Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ15½Ú

prior analytics-µÚ15½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






It¡¡turns¡¡out¡¡then¡¡that¡¡those¡¡who¡¡inquire¡¡in¡¡this¡¡manner¡¡are¡¡looking



gratuitously¡¡for¡¡some¡¡other¡¡way¡¡than¡¡the¡¡necessary¡¡way¡¡because¡¡they



have¡¡failed¡¡to¡¡observe¡¡the¡¡identity¡¡of¡¡the¡¡Bs¡¡with¡¡the¡¡Hs¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡29







¡¡¡¡Syllogisms¡¡which¡¡lead¡¡to¡¡impossible¡¡conclusions¡¡are¡¡similar¡¡to



ostensive¡¡syllogisms£»¡¡they¡¡also¡¡are¡¡formed¡¡by¡¡means¡¡of¡¡the¡¡consequents



and¡¡antecedents¡¡of¡¡the¡¡terms¡¡in¡¡question¡£¡¡In¡¡both¡¡cases¡¡the¡¡same



inquiry¡¡is¡¡involved¡£¡¡For¡¡what¡¡is¡¡proved¡¡ostensively¡¡may¡¡also¡¡be



concluded¡¡syllogistically¡¡per¡¡impossibile¡¡by¡¡means¡¡of¡¡the¡¡same



terms£»¡¡and¡¡what¡¡is¡¡proved¡¡per¡¡impossibile¡¡may¡¡also¡¡be¡¡proved



ostensively£»¡¡e¡£g¡£¡¡that¡¡A¡¡belongs¡¡to¡¡none¡¡of¡¡the¡¡Es¡£¡¡For¡¡suppose¡¡A¡¡to



belong¡¡to¡¡some¡¡E£º¡¡then¡¡since¡¡B¡¡belongs¡¡to¡¡all¡¡A¡¡and¡¡A¡¡to¡¡some¡¡of¡¡the



Es£»¡¡B¡¡will¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Es£º¡¡but¡¡it¡¡was¡¡assumed¡¡that¡¡it



belongs¡¡to¡¡none¡£¡¡Again¡¡we¡¡may¡¡prove¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡E£º¡¡for¡¡if¡¡A



belonged¡¡to¡¡none¡¡of¡¡the¡¡Es£»¡¡and¡¡E¡¡belongs¡¡to¡¡all¡¡G£»¡¡A¡¡will¡¡belong¡¡to



none¡¡of¡¡the¡¡Gs£º¡¡but¡¡it¡¡was¡¡assumed¡¡to¡¡belong¡¡to¡¡all¡£¡¡Similarly¡¡with



the¡¡other¡¡propositions¡¡requiring¡¡proof¡£¡¡The¡¡proof¡¡per¡¡impossibile¡¡will



always¡¡and¡¡in¡¡all¡¡cases¡¡be¡¡from¡¡the¡¡consequents¡¡and¡¡antecedents¡¡of¡¡the



terms¡¡in¡¡question¡£¡¡Whatever¡¡the¡¡problem¡¡the¡¡same¡¡inquiry¡¡is



necessary¡¡whether¡¡one¡¡wishes¡¡to¡¡use¡¡an¡¡ostensive¡¡syllogism¡¡or¡¡a



reduction¡¡to¡¡impossibility¡£¡¡For¡¡both¡¡the¡¡demonstrations¡¡start¡¡from¡¡the



same¡¡terms£»¡¡e¡£g¡£¡¡suppose¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡E£»



because¡¡it¡¡turns¡¡out¡¡that¡¡otherwise¡¡B¡¡belongs¡¡to¡¡some¡¡of¡¡the¡¡Es¡¡and



this¡¡is¡¡impossible¡­if¡¡now¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡no¡¡E¡¡and



to¡¡all¡¡A£»¡¡it¡¡is¡¡clear¡¡that¡¡A¡¡will¡¡belong¡¡to¡¡no¡¡E¡£¡¡Again¡¡if¡¡it¡¡has¡¡been



proved¡¡by¡¡an¡¡ostensive¡¡syllogism¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡E£»¡¡assume¡¡that¡¡A



belongs¡¡to¡¡some¡¡E¡¡and¡¡it¡¡will¡¡be¡¡proved¡¡per¡¡impossibile¡¡to¡¡belong¡¡to



no¡¡E¡£¡¡Similarly¡¡with¡¡the¡¡rest¡£¡¡In¡¡all¡¡cases¡¡it¡¡is¡¡necessary¡¡to¡¡find



some¡¡common¡¡term¡¡other¡¡than¡¡the¡¡subjects¡¡of¡¡inquiry£»¡¡to¡¡which¡¡the



syllogism¡¡establishing¡¡the¡¡false¡¡conclusion¡¡may¡¡relate£»¡¡so¡¡that¡¡if



this¡¡premiss¡¡is¡¡converted£»¡¡and¡¡the¡¡other¡¡remains¡¡as¡¡it¡¡is£»¡¡the



syllogism¡¡will¡¡be¡¡ostensive¡¡by¡¡means¡¡of¡¡the¡¡same¡¡terms¡£¡¡For¡¡the



ostensive¡¡syllogism¡¡differs¡¡from¡¡the¡¡reductio¡¡ad¡¡impossibile¡¡in



this£º¡¡in¡¡the¡¡ostensive¡¡syllogism¡¡both¡¡remisses¡¡are¡¡laid¡¡down¡¡in



accordance¡¡with¡¡the¡¡truth£»¡¡in¡¡the¡¡reductio¡¡ad¡¡impossibile¡¡one¡¡of¡¡the



premisses¡¡is¡¡assumed¡¡falsely¡£



¡¡¡¡These¡¡points¡¡will¡¡be¡¡made¡¡clearer¡¡by¡¡the¡¡sequel£»¡¡when¡¡we¡¡discuss¡¡the



reduction¡¡to¡¡impossibility£º¡¡at¡¡present¡¡this¡¡much¡¡must¡¡be¡¡clear£»¡¡that



we¡¡must¡¡look¡¡to¡¡terms¡¡of¡¡the¡¡kinds¡¡mentioned¡¡whether¡¡we¡¡wish¡¡to¡¡use¡¡an



ostensive¡¡syllogism¡¡or¡¡a¡¡reduction¡¡to¡¡impossibility¡£¡¡In¡¡the¡¡other



hypothetical¡¡syllogisms£»¡¡I¡¡mean¡¡those¡¡which¡¡proceed¡¡by¡¡substitution£»



or¡¡by¡¡positing¡¡a¡¡certain¡¡quality£»¡¡the¡¡inquiry¡¡will¡¡be¡¡directed¡¡to



the¡¡terms¡¡of¡¡the¡¡problem¡¡to¡¡be¡¡proved¡­not¡¡the¡¡terms¡¡of¡¡the¡¡original



problem£»¡¡but¡¡the¡¡new¡¡terms¡¡introduced£»¡¡and¡¡the¡¡method¡¡of¡¡the¡¡inquiry



will¡¡be¡¡the¡¡same¡¡as¡¡before¡£¡¡But¡¡we¡¡must¡¡consider¡¡and¡¡determine¡¡in



how¡¡many¡¡ways¡¡hypothetical¡¡syllogisms¡¡are¡¡possible¡£



¡¡¡¡Each¡¡of¡¡the¡¡problems¡¡then¡¡can¡¡be¡¡proved¡¡in¡¡the¡¡manner¡¡described£»¡¡but



it¡¡is¡¡possible¡¡to¡¡establish¡¡some¡¡of¡¡them¡¡syllogistically¡¡in¡¡another



way£»¡¡e¡£g¡£¡¡universal¡¡problems¡¡by¡¡the¡¡inquiry¡¡which¡¡leads¡¡up¡¡to¡¡a



particular¡¡conclusion£»¡¡with¡¡the¡¡addition¡¡of¡¡an¡¡hypothesis¡£¡¡For¡¡if



the¡¡Cs¡¡and¡¡the¡¡Gs¡¡should¡¡be¡¡identical£»¡¡but¡¡E¡¡should¡¡be¡¡assumed¡¡to



belong¡¡to¡¡the¡¡Gs¡¡only£»¡¡then¡¡A¡¡would¡¡belong¡¡to¡¡every¡¡E£º¡¡and¡¡again¡¡if



the¡¡Ds¡¡and¡¡the¡¡Gs¡¡should¡¡be¡¡identical£»¡¡but¡¡E¡¡should¡¡be¡¡predicated¡¡of



the¡¡Gs¡¡only£»¡¡it¡¡follows¡¡that¡¡A¡¡will¡¡belong¡¡to¡¡none¡¡of¡¡the¡¡Es¡£



Clearly¡¡then¡¡we¡¡must¡¡consider¡¡the¡¡matter¡¡in¡¡this¡¡way¡¡also¡£¡¡The



method¡¡is¡¡the¡¡same¡¡whether¡¡the¡¡relation¡¡is¡¡necessary¡¡or¡¡possible¡£



For¡¡the¡¡inquiry¡¡will¡¡be¡¡the¡¡same£»¡¡and¡¡the¡¡syllogism¡¡will¡¡proceed



through¡¡terms¡¡arranged¡¡in¡¡the¡¡same¡¡order¡¡whether¡¡a¡¡possible¡¡or¡¡a



pure¡¡proposition¡¡is¡¡proved¡£¡¡We¡¡must¡¡find¡¡in¡¡the¡¡case¡¡of¡¡possible



relations£»¡¡as¡¡well¡¡as¡¡terms¡¡that¡¡belong£»¡¡terms¡¡which¡¡can¡¡belong¡¡though



they¡¡actually¡¡do¡¡not£º¡¡for¡¡we¡¡have¡¡proved¡¡that¡¡the¡¡syllogism¡¡which



establishes¡¡a¡¡possible¡¡relation¡¡proceeds¡¡through¡¡these¡¡terms¡¡as



well¡£¡¡Similarly¡¡also¡¡with¡¡the¡¡other¡¡modes¡¡of¡¡predication¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡from¡¡what¡¡has¡¡been¡¡said¡¡not¡¡only¡¡that¡¡all



syllogisms¡¡can¡¡be¡¡formed¡¡in¡¡this¡¡way£»¡¡but¡¡also¡¡that¡¡they¡¡cannot¡¡be



formed¡¡in¡¡any¡¡other¡£¡¡For¡¡every¡¡syllogism¡¡has¡¡been¡¡proved¡¡to¡¡be



formed¡¡through¡¡one¡¡of¡¡the¡¡aforementioned¡¡figures£»¡¡and¡¡these¡¡cannot



be¡¡composed¡¡through¡¡other¡¡terms¡¡than¡¡the¡¡consequents¡¡and¡¡antecedents



of¡¡the¡¡terms¡¡in¡¡question£º¡¡for¡¡from¡¡these¡¡we¡¡obtain¡¡the¡¡premisses¡¡and



find¡¡the¡¡middle¡¡term¡£¡¡Consequently¡¡a¡¡syllogism¡¡cannot¡¡be¡¡formed¡¡by



means¡¡of¡¡other¡¡terms¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡30







¡¡¡¡The¡¡method¡¡is¡¡the¡¡same¡¡in¡¡all¡¡cases£»¡¡in¡¡philosophy£»¡¡in¡¡any¡¡art¡¡or



study¡£¡¡We¡¡must¡¡look¡¡for¡¡the¡¡attributes¡¡and¡¡the¡¡subjects¡¡of¡¡both¡¡our



terms£»¡¡and¡¡we¡¡must¡¡supply¡¡ourselves¡¡with¡¡as¡¡many¡¡of¡¡these¡¡as¡¡possible£»



and¡¡consider¡¡them¡¡by¡¡means¡¡of¡¡the¡¡three¡¡terms£»¡¡refuting¡¡statements



in¡¡one¡¡way£»¡¡confirming¡¡them¡¡in¡¡another£»¡¡in¡¡the¡¡pursuit¡¡of¡¡truth



starting¡¡from¡¡premisses¡¡in¡¡which¡¡the¡¡arrangement¡¡of¡¡the¡¡terms¡¡is¡¡in



accordance¡¡with¡¡truth£»¡¡while¡¡if¡¡we¡¡look¡¡for¡¡dialectical¡¡syllogisms



we¡¡must¡¡start¡¡from¡¡probable¡¡premisses¡£¡¡The¡¡principles¡¡of¡¡syllogisms



have¡¡been¡¡stated¡¡in¡¡general¡¡terms£»¡¡both¡¡how¡¡they¡¡are¡¡characterized¡¡and



how¡¡we¡¡must¡¡hunt¡¡for¡¡them£»¡¡so¡¡as¡¡not¡¡to¡¡look¡¡to¡¡everything¡¡that¡¡is



said¡¡about¡¡the¡¡terms¡¡of¡¡the¡¡problem¡¡or¡¡to¡¡the¡¡same¡¡points¡¡whether¡¡we



are¡¡confirming¡¡or¡¡refuting£»¡¡or¡¡again¡¡whether¡¡we¡¡are¡¡confirming¡¡of



all¡¡or¡¡of¡¡some£»¡¡and¡¡whether¡¡we¡¡are¡¡refuting¡¡of¡¡all¡¡or¡¡some¡£¡¡we¡¡must



look¡¡to¡¡fewer¡¡points¡¡and¡¡they¡¡must¡¡be¡¡definite¡£¡¡We¡¡have¡¡also¡¡stated



how¡¡we¡¡must¡¡select¡¡with¡¡reference¡¡to¡¡everything¡¡that¡¡is£»¡¡e¡£g¡£¡¡about



good¡¡or¡¡knowledge¡£¡¡But¡¡in¡¡each¡¡science¡¡the¡¡principles¡¡which¡¡are



peculiar¡¡are¡¡the¡¡most¡¡numerous¡£¡¡Consequently¡¡it¡¡is¡¡the¡¡business¡¡of



experience¡¡to¡¡give¡¡the¡¡principles¡¡which¡¡belong¡¡to¡¡each¡¡subject¡£¡¡I¡¡mean



for¡¡example¡¡that¡¡astronomical¡¡experience¡¡supplies¡¡the¡¡principles¡¡of



astronomical¡¡science£º¡¡for¡¡once¡¡the¡¡phenomena¡¡were¡¡adequately



apprehended£»¡¡the¡¡demonstrations¡¡of¡¡astronomy¡¡were¡¡discovered¡£



Similarly¡¡with¡¡any¡¡other¡¡art¡¡or¡¡science¡£¡¡Consequently£»¡¡if¡¡the



attributes¡¡of¡¡the¡¡thing¡¡are¡¡apprehended£»¡¡our¡¡business¡¡will¡¡then¡¡be



to¡¡exhibit¡¡readily¡¡the¡¡demonstrations¡£¡¡For¡¡if¡¡none¡¡of¡¡the¡¡true



attributes¡¡of¡¡things¡¡had¡¡been¡¡omitted¡¡in¡¡the¡¡historical¡¡survey£»¡¡we



should¡¡be¡¡able¡¡to¡¡discover¡¡the¡¡proof¡¡and¡¡demonstrate¡¡everything



which¡¡admitted¡¡of¡¡proof£»¡¡and¡¡to¡¡make¡¡that¡¡clear£»¡¡whose¡¡nature¡¡does¡¡not



admit¡¡of¡¡proof¡£



¡¡¡¡In¡¡general¡¡then¡¡we¡¡have¡¡explained¡¡fairly¡¡well¡¡how¡¡we¡¡must¡¡select



premisses£º¡¡we¡¡have¡¡discussed¡¡the¡¡matter¡¡accurately¡¡in¡¡the¡¡treatise



concerning¡¡dialectic¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡31







¡¡¡¡It¡¡is¡¡easy¡¡to¡¡see¡¡that¡¡division¡¡into¡¡classes¡¡is¡¡a¡¡small¡¡part¡¡of



the¡¡method¡¡we¡¡have¡¡described£º¡¡for¡¡division¡¡is£»¡¡so¡¡to¡¡speak£»¡¡a¡¡weak



syllogism£»¡¡for¡¡what¡¡it¡¡ought¡¡to¡¡prove£»¡¡it¡¡begs£»¡¡and¡¡it¡¡always



establishes¡¡something¡¡more¡¡general¡¡than¡¡the¡¡attribute¡¡in¡¡question¡£



First£»¡¡this¡¡very¡¡point¡¡had¡¡escaped¡¡all¡¡those¡¡who¡¡used¡¡the¡¡method¡¡of



division£»¡¡and¡¡they¡¡attempted¡¡to¡¡persuade¡¡men¡¡that¡¡it¡¡was¡¡possible¡¡to



make¡¡a¡¡demonstration¡¡of¡¡substance¡¡and¡¡essence¡£¡¡Consequently¡¡they¡¡did



not¡¡understand¡¡what¡¡it¡¡is¡¡possible¡¡to¡¡prove¡¡syllogistically¡¡by



division£»¡¡nor¡¡did¡¡they¡¡understand¡¡that¡¡it¡¡was¡¡possible¡¡to¡¡prove



syllogistically¡¡in¡¡the¡¡manner¡¡we¡¡have¡¡described¡£¡¡In¡¡demonstrations£»



when¡¡there¡¡is¡¡a¡¡need¡¡to¡¡prove¡¡a¡¡positive¡¡statement£»¡¡the¡¡middle¡¡term



through¡¡which¡¡the¡¡syllogism¡¡is¡¡formed¡¡must¡¡always¡¡be¡¡inferior¡¡to¡¡and



not¡¡comprehend¡¡the¡¡first¡¡of¡¡the¡¡extremes¡£¡¡But¡¡division¡¡has¡¡a



contrary¡¡intention£º¡¡for¡¡it¡¡takes¡¡the¡¡universal¡¡as¡¡middle¡£¡¡Let¡¡animal



be¡¡the¡¡term¡¡signified¡¡by¡¡A£»¡¡mortal¡¡by¡¡B£»¡¡and¡¡immortal¡¡by¡¡C£»¡¡and¡¡let



man£»¡¡whose¡¡definition¡¡is¡¡to¡¡be¡¡got£»¡¡be¡¡signified¡¡by¡¡D¡£¡¡The¡¡man¡¡who



divides¡¡assumes¡¡that¡¡every¡¡animal¡¡is¡¡either¡¡mortal¡¡or¡¡immortal£º¡¡i¡£e¡£



whatever¡¡is¡¡A¡¡is¡¡all¡¡either¡¡B¡¡or¡¡C¡£¡¡Again£»¡¡always¡¡dividing£»¡¡he¡¡lays¡¡it



down¡¡that¡¡man¡¡is¡¡an¡¡animal£»¡¡so¡¡he¡¡assumes¡¡A¡¡of¡¡D¡¡as¡¡belonging¡¡to¡¡it¡£



Now¡¡the¡¡true¡¡conclusion¡¡is¡¡that¡¡every¡¡D¡¡is¡¡either¡¡B¡¡or¡¡C£»¡¡consequently



man¡¡must¡¡be¡¡either¡¡mortal¡¡or¡¡immortal£»¡¡but¡¡it¡¡is¡¡not¡¡necessary¡¡that



man¡¡should¡¡be¡¡a¡¡mortal¡¡animal¡­this¡¡is¡¡begged£º¡¡and¡¡this¡¡is¡¡what¡¡ought



to¡¡have¡¡been¡¡proved¡¡syllogistically¡£¡¡And¡¡again£»¡¡taking¡¡A¡¡as¡¡mortal



animal£»¡¡B¡¡as¡¡footed£»¡¡C¡¡as¡¡footless£»¡¡and¡¡D¡¡as¡¡man£»¡¡he¡¡assumes¡¡in¡¡the



same¡¡way¡¡that¡¡A¡¡inheres¡¡either¡¡in¡¡B¡¡or¡¡in¡¡C¡¡£¨for¡¡every¡¡mortal¡¡animal



is¡¡either¡¡footed¡¡or¡¡fo

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ