Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ19½Ú

prior analytics-µÚ19½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡





first£»¡¡though¡¡all¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡¡can¡¡be¡¡resolved



into¡¡the¡¡third¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B¡¡and¡¡B¡¡to¡¡some¡¡C¡£¡¡Since¡¡the



particular¡¡affirmative¡¡is¡¡convertible£»¡¡C¡¡will¡¡belong¡¡to¡¡some¡¡B£º¡¡but



A¡¡belonged¡¡to¡¡all¡¡B£º¡¡so¡¡that¡¡the¡¡third¡¡figure¡¡is¡¡formed¡£¡¡Similarly



if¡¡the¡¡syllogism¡¡is¡¡negative£º¡¡for¡¡the¡¡particular¡¡affirmative¡¡is



convertible£º¡¡therefore¡¡A¡¡will¡¡belong¡¡to¡¡no¡¡B£»¡¡and¡¡to¡¡some¡¡C¡£



¡¡¡¡Of¡¡the¡¡syllogisms¡¡in¡¡the¡¡last¡¡figure¡¡one¡¡only¡¡cannot¡¡be¡¡resolved



into¡¡the¡¡first£»¡¡viz¡£¡¡when¡¡the¡¡negative¡¡statement¡¡is¡¡not¡¡universal£º¡¡all



the¡¡rest¡¡can¡¡be¡¡resolved¡£¡¡Let¡¡A¡¡and¡¡B¡¡be¡¡affirmed¡¡of¡¡all¡¡C£º¡¡then¡¡C¡¡can



be¡¡converted¡¡partially¡¡with¡¡either¡¡A¡¡or¡¡B£º¡¡C¡¡then¡¡belongs¡¡to¡¡some¡¡B¡£



Consequently¡¡we¡¡shall¡¡get¡¡the¡¡first¡¡figure£»¡¡if¡¡A¡¡belongs¡¡to¡¡all¡¡C£»¡¡and



C¡¡to¡¡some¡¡of¡¡the¡¡Bs¡£¡¡If¡¡A¡¡belongs¡¡to¡¡all¡¡C¡¡and¡¡B¡¡to¡¡some¡¡C£»¡¡the



argument¡¡is¡¡the¡¡same£º¡¡for¡¡B¡¡is¡¡convertible¡¡in¡¡reference¡¡to¡¡C¡£¡¡But¡¡if¡¡B



belongs¡¡to¡¡all¡¡C¡¡and¡¡A¡¡to¡¡some¡¡C£»¡¡the¡¡first¡¡term¡¡must¡¡be¡¡B£º¡¡for¡¡B



belongs¡¡to¡¡all¡¡C£»¡¡and¡¡C¡¡to¡¡some¡¡A£»¡¡therefore¡¡B¡¡belongs¡¡to¡¡some¡¡A¡£



But¡¡since¡¡the¡¡particular¡¡statement¡¡is¡¡convertible£»¡¡A¡¡will¡¡belong¡¡to



some¡¡B¡£¡¡If¡¡the¡¡syllogism¡¡is¡¡negative£»¡¡when¡¡the¡¡terms¡¡are¡¡universal



we¡¡must¡¡take¡¡them¡¡in¡¡a¡¡similar¡¡way¡£¡¡Let¡¡B¡¡belong¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡to¡¡no



C£º¡¡then¡¡C¡¡will¡¡belong¡¡to¡¡some¡¡B£»¡¡and¡¡A¡¡to¡¡no¡¡C£»¡¡and¡¡so¡¡C¡¡will¡¡be



middle¡¡term¡£¡¡Similarly¡¡if¡¡the¡¡negative¡¡statement¡¡is¡¡universal£»¡¡the



affirmative¡¡particular£º¡¡for¡¡A¡¡will¡¡belong¡¡to¡¡no¡¡C£»¡¡and¡¡C¡¡to¡¡some¡¡of



the¡¡Bs¡£¡¡But¡¡if¡¡the¡¡negative¡¡statement¡¡is¡¡particular£»¡¡no¡¡resolution



will¡¡be¡¡possible£»¡¡e¡£g¡£¡¡if¡¡B¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡not¡¡belong¡¡to¡¡some



C£º¡¡convert¡¡the¡¡statement¡¡BC¡¡and¡¡both¡¡premisses¡¡will¡¡be¡¡particular¡£



¡¡¡¡It¡¡is¡¡clear¡¡that¡¡in¡¡order¡¡to¡¡resolve¡¡the¡¡figures¡¡into¡¡one¡¡another



the¡¡premiss¡¡which¡¡concerns¡¡the¡¡minor¡¡extreme¡¡must¡¡be¡¡converted¡¡in¡¡both



the¡¡figures£º¡¡for¡¡when¡¡this¡¡premiss¡¡is¡¡altered£»¡¡the¡¡transition¡¡to¡¡the



other¡¡figure¡¡is¡¡made¡£



¡¡¡¡One¡¡of¡¡the¡¡syllogisms¡¡in¡¡the¡¡middle¡¡figure¡¡can£»¡¡the¡¡other¡¡cannot£»¡¡be



resolved¡¡into¡¡the¡¡third¡¡figure¡£¡¡Whenever¡¡the¡¡universal¡¡statement¡¡is



negative£»¡¡resolution¡¡is¡¡possible¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡no¡¡B¡¡and¡¡to¡¡some



C£»¡¡both¡¡B¡¡and¡¡C¡¡alike¡¡are¡¡convertible¡¡in¡¡relation¡¡to¡¡A£»¡¡so¡¡that¡¡B



belongs¡¡to¡¡no¡¡A¡¡and¡¡C¡¡to¡¡some¡¡A¡£¡¡A¡¡therefore¡¡is¡¡middle¡¡term¡£¡¡But



when¡¡A¡¡belongs¡¡to¡¡all¡¡B£»¡¡and¡¡not¡¡to¡¡some¡¡C£»¡¡resolution¡¡will¡¡not¡¡be



possible£º¡¡for¡¡neither¡¡of¡¡the¡¡premisses¡¡is¡¡universal¡¡after¡¡conversion¡£



¡¡¡¡Syllogisms¡¡in¡¡the¡¡third¡¡figure¡¡can¡¡be¡¡resolved¡¡into¡¡the¡¡middle



figure£»¡¡whenever¡¡the¡¡negative¡¡statement¡¡is¡¡universal£»¡¡e¡£g¡£¡¡if¡¡A



belongs¡¡to¡¡no¡¡C£»¡¡and¡¡B¡¡to¡¡some¡¡or¡¡all¡¡C¡£¡¡For¡¡C¡¡then¡¡will¡¡belong¡¡to



no¡¡A¡¡and¡¡to¡¡some¡¡B¡£¡¡But¡¡if¡¡the¡¡negative¡¡statement¡¡is¡¡particular£»¡¡no



resolution¡¡will¡¡be¡¡possible£º¡¡for¡¡the¡¡particular¡¡negative¡¡does¡¡not



admit¡¡of¡¡conversion¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡the¡¡same¡¡syllogisms¡¡cannot¡¡be¡¡resolved¡¡in



these¡¡figures¡¡which¡¡could¡¡not¡¡be¡¡resolved¡¡into¡¡the¡¡first¡¡figure£»¡¡and



that¡¡when¡¡syllogisms¡¡are¡¡reduced¡¡to¡¡the¡¡first¡¡figure¡¡these¡¡alone¡¡are



confirmed¡¡by¡¡reduction¡¡to¡¡what¡¡is¡¡impossible¡£



¡¡¡¡It¡¡is¡¡clear¡¡from¡¡what¡¡we¡¡have¡¡said¡¡how¡¡we¡¡ought¡¡to¡¡reduce



syllogisms£»¡¡and¡¡that¡¡the¡¡figures¡¡may¡¡be¡¡resolved¡¡into¡¡one¡¡another¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡46







¡¡¡¡In¡¡establishing¡¡or¡¡refuting£»¡¡it¡¡makes¡¡some¡¡difference¡¡whether¡¡we



suppose¡¡the¡¡expressions¡¡'not¡¡to¡¡be¡¡this'¡¡and¡¡'to¡¡be¡¡not¡­this'¡¡are



identical¡¡or¡¡different¡¡in¡¡meaning£»¡¡e¡£g¡£¡¡'not¡¡to¡¡be¡¡white'¡¡and¡¡'to¡¡be



not¡­white'¡£¡¡For¡¡they¡¡do¡¡not¡¡mean¡¡the¡¡same¡¡thing£»¡¡nor¡¡is¡¡'to¡¡be



not¡­white'¡¡the¡¡negation¡¡of¡¡'to¡¡be¡¡white'£»¡¡but¡¡'not¡¡to¡¡be¡¡white'¡£¡¡The



reason¡¡for¡¡this¡¡is¡¡as¡¡follows¡£¡¡The¡¡relation¡¡of¡¡'he¡¡can¡¡walk'¡¡to¡¡'he



can¡¡not¡­walk'¡¡is¡¡similar¡¡to¡¡the¡¡relation¡¡of¡¡'it¡¡is¡¡white'¡¡to¡¡'it¡¡is



not¡­white'£»¡¡so¡¡is¡¡that¡¡of¡¡'he¡¡knows¡¡what¡¡is¡¡good'¡¡to¡¡'he¡¡knows¡¡what¡¡is



not¡­good'¡£¡¡For¡¡there¡¡is¡¡no¡¡difference¡¡between¡¡the¡¡expressions¡¡'he



knows¡¡what¡¡is¡¡good'¡¡and¡¡'he¡¡is¡¡knowing¡¡what¡¡is¡¡good'£»¡¡or¡¡'he¡¡can¡¡walk'



and¡¡'he¡¡is¡¡able¡¡to¡¡walk'£º¡¡therefore¡¡there¡¡is¡¡no¡¡difference¡¡between



their¡¡contraries¡¡'he¡¡cannot¡¡walk'¡­'he¡¡is¡¡not¡¡able¡¡to¡¡walk'¡£¡¡If¡¡then



'he¡¡is¡¡not¡¡able¡¡to¡¡walk'¡¡means¡¡the¡¡same¡¡as¡¡'he¡¡is¡¡able¡¡not¡¡to¡¡walk'£»



capacity¡¡to¡¡walk¡¡and¡¡incapacity¡¡to¡¡walk¡¡will¡¡belong¡¡at¡¡the¡¡same¡¡time



to¡¡the¡¡same¡¡person¡¡£¨for¡¡the¡¡same¡¡man¡¡can¡¡both¡¡walk¡¡and¡¡not¡­walk£»¡¡and



is¡¡possessed¡¡of¡¡knowledge¡¡of¡¡what¡¡is¡¡good¡¡and¡¡of¡¡what¡¡is¡¡not¡­good£©£»



but¡¡an¡¡affirmation¡¡and¡¡a¡¡denial¡¡which¡¡are¡¡opposed¡¡to¡¡one¡¡another¡¡do



not¡¡belong¡¡at¡¡the¡¡same¡¡time¡¡to¡¡the¡¡same¡¡thing¡£¡¡As¡¡then¡¡'not¡¡to¡¡know



what¡¡is¡¡good'¡¡is¡¡not¡¡the¡¡same¡¡as¡¡'to¡¡know¡¡what¡¡is¡¡not¡¡good'£»¡¡so¡¡'to¡¡be



not¡­good'¡¡is¡¡not¡¡the¡¡same¡¡as¡¡'not¡¡to¡¡be¡¡good'¡£¡¡For¡¡when¡¡two¡¡pairs



correspond£»¡¡if¡¡the¡¡one¡¡pair¡¡are¡¡different¡¡from¡¡one¡¡another£»¡¡the



other¡¡pair¡¡also¡¡must¡¡be¡¡different¡£¡¡Nor¡¡is¡¡'to¡¡be¡¡not¡­equal'¡¡the¡¡same



as¡¡'not¡¡to¡¡be¡¡equal'£º¡¡for¡¡there¡¡is¡¡something¡¡underlying¡¡the¡¡one£»



viz¡£¡¡that¡¡which¡¡is¡¡not¡­equal£»¡¡and¡¡this¡¡is¡¡the¡¡unequal£»¡¡but¡¡there¡¡is



nothing¡¡underlying¡¡the¡¡other¡£¡¡Wherefore¡¡not¡¡everything¡¡is¡¡either¡¡equal



or¡¡unequal£»¡¡but¡¡everything¡¡is¡¡equal¡¡or¡¡is¡¡not¡¡equal¡£¡¡Further¡¡the



expressions¡¡'it¡¡is¡¡a¡¡not¡­white¡¡log'¡¡and¡¡'it¡¡is¡¡not¡¡a¡¡white¡¡log'¡¡do¡¡not



imply¡¡one¡¡another's¡¡truth¡£¡¡For¡¡if¡¡'it¡¡is¡¡a¡¡not¡­white¡¡log'£»¡¡it¡¡must



be¡¡a¡¡log£º¡¡but¡¡that¡¡which¡¡is¡¡not¡¡a¡¡white¡¡log¡¡need¡¡not¡¡be¡¡a¡¡log¡¡at



all¡£¡¡Therefore¡¡it¡¡is¡¡clear¡¡that¡¡'it¡¡is¡¡not¡­good'¡¡is¡¡not¡¡the¡¡denial



of¡¡'it¡¡is¡¡good'¡£¡¡If¡¡then¡¡every¡¡single¡¡statement¡¡may¡¡truly¡¡be¡¡said¡¡to



be¡¡either¡¡an¡¡affirmation¡¡or¡¡a¡¡negation£»¡¡if¡¡it¡¡is¡¡not¡¡a¡¡negation



clearly¡¡it¡¡must¡¡in¡¡a¡¡sense¡¡be¡¡an¡¡affirmation¡£¡¡But¡¡every¡¡affirmation



has¡¡a¡¡corresponding¡¡negation¡£¡¡The¡¡negation¡¡then¡¡of¡¡'it¡¡is¡¡not¡­good'¡¡is



'it¡¡is¡¡not¡¡not¡­good'¡£¡¡The¡¡relation¡¡of¡¡these¡¡statements¡¡to¡¡one



another¡¡is¡¡as¡¡follows¡£¡¡Let¡¡A¡¡stand¡¡for¡¡'to¡¡be¡¡good'£»¡¡B¡¡for¡¡'not¡¡to



be¡¡good'£»¡¡let¡¡C¡¡stand¡¡for¡¡'to¡¡be¡¡not¡­good'¡¡and¡¡be¡¡placed¡¡under¡¡B£»



and¡¡let¡¡D¡¡stand¡¡for¡¡not¡¡to¡¡be¡¡not¡­good'¡¡and¡¡be¡¡placed¡¡under¡¡A¡£¡¡Then



either¡¡A¡¡or¡¡B¡¡will¡¡belong¡¡to¡¡everything£»¡¡but¡¡they¡¡will¡¡never¡¡belong¡¡to



the¡¡same¡¡thing£»¡¡and¡¡either¡¡C¡¡or¡¡D¡¡will¡¡belong¡¡to¡¡everything£»¡¡but



they¡¡will¡¡never¡¡belong¡¡to¡¡the¡¡same¡¡thing¡£¡¡And¡¡B¡¡must¡¡belong¡¡to



everything¡¡to¡¡which¡¡C¡¡belongs¡£¡¡For¡¡if¡¡it¡¡is¡¡true¡¡to¡¡say¡¡'it¡¡is¡¡a



not¡­white'£»¡¡it¡¡is¡¡true¡¡also¡¡to¡¡say¡¡'it¡¡is¡¡not¡¡white'£º¡¡for¡¡it¡¡is



impossible¡¡that¡¡a¡¡thing¡¡should¡¡simultaneously¡¡be¡¡white¡¡and¡¡be



not¡­white£»¡¡or¡¡be¡¡a¡¡not¡­white¡¡log¡¡and¡¡be¡¡a¡¡white¡¡log£»¡¡consequently¡¡if



the¡¡affirmation¡¡does¡¡not¡¡belong£»¡¡the¡¡denial¡¡must¡¡belong¡£¡¡But¡¡C¡¡does



not¡¡always¡¡belong¡¡to¡¡B£º¡¡for¡¡what¡¡is¡¡not¡¡a¡¡log¡¡at¡¡all£»¡¡cannot¡¡be¡¡a



not¡­white¡¡log¡¡either¡£¡¡On¡¡the¡¡other¡¡hand¡¡D¡¡belongs¡¡to¡¡everything¡¡to



which¡¡A¡¡belongs¡£¡¡For¡¡either¡¡C¡¡or¡¡D¡¡belongs¡¡to¡¡everything¡¡to¡¡which¡¡A



belongs¡£¡¡But¡¡since¡¡a¡¡thing¡¡cannot¡¡be¡¡simultaneously¡¡not¡­white¡¡and



white£»¡¡D¡¡must¡¡belong¡¡to¡¡everything¡¡to¡¡which¡¡A¡¡belongs¡£¡¡For¡¡of¡¡that



which¡¡is¡¡white¡¡it¡¡is¡¡true¡¡to¡¡say¡¡that¡¡it¡¡is¡¡not¡¡not¡­white¡£¡¡But¡¡A¡¡is



not¡¡true¡¡of¡¡all¡¡D¡£¡¡For¡¡of¡¡that¡¡which¡¡is¡¡not¡¡a¡¡log¡¡at¡¡all¡¡it¡¡is¡¡not



true¡¡to¡¡say¡¡A£»¡¡viz¡£¡¡that¡¡it¡¡is¡¡a¡¡white¡¡log¡£¡¡Consequently¡¡D¡¡is¡¡true£»



but¡¡A¡¡is¡¡not¡¡true£»¡¡i¡£e¡£¡¡that¡¡it¡¡is¡¡a¡¡white¡¡log¡£¡¡It¡¡is¡¡clear¡¡also



that¡¡A¡¡and¡¡C¡¡cannot¡¡together¡¡belong¡¡to¡¡the¡¡same¡¡thing£»¡¡and¡¡that¡¡B



and¡¡D¡¡may¡¡possibly¡¡belong¡¡to¡¡the¡¡same¡¡thing¡£



¡¡¡¡Privative¡¡terms¡¡are¡¡similarly¡¡related¡¡positive¡¡ter¡¡terms¡¡respect



of¡¡this¡¡arrangement¡£¡¡Let¡¡A¡¡stand¡¡for¡¡'equal'£»¡¡B¡¡for¡¡'not¡¡equal'£»¡¡C¡¡for



'unequal'£»¡¡D¡¡for¡¡'not¡¡unequal'¡£



¡¡¡¡In¡¡many¡¡things¡¡also£»¡¡to¡¡some¡¡of¡¡which¡¡something¡¡belongs¡¡which¡¡does



not¡¡belong¡¡to¡¡others£»¡¡the¡¡negation¡¡may¡¡be¡¡true¡¡in¡¡a¡¡similar¡¡way£»



viz¡£¡¡that¡¡all¡¡are¡¡not¡¡white¡¡or¡¡that¡¡each¡¡is¡¡not¡¡white£»¡¡while¡¡that¡¡each



is¡¡not¡­white¡¡or¡¡all¡¡are¡¡not¡­white¡¡is¡¡false¡£¡¡Similarly¡¡also¡¡'every



animal¡¡is¡¡not¡­white'¡¡is¡¡not¡¡the¡¡negation¡¡of¡¡'every¡¡animal¡¡is¡¡white'



£¨for¡¡both¡¡are¡¡false£©£º¡¡the¡¡proper¡¡negation¡¡is¡¡'every¡¡animal¡¡is¡¡not



white'¡£¡¡Since¡¡it¡¡is¡¡clear¡¡that¡¡'it¡¡is¡¡not¡­white'¡¡and¡¡'it¡¡is¡¡not¡¡white'



mean¡¡different¡¡things£»¡¡and¡¡one¡¡is¡¡an¡¡affirmation£»¡¡the¡¡other¡¡a



denial£»¡¡it¡¡is¡¡evident¡¡that¡¡the¡¡method¡¡of¡¡proving¡¡each¡¡cannot¡¡be¡¡the



same£»¡¡e¡£g¡£¡¡that¡¡whatever¡¡is¡¡an¡¡animal¡¡is¡¡not¡¡white¡¡or¡¡may¡¡not¡¡be



white£»¡¡and¡¡that¡¡it¡¡is¡¡true¡¡to¡¡call¡¡it¡¡not¡­white£»¡¡for¡¡this¡¡means¡¡that



it¡¡is¡¡not¡­white¡£¡¡But¡¡we¡¡may¡¡prove¡¡that¡¡it¡¡is¡¡true¡¡to¡¡call¡¡it¡¡white



or¡¡not¡­white¡¡in¡¡the¡¡same¡¡way¡¡for¡¡both¡¡are¡¡proved¡¡constructively¡¡by



means¡¡of¡¡the¡¡first¡¡figure¡£¡¡For¡¡the¡¡expression¡¡'it¡¡is¡¡true'¡¡stands¡¡on¡¡a



similar¡¡footing¡¡to¡¡'it¡¡is'¡£¡¡For¡¡the¡¡negation¡¡of¡¡'it¡¡is¡¡true¡¡to¡¡call¡¡it



white'¡¡is¡¡not¡¡'it¡¡is¡¡true¡¡to¡¡call¡¡it¡¡not¡­white'¡¡but¡¡'it¡¡is¡¡not¡¡true¡¡to



call¡¡it¡¡white'¡£¡¡If¡¡then¡¡it¡¡is¡¡to¡¡be¡¡true¡¡to¡¡say¡¡that¡¡whatever¡¡is¡¡a¡¡man



is¡¡musical¡¡or¡¡is¡¡not¡­musical£»¡¡we¡¡must¡¡assume¡¡that¡¡whatever¡¡is¡¡an



animal¡¡either¡¡is¡¡musical¡¡or¡¡is¡¡not¡­musical£»¡¡and¡¡the¡¡proof¡¡has¡¡been



made¡£¡¡That¡¡whatever¡¡is¡¡a¡¡man¡¡is¡¡not¡¡musical¡¡is¡¡prov

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ