prior analytics-µÚ18½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
'being'¡¡were¡¡taken¡¡as¡¡middle¡¡and¡¡'being'¡¡simply¡¡were¡¡joined¡¡to¡¡the
extreme£»¡¡not¡¡'being¡¡something'£»¡¡we¡¡should¡¡not¡¡have¡¡had¡¡a¡¡syllogism
proving¡¡that¡¡there¡¡is¡¡knowledge¡¡of¡¡the¡¡good£»¡¡that¡¡it¡¡is¡¡good£»¡¡but¡¡that
it¡¡is£»¡¡e¡£g¡£¡¡let¡¡A¡¡stand¡¡for¡¡knowledge¡¡that¡¡it¡¡is£»¡¡B¡¡for¡¡being£»¡¡C¡¡for
good¡£¡¡Clearly¡¡then¡¡in¡¡syllogisms¡¡which¡¡are¡¡thus¡¡limited¡¡we¡¡must¡¡take
the¡¡terms¡¡in¡¡the¡¡way¡¡stated¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡39
¡¡¡¡We¡¡ought¡¡also¡¡to¡¡exchange¡¡terms¡¡which¡¡have¡¡the¡¡same¡¡value£»¡¡word
for¡¡word£»¡¡and¡¡phrase¡¡for¡¡phrase£»¡¡and¡¡word¡¡and¡¡phrase£»¡¡and¡¡always
take¡¡a¡¡word¡¡in¡¡preference¡¡to¡¡a¡¡phrase£º¡¡for¡¡thus¡¡the¡¡setting¡¡out¡¡of¡¡the
terms¡¡will¡¡be¡¡easier¡£¡¡For¡¡example¡¡if¡¡it¡¡makes¡¡no¡¡difference¡¡whether¡¡we
say¡¡that¡¡the¡¡supposable¡¡is¡¡not¡¡the¡¡genus¡¡of¡¡the¡¡opinable¡¡or¡¡that¡¡the
opinable¡¡is¡¡not¡¡identical¡¡with¡¡a¡¡particular¡¡kind¡¡of¡¡supposable¡¡£¨for
what¡¡is¡¡meant¡¡is¡¡the¡¡same¡¡in¡¡both¡¡statements£©£»¡¡it¡¡is¡¡better¡¡to¡¡take¡¡as
the¡¡terms¡¡the¡¡supposable¡¡and¡¡the¡¡opinable¡¡in¡¡preference¡¡to¡¡the
phrase¡¡suggested¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡40
¡¡¡¡Since¡¡the¡¡expressions¡¡'pleasure¡¡is¡¡good'¡¡and¡¡'pleasure¡¡is¡¡the
good'¡¡are¡¡not¡¡identical£»¡¡we¡¡must¡¡not¡¡set¡¡out¡¡the¡¡terms¡¡in¡¡the¡¡same
way£»¡¡but¡¡if¡¡the¡¡syllogism¡¡is¡¡to¡¡prove¡¡that¡¡pleasure¡¡is¡¡the¡¡good£»¡¡the
term¡¡must¡¡be¡¡'the¡¡good'£»¡¡but¡¡if¡¡the¡¡object¡¡is¡¡to¡¡prove¡¡that¡¡pleasure
is¡¡good£»¡¡the¡¡term¡¡will¡¡be¡¡'good'¡£¡¡Similarly¡¡in¡¡all¡¡other¡¡cases¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡41
¡¡¡¡It¡¡is¡¡not¡¡the¡¡same£»¡¡either¡¡in¡¡fact¡¡or¡¡in¡¡speech£»¡¡that¡¡A¡¡belongs¡¡to
all¡¡of¡¡that¡¡to¡¡which¡¡B¡¡belongs£»¡¡and¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡of¡¡that¡¡to
all¡¡of¡¡which¡¡B¡¡belongs£º¡¡for¡¡nothing¡¡prevents¡¡B¡¡from¡¡belonging¡¡to¡¡C£»
though¡¡not¡¡to¡¡all¡¡C£º¡¡e¡£g¡£¡¡let¡¡B¡¡stand¡¡for¡¡beautiful£»¡¡and¡¡C¡¡for
white¡£¡¡If¡¡beauty¡¡belongs¡¡to¡¡something¡¡white£»¡¡it¡¡is¡¡true¡¡to¡¡say¡¡that
beauty¡¡belongs¡¡to¡¡that¡¡which¡¡is¡¡white£»¡¡but¡¡not¡¡perhaps¡¡to¡¡everything
that¡¡is¡¡white¡£¡¡If¡¡then¡¡A¡¡belongs¡¡to¡¡B£»¡¡but¡¡not¡¡to¡¡everything¡¡of
which¡¡B¡¡is¡¡predicated£»¡¡then¡¡whether¡¡B¡¡belongs¡¡to¡¡all¡¡C¡¡or¡¡merely
belongs¡¡to¡¡C£»¡¡it¡¡is¡¡not¡¡necessary¡¡that¡¡A¡¡should¡¡belong£»¡¡I¡¡do¡¡not¡¡say
to¡¡all¡¡C£»¡¡but¡¡even¡¡to¡¡C¡¡at¡¡all¡£¡¡But¡¡if¡¡A¡¡belongs¡¡to¡¡everything¡¡of
which¡¡B¡¡is¡¡truly¡¡stated£»¡¡it¡¡will¡¡follow¡¡that¡¡A¡¡can¡¡be¡¡said¡¡of¡¡all¡¡of
that¡¡of¡¡all¡¡of¡¡which¡¡B¡¡is¡¡said¡£¡¡If¡¡however¡¡A¡¡is¡¡said¡¡of¡¡that¡¡of¡¡all¡¡of
which¡¡B¡¡may¡¡be¡¡said£»¡¡nothing¡¡prevents¡¡B¡¡belonging¡¡to¡¡C£»¡¡and¡¡yet¡¡A
not¡¡belonging¡¡to¡¡all¡¡C¡¡or¡¡to¡¡any¡¡C¡¡at¡¡all¡£¡¡If¡¡then¡¡we¡¡take¡¡three¡¡terms
it¡¡is¡¡clear¡¡that¡¡the¡¡expression¡¡'A¡¡is¡¡said¡¡of¡¡all¡¡of¡¡which¡¡B¡¡is
said'¡¡means¡¡this£»¡¡'A¡¡is¡¡said¡¡of¡¡all¡¡the¡¡things¡¡of¡¡which¡¡B¡¡is¡¡said'¡£
And¡¡if¡¡B¡¡is¡¡said¡¡of¡¡all¡¡of¡¡a¡¡third¡¡term£»¡¡so¡¡also¡¡is¡¡A£º¡¡but¡¡if¡¡B¡¡is¡¡not
said¡¡of¡¡all¡¡of¡¡the¡¡third¡¡term£»¡¡there¡¡is¡¡no¡¡necessity¡¡that¡¡A¡¡should
be¡¡said¡¡of¡¡all¡¡of¡¡it¡£
¡¡¡¡We¡¡must¡¡not¡¡suppose¡¡that¡¡something¡¡absurd¡¡results¡¡through¡¡setting
out¡¡the¡¡terms£º¡¡for¡¡we¡¡do¡¡not¡¡use¡¡the¡¡existence¡¡of¡¡this¡¡particular
thing£»¡¡but¡¡imitate¡¡the¡¡geometrician¡¡who¡¡says¡¡that¡¡'this¡¡line¡¡a¡¡foot
long'¡¡or¡¡'this¡¡straight¡¡line'¡¡or¡¡'this¡¡line¡¡without¡¡breadth'¡¡exists
although¡¡it¡¡does¡¡not£»¡¡but¡¡does¡¡not¡¡use¡¡the¡¡diagrams¡¡in¡¡the¡¡sense
that¡¡he¡¡reasons¡¡from¡¡them¡£¡¡For¡¡in¡¡general£»¡¡if¡¡two¡¡things¡¡are¡¡not
related¡¡as¡¡whole¡¡to¡¡part¡¡and¡¡part¡¡to¡¡whole£»¡¡the¡¡prover¡¡does¡¡not
prove¡¡from¡¡them£»¡¡and¡¡so¡¡no¡¡syllogism¡¡a¡¡is¡¡formed¡£¡¡We¡¡£¨I¡¡mean¡¡the
learner£©¡¡use¡¡the¡¡process¡¡of¡¡setting¡¡out¡¡terms¡¡like¡¡perception¡¡by
sense£»¡¡not¡¡as¡¡though¡¡it¡¡were¡¡impossible¡¡to¡¡demonstrate¡¡without¡¡these
illustrative¡¡terms£»¡¡as¡¡it¡¡is¡¡to¡¡demonstrate¡¡without¡¡the¡¡premisses¡¡of
the¡¡syllogism¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡42
¡¡¡¡We¡¡should¡¡not¡¡forget¡¡that¡¡in¡¡the¡¡same¡¡syllogism¡¡not¡¡all
conclusions¡¡are¡¡reached¡¡through¡¡one¡¡figure£»¡¡but¡¡one¡¡through¡¡one
figure£»¡¡another¡¡through¡¡another¡£¡¡Clearly¡¡then¡¡we¡¡must¡¡analyse
arguments¡¡in¡¡accordance¡¡with¡¡this¡£¡¡Since¡¡not¡¡every¡¡problem¡¡is¡¡proved
in¡¡every¡¡figure£»¡¡but¡¡certain¡¡problems¡¡in¡¡each¡¡figure£»¡¡it¡¡is¡¡clear¡¡from
the¡¡conclusion¡¡in¡¡what¡¡figure¡¡the¡¡premisses¡¡should¡¡be¡¡sought¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡43
¡¡¡¡In¡¡reference¡¡to¡¡those¡¡arguments¡¡aiming¡¡at¡¡a¡¡definition¡¡which¡¡have
been¡¡directed¡¡to¡¡prove¡¡some¡¡part¡¡of¡¡the¡¡definition£»¡¡we¡¡must¡¡take¡¡as
a¡¡term¡¡the¡¡point¡¡to¡¡which¡¡the¡¡argument¡¡has¡¡been¡¡directed£»¡¡not¡¡the
whole¡¡definition£º¡¡for¡¡so¡¡we¡¡shall¡¡be¡¡less¡¡likely¡¡to¡¡be¡¡disturbed¡¡by
the¡¡length¡¡of¡¡the¡¡term£º¡¡e¡£g¡£¡¡if¡¡a¡¡man¡¡proves¡¡that¡¡water¡¡is¡¡a¡¡drinkable
liquid£»¡¡we¡¡must¡¡take¡¡as¡¡terms¡¡drinkable¡¡and¡¡water¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡44
¡¡¡¡Further¡¡we¡¡must¡¡not¡¡try¡¡to¡¡reduce¡¡hypothetical¡¡syllogisms£»¡¡for
with¡¡the¡¡given¡¡premisses¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡reduce¡¡them¡£¡¡For¡¡they
have¡¡not¡¡been¡¡proved¡¡by¡¡syllogism£»¡¡but¡¡assented¡¡to¡¡by¡¡agreement¡£¡¡For
instance¡¡if¡¡a¡¡man¡¡should¡¡suppose¡¡that¡¡unless¡¡there¡¡is¡¡one¡¡faculty¡¡of
contraries£»¡¡there¡¡cannot¡¡be¡¡one¡¡science£»¡¡and¡¡should¡¡then¡¡argue¡¡that
not¡¡every¡¡faculty¡¡is¡¡of¡¡contraries£»¡¡e¡£g¡£¡¡of¡¡what¡¡is¡¡healthy¡¡and¡¡what
is¡¡sickly£º¡¡for¡¡the¡¡same¡¡thing¡¡will¡¡then¡¡be¡¡at¡¡the¡¡same¡¡time¡¡healthy
and¡¡sickly¡£¡¡He¡¡has¡¡shown¡¡that¡¡there¡¡is¡¡not¡¡one¡¡faculty¡¡of¡¡all
contraries£»¡¡but¡¡he¡¡has¡¡not¡¡proved¡¡that¡¡there¡¡is¡¡not¡¡a¡¡science¡£¡¡And¡¡yet
one¡¡must¡¡agree¡£¡¡But¡¡the¡¡agreement¡¡does¡¡not¡¡come¡¡from¡¡a¡¡syllogism£»
but¡¡from¡¡an¡¡hypothesis¡£¡¡This¡¡argument¡¡cannot¡¡be¡¡reduced£º¡¡but¡¡the¡¡proof
that¡¡there¡¡is¡¡not¡¡a¡¡single¡¡faculty¡¡can¡£¡¡The¡¡latter¡¡argument¡¡perhaps
was¡¡a¡¡syllogism£º¡¡but¡¡the¡¡former¡¡was¡¡an¡¡hypothesis¡£
¡¡¡¡The¡¡same¡¡holds¡¡good¡¡of¡¡arguments¡¡which¡¡are¡¡brought¡¡to¡¡a¡¡conclusion
per¡¡impossibile¡£¡¡These¡¡cannot¡¡be¡¡analysed¡¡either£»¡¡but¡¡the¡¡reduction¡¡to
what¡¡is¡¡impossible¡¡can¡¡be¡¡analysed¡¡since¡¡it¡¡is¡¡proved¡¡by¡¡syllogism£»
though¡¡the¡¡rest¡¡of¡¡the¡¡argument¡¡cannot£»¡¡because¡¡the¡¡conclusion¡¡is
reached¡¡from¡¡an¡¡hypothesis¡£¡¡But¡¡these¡¡differ¡¡from¡¡the¡¡previous
arguments£º¡¡for¡¡in¡¡the¡¡former¡¡a¡¡preliminary¡¡agreement¡¡must¡¡be¡¡reached
if¡¡one¡¡is¡¡to¡¡accept¡¡the¡¡conclusion£»¡¡e¡£g¡£¡¡an¡¡agreement¡¡that¡¡if¡¡there¡¡is
proved¡¡to¡¡be¡¡one¡¡faculty¡¡of¡¡contraries£»¡¡then¡¡contraries¡¡fall¡¡under¡¡the
same¡¡science£»¡¡whereas¡¡in¡¡the¡¡latter£»¡¡even¡¡if¡¡no¡¡preliminary
agreement¡¡has¡¡been¡¡made£»¡¡men¡¡still¡¡accept¡¡the¡¡reasoning£»¡¡because¡¡the
falsity¡¡is¡¡patent£»¡¡e¡£g¡£¡¡the¡¡falsity¡¡of¡¡what¡¡follows¡¡from¡¡the
assumption¡¡that¡¡the¡¡diagonal¡¡is¡¡commensurate£»¡¡viz¡£¡¡that¡¡then¡¡odd
numbers¡¡are¡¡equal¡¡to¡¡evens¡£
¡¡¡¡Many¡¡other¡¡arguments¡¡are¡¡brought¡¡to¡¡a¡¡conclusion¡¡by¡¡the¡¡help¡¡of¡¡an
hypothesis£»¡¡these¡¡we¡¡ought¡¡to¡¡consider¡¡and¡¡mark¡¡out¡¡clearly¡£¡¡We
shall¡¡describe¡¡in¡¡the¡¡sequel¡¡their¡¡differences£»¡¡and¡¡the¡¡various¡¡ways
in¡¡which¡¡hypothetical¡¡arguments¡¡are¡¡formed£º¡¡but¡¡at¡¡present¡¡this¡¡much
must¡¡be¡¡clear£»¡¡that¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡resolve¡¡such¡¡arguments
into¡¡the¡¡figures¡£¡¡And¡¡we¡¡have¡¡explained¡¡the¡¡reason¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡45
¡¡¡¡Whatever¡¡problems¡¡are¡¡proved¡¡in¡¡more¡¡than¡¡one¡¡figure£»¡¡if¡¡they¡¡have
been¡¡established¡¡in¡¡one¡¡figure¡¡by¡¡syllogism£»¡¡can¡¡be¡¡reduced¡¡to¡¡another
figure£»¡¡e¡£g¡£¡¡a¡¡negative¡¡syllogism¡¡in¡¡the¡¡first¡¡figure¡¡can¡¡be¡¡reduced
to¡¡the¡¡second£»¡¡and¡¡a¡¡syllogism¡¡in¡¡the¡¡middle¡¡figure¡¡to¡¡the¡¡first£»
not¡¡all¡¡however¡¡but¡¡some¡¡only¡£¡¡The¡¡point¡¡will¡¡be¡¡clear¡¡in¡¡the
sequel¡£¡¡If¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡all¡¡C£»¡¡then¡¡A¡¡belongs¡¡to¡¡no
C¡£¡¡Thus¡¡the¡¡first¡¡figure£»¡¡but¡¡if¡¡the¡¡negative¡¡statement¡¡is
converted£»¡¡we¡¡shall¡¡have¡¡the¡¡middle¡¡figure¡£¡¡For¡¡B¡¡belongs¡¡to¡¡no¡¡A£»¡¡and
to¡¡all¡¡C¡£¡¡Similarly¡¡if¡¡the¡¡syllogism¡¡is¡¡not¡¡universal¡¡but
particular£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to¡¡no¡¡B£»¡¡and¡¡B¡¡to¡¡some¡¡C¡£¡¡Convert¡¡the
negative¡¡statement¡¡and¡¡you¡¡will¡¡have¡¡the¡¡middle¡¡figure¡£
¡¡¡¡The¡¡universal¡¡syllogisms¡¡in¡¡the¡¡second¡¡figure¡¡can¡¡be¡¡reduced¡¡to
the¡¡first£»¡¡but¡¡only¡¡one¡¡of¡¡the¡¡two¡¡particular¡¡syllogisms¡£¡¡Let¡¡A¡¡belong
to¡¡no¡¡B¡¡and¡¡to¡¡all¡¡C¡£¡¡Convert¡¡the¡¡negative¡¡statement£»¡¡and¡¡you¡¡will
have¡¡the¡¡first¡¡figure¡£¡¡For¡¡B¡¡will¡¡belong¡¡to¡¡no¡¡A¡¡and¡¡A¡¡to¡¡all¡¡C¡£¡¡But
if¡¡the¡¡affirmative¡¡statement¡¡concerns¡¡B£»¡¡and¡¡the¡¡negative¡¡C£»¡¡C¡¡must¡¡be
made¡¡first¡¡term¡£¡¡For¡¡C¡¡belongs¡¡to¡¡no¡¡A£»¡¡and¡¡A¡¡to¡¡all¡¡B£º¡¡therefore¡¡C
belongs¡¡to¡¡no¡¡B¡£¡¡B¡¡then¡¡belongs¡¡to¡¡no¡¡C£º¡¡for¡¡the¡¡negative¡¡statement¡¡is
convertible¡£
¡¡¡¡But¡¡if¡¡the¡¡syllogism¡¡is¡¡particular£»¡¡whenever¡¡the¡¡negative
statement¡¡concerns¡¡the¡¡major¡¡extreme£»¡¡reduction¡¡to¡¡the¡¡first¡¡figure
will¡¡be¡¡possible£»¡¡e¡£g¡£¡¡if¡¡A¡¡belongs¡¡to¡¡no¡¡B¡¡and¡¡to¡¡some¡¡C£º¡¡convert¡¡the
negative¡¡statement¡¡and¡¡you¡¡will¡¡have¡¡the¡¡first¡¡figure¡£¡¡For¡¡B¡¡will
belong¡¡to¡¡no¡¡A¡¡and¡¡A¡¡to¡¡some¡¡C¡£¡¡But¡¡when¡¡the¡¡affirmative¡¡statement
concerns¡¡the¡¡major¡¡extreme£»¡¡no¡¡resolution¡¡will¡¡be¡¡possible£»¡¡e¡£g¡£¡¡if
A¡¡belongs¡¡to¡¡all¡¡B£»¡¡but¡¡not¡¡to¡¡all¡¡C£º¡¡for¡¡the¡¡statement¡¡AB¡¡does¡¡not
admit¡¡of¡¡conversion£»¡¡nor¡¡would¡¡there¡¡be¡¡a¡¡syllogism¡¡if¡¡it¡¡did¡£
¡¡¡¡Again¡¡syllogisms¡¡in¡¡the¡¡third¡¡figure¡¡cannot¡¡all¡¡be¡¡resolved¡¡into¡¡the
first£»¡¡though¡¡all¡¡syllogisms¡¡in¡¡the¡¡first¡¡figure¡¡can¡¡be¡¡resolved
into¡¡the¡¡third¡£¡¡Let¡¡A¡¡belong¡¡to¡¡all¡¡B¡¡and