
and¡¡B¡¡belonging¡¡to¡¡some¡¡C£»¡¡e¡£g¡£¡¡animal¡¡to¡¡something¡¡beautiful¡¡and¡¡to
something¡¡great£»¡¡and¡¡beautiful¡¡belonging¡¡to¡¡something¡¡great¡£¡¡If¡¡then¡¡A
is¡¡assumed¡¡to¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡the¡¡a¡¡premiss¡¡AB
will¡¡be¡¡partially¡¡false£»¡¡the¡¡premiss¡¡BC¡¡will¡¡be¡¡true£»¡¡and¡¡the
conclusion¡¡true¡£¡¡Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative¡£¡¡For¡¡the¡¡same
terms¡¡will¡¡serve£»¡¡and¡¡in¡¡the¡¡same¡¡positions£»¡¡to¡¡prove¡¡the¡¡point¡£
¡¡¡¡£¨9£©¡¡Again¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡true£»¡¡and¡¡the¡¡premiss¡¡BC¡¡is¡¡false£»
the¡¡conclusion¡¡may¡¡be¡¡true¡£¡¡For¡¡nothing¡¡prevents¡¡A¡¡belonging¡¡to¡¡the
whole¡¡of¡¡B¡¡and¡¡to¡¡some¡¡C£»¡¡while¡¡B¡¡belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡animal¡¡to
every¡¡swan¡¡and¡¡to¡¡some¡¡black¡¡things£»¡¡though¡¡swan¡¡belongs¡¡to¡¡no¡¡black
thing¡£¡¡Consequently¡¡if¡¡it¡¡should¡¡be¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»
and¡¡B¡¡to¡¡some¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true£»¡¡although¡¡the¡¡statement
BC¡¡is¡¡false¡£¡¡Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative¡£¡¡For¡¡it¡¡is
possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡no¡¡B£»¡¡and¡¡not¡¡to¡¡some¡¡C£»¡¡while¡¡B
belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡to¡¡the¡¡species¡¡of¡¡another¡¡genus¡¡and¡¡to
the¡¡accident¡¡of¡¡its¡¡own¡¡species£º¡¡for¡¡animal¡¡belongs¡¡to¡¡no¡¡number¡¡and
not¡¡to¡¡some¡¡white¡¡things£»¡¡and¡¡number¡¡belongs¡¡to¡¡nothing¡¡white¡£¡¡If¡¡then
number¡¡is¡¡taken¡¡as¡¡middle£»¡¡and¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»
and¡¡B¡¡to¡¡some¡¡C£»¡¡then¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡which¡¡ex
hypothesi¡¡is¡¡true¡£¡¡And¡¡the¡¡premiss¡¡AB¡¡is¡¡true£»¡¡the¡¡premiss¡¡BC¡¡false¡£
¡¡¡¡£¨10£©¡¡Also¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡partially¡¡false£»¡¡and¡¡the¡¡premiss¡¡BC
is¡¡false¡¡too£»¡¡the¡¡conclusion¡¡may¡¡be¡¡true¡£¡¡For¡¡nothing¡¡prevents¡¡A
belonging¡¡to¡¡some¡¡B¡¡and¡¡to¡¡some¡¡C£»¡¡though¡¡B¡¡belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡if¡¡B
is¡¡the¡¡contrary¡¡of¡¡C£»¡¡and¡¡both¡¡are¡¡accidents¡¡of¡¡the¡¡same¡¡genus£º¡¡for
animal¡¡belongs¡¡to¡¡some¡¡white¡¡things¡¡and¡¡to¡¡some¡¡black¡¡things£»¡¡but
white¡¡belongs¡¡to¡¡no¡¡black¡¡thing¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡A
belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true¡£
Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative£º¡¡for¡¡the¡¡same¡¡terms¡¡arranged
in¡¡the¡¡same¡¡way¡¡will¡¡serve¡¡for¡¡the¡¡proof¡£
¡¡¡¡£¨11£©¡¡Also¡¡though¡¡both¡¡premisses¡¡are¡¡false¡¡the¡¡conclusion¡¡may¡¡be
true¡£¡¡For¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡may¡¡belong¡¡to¡¡no¡¡B¡¡and¡¡to¡¡some¡¡C£»
while¡¡B¡¡belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡in¡¡relation¡¡to¡¡the¡¡species¡¡of
another¡¡genus£»¡¡and¡¡to¡¡the¡¡accident¡¡of¡¡its¡¡own¡¡species£º¡¡for¡¡animal
belongs¡¡to¡¡no¡¡number£»¡¡but¡¡to¡¡some¡¡white¡¡things£»¡¡and¡¡number¡¡to
nothing¡¡white¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B¡¡and¡¡B
to¡¡some¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true£»¡¡though¡¡both¡¡premisses¡¡are
false¡£¡¡Similarly¡¡also¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative¡£¡¡For¡¡nothing
prevents¡¡A¡¡belonging¡¡to¡¡the¡¡whole¡¡of¡¡B£»¡¡and¡¡not¡¡to¡¡some¡¡C£»¡¡while¡¡B
belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡animal¡¡belongs¡¡to¡¡every¡¡swan£»¡¡and¡¡not¡¡to¡¡some
black¡¡things£»¡¡and¡¡swan¡¡belongs¡¡to¡¡nothing¡¡black¡£¡¡Consequently¡¡if¡¡it¡¡is
assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡then¡¡A¡¡does¡¡not
belong¡¡to¡¡some¡¡C¡£¡¡The¡¡conclusion¡¡then¡¡is