Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ21½Ú

prior analytics-µÚ21½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






animal¡¡belongs¡¡to¡¡no¡¡stone£»¡¡nor¡¡stone¡¡to¡¡any¡¡man¡£¡¡If¡¡then¡¡A¡¡is¡¡taken



to¡¡belong¡¡to¡¡all¡¡B¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong¡¡to¡¡all¡¡C£»



consequently¡¡though¡¡both¡¡the¡¡premisses¡¡are¡¡false¡¡the¡¡conclusion¡¡is



true£º¡¡for¡¡every¡¡man¡¡is¡¡an¡¡animal¡£¡¡Similarly¡¡with¡¡the¡¡negative¡£¡¡For



it¡¡is¡¡possible¡¡that¡¡neither¡¡A¡¡nor¡¡B¡¡should¡¡belong¡¡to¡¡any¡¡C£»¡¡although¡¡A



belongs¡¡to¡¡all¡¡B£»¡¡e¡£g¡£¡¡if¡¡the¡¡same¡¡terms¡¡are¡¡taken¡¡and¡¡man¡¡is¡¡put¡¡as



middle£º¡¡for¡¡neither¡¡animal¡¡nor¡¡man¡¡belongs¡¡to¡¡any¡¡stone£»¡¡but¡¡animal



belongs¡¡to¡¡every¡¡man¡£¡¡Consequently¡¡if¡¡one¡¡term¡¡is¡¡taken¡¡to¡¡belong¡¡to



none¡¡of¡¡that¡¡to¡¡which¡¡it¡¡does¡¡belong£»¡¡and¡¡the¡¡other¡¡term¡¡is¡¡taken¡¡to



belong¡¡to¡¡all¡¡of¡¡that¡¡to¡¡which¡¡it¡¡does¡¡not¡¡belong£»¡¡though¡¡both¡¡the



premisses¡¡are¡¡false¡¡the¡¡conclusion¡¡will¡¡be¡¡true¡£¡¡£¨2£©¡¡A¡¡similar¡¡proof



may¡¡be¡¡given¡¡if¡¡each¡¡premiss¡¡is¡¡partially¡¡false¡£



¡¡¡¡£¨3£©¡¡But¡¡if¡¡one¡¡only¡¡of¡¡the¡¡premisses¡¡is¡¡false£»¡¡when¡¡the¡¡first



premiss¡¡is¡¡wholly¡¡false£»¡¡e¡£g¡£¡¡AB£»¡¡the¡¡conclusion¡¡will¡¡not¡¡be¡¡true£»¡¡but



if¡¡the¡¡premiss¡¡BC¡¡is¡¡wholly¡¡false£»¡¡a¡¡true¡¡conclusion¡¡will¡¡be¡¡possible¡£



I¡¡mean¡¡by¡¡'wholly¡¡false'¡¡the¡¡contrary¡¡of¡¡the¡¡truth£»¡¡e¡£g¡£¡¡if¡¡what



belongs¡¡to¡¡none¡¡is¡¡assumed¡¡to¡¡belong¡¡to¡¡all£»¡¡or¡¡if¡¡what¡¡belongs¡¡to¡¡all



is¡¡assumed¡¡to¡¡belong¡¡to¡¡none¡£¡¡Let¡¡A¡¡belong¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C¡£¡¡If



then¡¡the¡¡premiss¡¡BC¡¡which¡¡I¡¡take¡¡is¡¡true£»¡¡and¡¡the¡¡premiss¡¡AB¡¡is¡¡wholly



false£»¡¡viz¡£¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡it¡¡is¡¡impossible¡¡that¡¡the



conclusion¡¡should¡¡be¡¡true£º¡¡for¡¡A¡¡belonged¡¡to¡¡none¡¡of¡¡the¡¡Cs£»¡¡since¡¡A



belonged¡¡to¡¡nothing¡¡to¡¡which¡¡B¡¡belonged£»¡¡and¡¡B¡¡belonged¡¡to¡¡all¡¡C¡£



Similarly¡¡there¡¡cannot¡¡be¡¡a¡¡true¡¡conclusion¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and



B¡¡to¡¡all¡¡C£»¡¡but¡¡while¡¡the¡¡true¡¡premiss¡¡BC¡¡is¡¡assumed£»¡¡the¡¡wholly¡¡false



premiss¡¡AB¡¡is¡¡also¡¡assumed£»¡¡viz¡£¡¡that¡¡A¡¡belongs¡¡to¡¡nothing¡¡to¡¡which



B¡¡belongs£º¡¡here¡¡the¡¡conclusion¡¡must¡¡be¡¡false¡£¡¡For¡¡A¡¡will¡¡belong¡¡to¡¡all



C£»¡¡since¡¡A¡¡belongs¡¡to¡¡everything¡¡to¡¡which¡¡B¡¡belongs£»¡¡and¡¡B¡¡to¡¡all¡¡C¡£



It¡¡is¡¡clear¡¡then¡¡that¡¡when¡¡the¡¡first¡¡premiss¡¡is¡¡wholly¡¡false£»



whether¡¡affirmative¡¡or¡¡negative£»¡¡and¡¡the¡¡other¡¡premiss¡¡is¡¡true£»¡¡the



conclusion¡¡cannot¡¡be¡¡true¡£



¡¡¡¡£¨4£©¡¡But¡¡if¡¡the¡¡premiss¡¡is¡¡not¡¡wholly¡¡false£»¡¡a¡¡true¡¡conclusion¡¡is



possible¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡C¡¡and¡¡to¡¡some¡¡B£»¡¡and¡¡if¡¡B¡¡belongs¡¡to



all¡¡C£»¡¡e¡£g¡£¡¡animal¡¡to¡¡every¡¡swan¡¡and¡¡to¡¡some¡¡white¡¡thing£»¡¡and¡¡white¡¡to



every¡¡swan£»¡¡then¡¡if¡¡we¡¡take¡¡as¡¡premisses¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»



and¡¡B¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong¡¡to¡¡all¡¡C¡¡truly£º¡¡for¡¡every¡¡swan¡¡is¡¡an



animal¡£¡¡Similarly¡¡if¡¡the¡¡statement¡¡AB¡¡is¡¡negative¡£¡¡For¡¡it¡¡is



possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡some¡¡B¡¡and¡¡to¡¡no¡¡C£»¡¡and¡¡that¡¡B¡¡should



belong¡¡to¡¡all¡¡C£»¡¡e¡£g¡£¡¡animal¡¡to¡¡some¡¡white¡¡thing£»¡¡but¡¡to¡¡no¡¡snow£»



and¡¡white¡¡to¡¡all¡¡snow¡£¡¡If¡¡then¡¡one¡¡should¡¡assume¡¡that¡¡A¡¡belongs¡¡to



no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡then¡¡will¡¡belong¡¡to¡¡no¡¡C¡£



¡¡¡¡£¨5£©¡¡But¡¡if¡¡the¡¡premiss¡¡AB£»¡¡which¡¡is¡¡assumed£»¡¡is¡¡wholly¡¡true£»¡¡and¡¡the



premiss¡¡BC¡¡is¡¡wholly¡¡false£»¡¡a¡¡true¡¡syllogism¡¡will¡¡be¡¡possible£º¡¡for



nothing¡¡prevents¡¡A¡¡belonging¡¡to¡¡all¡¡B¡¡and¡¡to¡¡all¡¡C£»¡¡though¡¡B¡¡belongs



to¡¡no¡¡C£»¡¡e¡£g¡£¡¡these¡¡being¡¡species¡¡of¡¡the¡¡same¡¡genus¡¡which¡¡are¡¡not



subordinate¡¡one¡¡to¡¡the¡¡other£º¡¡for¡¡animal¡¡belongs¡¡both¡¡to¡¡horse¡¡and



to¡¡man£»¡¡but¡¡horse¡¡to¡¡no¡¡man¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to



all¡¡B¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true£»¡¡although¡¡the



premiss¡¡BC¡¡is¡¡wholly¡¡false¡£¡¡Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative¡£



For¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡should¡¡belong¡¡neither¡¡to¡¡any¡¡B¡¡nor¡¡to¡¡any¡¡C£»



and¡¡that¡¡B¡¡should¡¡not¡¡belong¡¡to¡¡any¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡to¡¡species¡¡of



another¡¡genus£º¡¡for¡¡animal¡¡belongs¡¡neither¡¡to¡¡music¡¡nor¡¡to¡¡the¡¡art¡¡of



healing£»¡¡nor¡¡does¡¡music¡¡belong¡¡to¡¡the¡¡art¡¡of¡¡healing¡£¡¡If¡¡then¡¡it¡¡is



assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be



true¡£



¡¡¡¡£¨6£©¡¡And¡¡if¡¡the¡¡premiss¡¡BC¡¡is¡¡not¡¡wholly¡¡false¡¡but¡¡in¡¡part¡¡only£»¡¡even



so¡¡the¡¡conclusion¡¡may¡¡be¡¡true¡£¡¡For¡¡nothing¡¡prevents¡¡A¡¡belonging¡¡to¡¡the



whole¡¡of¡¡B¡¡and¡¡of¡¡C£»¡¡while¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡to¡¡its



species¡¡and¡¡difference£º¡¡for¡¡animal¡¡belongs¡¡to¡¡every¡¡man¡¡and¡¡to¡¡every



footed¡¡thing£»¡¡and¡¡man¡¡to¡¡some¡¡footed¡¡things¡¡though¡¡not¡¡to¡¡all¡£¡¡If¡¡then



it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡A¡¡will¡¡belong



to¡¡all¡¡C£º¡¡and¡¡this¡¡ex¡¡hypothesi¡¡is¡¡true¡£¡¡Similarly¡¡if¡¡the¡¡premiss¡¡AB



is¡¡negative¡£¡¡For¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡should¡¡neither¡¡belong¡¡to¡¡any



B¡¡nor¡¡to¡¡any¡¡C£»¡¡though¡¡B¡¡belongs¡¡to¡¡some¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡to¡¡the



species¡¡of¡¡another¡¡genus¡¡and¡¡its¡¡difference£º¡¡for¡¡animal¡¡neither



belongs¡¡to¡¡any¡¡wisdom¡¡nor¡¡to¡¡any¡¡instance¡¡of¡¡'speculative'£»¡¡but¡¡wisdom



belongs¡¡to¡¡some¡¡instance¡¡of¡¡'speculative'¡£¡¡If¡¡then¡¡it¡¡should¡¡be



assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡will¡¡belong¡¡to¡¡no¡¡C£º



and¡¡this¡¡ex¡¡hypothesi¡¡is¡¡true¡£



¡¡¡¡In¡¡particular¡¡syllogisms¡¡it¡¡is¡¡possible¡¡when¡¡the¡¡first¡¡premiss¡¡is



wholly¡¡false£»¡¡and¡¡the¡¡other¡¡true£»¡¡that¡¡the¡¡conclusion¡¡should¡¡be



true£»¡¡also¡¡when¡¡the¡¡first¡¡premiss¡¡is¡¡false¡¡in¡¡part£»¡¡and¡¡the¡¡other



true£»¡¡and¡¡when¡¡the¡¡first¡¡is¡¡true£»¡¡and¡¡the¡¡particular¡¡is¡¡false£»¡¡and



when¡¡both¡¡are¡¡false¡£¡¡£¨7£©¡¡For¡¡nothing¡¡prevents¡¡A¡¡belonging¡¡to¡¡no¡¡B£»¡¡but



to¡¡some¡¡C£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡e¡£g¡£¡¡animal¡¡belongs¡¡to¡¡no¡¡snow£»¡¡but¡¡to



some¡¡white¡¡thing£»¡¡and¡¡snow¡¡to¡¡some¡¡white¡¡thing¡£¡¡If¡¡then¡¡snow¡¡is



taken¡¡as¡¡middle£»¡¡and¡¡animal¡¡as¡¡first¡¡term£»¡¡and¡¡it¡¡is¡¡assumed¡¡that¡¡A



belongs¡¡to¡¡the¡¡whole¡¡of¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡then¡¡the¡¡premiss¡¡BC¡¡is



wholly¡¡false£»¡¡the¡¡premiss¡¡BC¡¡true£»¡¡and¡¡the¡¡conclusion¡¡true¡£



Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative£º¡¡for¡¡it¡¡is¡¡possible¡¡that¡¡A



should¡¡belong¡¡to¡¡the¡¡whole¡¡of¡¡B£»¡¡but¡¡not¡¡to¡¡some¡¡C£»¡¡although¡¡B¡¡belongs



to¡¡some¡¡C£»¡¡e¡£g¡£¡¡animal¡¡belongs¡¡to¡¡every¡¡man£»¡¡but¡¡does¡¡not¡¡follow



some¡¡white£»¡¡but¡¡man¡¡belongs¡¡to¡¡some¡¡white£»¡¡consequently¡¡if¡¡man¡¡be



taken¡¡as¡¡middle¡¡term¡¡and¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B¡¡but¡¡B



belongs¡¡to¡¡some¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true¡¡although¡¡the¡¡premiss¡¡AB



is¡¡wholly¡¡false¡£¡¡£¨If¡¡the¡¡premiss¡¡AB¡¡is¡¡false¡¡in¡¡part£»¡¡the¡¡conclusion



may¡¡be¡¡true¡£¡¡For¡¡nothing¡¡prevents¡¡A¡¡belonging¡¡both¡¡to¡¡B¡¡and¡¡to¡¡some¡¡C£»



and¡¡B¡¡belonging¡¡to¡¡some¡¡C£»¡¡e¡£g¡£¡¡animal¡¡to¡¡something¡¡beautiful¡¡and¡¡to



something¡¡great£»¡¡and¡¡beautiful¡¡belonging¡¡to¡¡something¡¡great¡£¡¡If¡¡then¡¡A



is¡¡assumed¡¡to¡¡belong¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡the¡¡a¡¡premiss¡¡AB



will¡¡be¡¡partially¡¡false£»¡¡the¡¡premiss¡¡BC¡¡will¡¡be¡¡true£»¡¡and¡¡the



conclusion¡¡true¡£¡¡Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative¡£¡¡For¡¡the¡¡same



terms¡¡will¡¡serve£»¡¡and¡¡in¡¡the¡¡same¡¡positions£»¡¡to¡¡prove¡¡the¡¡point¡£



¡¡¡¡£¨9£©¡¡Again¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡true£»¡¡and¡¡the¡¡premiss¡¡BC¡¡is¡¡false£»



the¡¡conclusion¡¡may¡¡be¡¡true¡£¡¡For¡¡nothing¡¡prevents¡¡A¡¡belonging¡¡to¡¡the



whole¡¡of¡¡B¡¡and¡¡to¡¡some¡¡C£»¡¡while¡¡B¡¡belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡animal¡¡to



every¡¡swan¡¡and¡¡to¡¡some¡¡black¡¡things£»¡¡though¡¡swan¡¡belongs¡¡to¡¡no¡¡black



thing¡£¡¡Consequently¡¡if¡¡it¡¡should¡¡be¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B£»



and¡¡B¡¡to¡¡some¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true£»¡¡although¡¡the¡¡statement



BC¡¡is¡¡false¡£¡¡Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative¡£¡¡For¡¡it¡¡is



possible¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡no¡¡B£»¡¡and¡¡not¡¡to¡¡some¡¡C£»¡¡while¡¡B



belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡to¡¡the¡¡species¡¡of¡¡another¡¡genus¡¡and¡¡to



the¡¡accident¡¡of¡¡its¡¡own¡¡species£º¡¡for¡¡animal¡¡belongs¡¡to¡¡no¡¡number¡¡and



not¡¡to¡¡some¡¡white¡¡things£»¡¡and¡¡number¡¡belongs¡¡to¡¡nothing¡¡white¡£¡¡If¡¡then



number¡¡is¡¡taken¡¡as¡¡middle£»¡¡and¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»



and¡¡B¡¡to¡¡some¡¡C£»¡¡then¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡which¡¡ex



hypothesi¡¡is¡¡true¡£¡¡And¡¡the¡¡premiss¡¡AB¡¡is¡¡true£»¡¡the¡¡premiss¡¡BC¡¡false¡£



¡¡¡¡£¨10£©¡¡Also¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡partially¡¡false£»¡¡and¡¡the¡¡premiss¡¡BC



is¡¡false¡¡too£»¡¡the¡¡conclusion¡¡may¡¡be¡¡true¡£¡¡For¡¡nothing¡¡prevents¡¡A



belonging¡¡to¡¡some¡¡B¡¡and¡¡to¡¡some¡¡C£»¡¡though¡¡B¡¡belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡if¡¡B



is¡¡the¡¡contrary¡¡of¡¡C£»¡¡and¡¡both¡¡are¡¡accidents¡¡of¡¡the¡¡same¡¡genus£º¡¡for



animal¡¡belongs¡¡to¡¡some¡¡white¡¡things¡¡and¡¡to¡¡some¡¡black¡¡things£»¡¡but



white¡¡belongs¡¡to¡¡no¡¡black¡¡thing¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡A



belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true¡£



Similarly¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative£º¡¡for¡¡the¡¡same¡¡terms¡¡arranged



in¡¡the¡¡same¡¡way¡¡will¡¡serve¡¡for¡¡the¡¡proof¡£



¡¡¡¡£¨11£©¡¡Also¡¡though¡¡both¡¡premisses¡¡are¡¡false¡¡the¡¡conclusion¡¡may¡¡be



true¡£¡¡For¡¡it¡¡is¡¡possible¡¡that¡¡A¡¡may¡¡belong¡¡to¡¡no¡¡B¡¡and¡¡to¡¡some¡¡C£»



while¡¡B¡¡belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡a¡¡genus¡¡in¡¡relation¡¡to¡¡the¡¡species¡¡of



another¡¡genus£»¡¡and¡¡to¡¡the¡¡accident¡¡of¡¡its¡¡own¡¡species£º¡¡for¡¡animal



belongs¡¡to¡¡no¡¡number£»¡¡but¡¡to¡¡some¡¡white¡¡things£»¡¡and¡¡number¡¡to



nothing¡¡white¡£¡¡If¡¡then¡¡it¡¡is¡¡assumed¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡B¡¡and¡¡B



to¡¡some¡¡C£»¡¡the¡¡conclusion¡¡will¡¡be¡¡true£»¡¡though¡¡both¡¡premisses¡¡are



false¡£¡¡Similarly¡¡also¡¡if¡¡the¡¡premiss¡¡AB¡¡is¡¡negative¡£¡¡For¡¡nothing



prevents¡¡A¡¡belonging¡¡to¡¡the¡¡whole¡¡of¡¡B£»¡¡and¡¡not¡¡to¡¡some¡¡C£»¡¡while¡¡B



belongs¡¡to¡¡no¡¡C£»¡¡e¡£g¡£¡¡animal¡¡belongs¡¡to¡¡every¡¡swan£»¡¡and¡¡not¡¡to¡¡some



black¡¡things£»¡¡and¡¡swan¡¡belongs¡¡to¡¡nothing¡¡black¡£¡¡Consequently¡¡if¡¡it¡¡is



assumed¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡then¡¡A¡¡does¡¡not



belong¡¡to¡¡some¡¡C¡£¡¡The¡¡conclusion¡¡then¡¡is

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ