prior analytics-µÚ15½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
It¡¡turns¡¡out¡¡then¡¡that¡¡those¡¡who¡¡inquire¡¡in¡¡this¡¡manner¡¡are¡¡looking
gratuitously¡¡for¡¡some¡¡other¡¡way¡¡than¡¡the¡¡necessary¡¡way¡¡because¡¡they
have¡¡failed¡¡to¡¡observe¡¡the¡¡identity¡¡of¡¡the¡¡Bs¡¡with¡¡the¡¡Hs¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡29
¡¡¡¡Syllogisms¡¡which¡¡lead¡¡to¡¡impossible¡¡conclusions¡¡are¡¡similar¡¡to
ostensive¡¡syllogisms£»¡¡they¡¡also¡¡are¡¡formed¡¡by¡¡means¡¡of¡¡the¡¡consequents
and¡¡antecedents¡¡of¡¡the¡¡terms¡¡in¡¡question¡£¡¡In¡¡both¡¡cases¡¡the¡¡same
inquiry¡¡is¡¡involved¡£¡¡For¡¡what¡¡is¡¡proved¡¡ostensively¡¡may¡¡also¡¡be
concluded¡¡syllogistically¡¡per¡¡impossibile¡¡by¡¡means¡¡of¡¡the¡¡same
terms£»¡¡and¡¡what¡¡is¡¡proved¡¡per¡¡impossibile¡¡may¡¡also¡¡be¡¡proved
ostensively£»¡¡e¡£g¡£¡¡that¡¡A¡¡belongs¡¡to¡¡none¡¡of¡¡the¡¡Es¡£¡¡For¡¡suppose¡¡A¡¡to
belong¡¡to¡¡some¡¡E£º¡¡then¡¡since¡¡B¡¡belongs¡¡to¡¡all¡¡A¡¡and¡¡A¡¡to¡¡some¡¡of¡¡the
Es£»¡¡B¡¡will¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Es£º¡¡but¡¡it¡¡was¡¡assumed¡¡that¡¡it
belongs¡¡to¡¡none¡£¡¡Again¡¡we¡¡may¡¡prove¡¡that¡¡A¡¡belongs¡¡to¡¡some¡¡E£º¡¡for¡¡if¡¡A
belonged¡¡to¡¡none¡¡of¡¡the¡¡Es£»¡¡and¡¡E¡¡belongs¡¡to¡¡all¡¡G£»¡¡A¡¡will¡¡belong¡¡to
none¡¡of¡¡the¡¡Gs£º¡¡but¡¡it¡¡was¡¡assumed¡¡to¡¡belong¡¡to¡¡all¡£¡¡Similarly¡¡with
the¡¡other¡¡propositions¡¡requiring¡¡proof¡£¡¡The¡¡proof¡¡per¡¡impossibile¡¡will
always¡¡and¡¡in¡¡all¡¡cases¡¡be¡¡from¡¡the¡¡consequents¡¡and¡¡antecedents¡¡of¡¡the
terms¡¡in¡¡question¡£¡¡Whatever¡¡the¡¡problem¡¡the¡¡same¡¡inquiry¡¡is
necessary¡¡whether¡¡one¡¡wishes¡¡to¡¡use¡¡an¡¡ostensive¡¡syllogism¡¡or¡¡a
reduction¡¡to¡¡impossibility¡£¡¡For¡¡both¡¡the¡¡demonstrations¡¡start¡¡from¡¡the
same¡¡terms£»¡¡e¡£g¡£¡¡suppose¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡E£»
because¡¡it¡¡turns¡¡out¡¡that¡¡otherwise¡¡B¡¡belongs¡¡to¡¡some¡¡of¡¡the¡¡Es¡¡and
this¡¡is¡¡impossible¡if¡¡now¡¡it¡¡is¡¡assumed¡¡that¡¡B¡¡belongs¡¡to¡¡no¡¡E¡¡and
to¡¡all¡¡A£»¡¡it¡¡is¡¡clear¡¡that¡¡A¡¡will¡¡belong¡¡to¡¡no¡¡E¡£¡¡Again¡¡if¡¡it¡¡has¡¡been
proved¡¡by¡¡an¡¡ostensive¡¡syllogism¡¡that¡¡A¡¡belongs¡¡to¡¡no¡¡E£»¡¡assume¡¡that¡¡A
belongs¡¡to¡¡some¡¡E¡¡and¡¡it¡¡will¡¡be¡¡proved¡¡per¡¡impossibile¡¡to¡¡belong¡¡to
no¡¡E¡£¡¡Similarly¡¡with¡¡the¡¡rest¡£¡¡In¡¡all¡¡cases¡¡it¡¡is¡¡necessary¡¡to¡¡find
some¡¡common¡¡term¡¡other¡¡than¡¡the¡¡subjects¡¡of¡¡inquiry£»¡¡to¡¡which¡¡the
syllogism¡¡establishing¡¡the¡¡false¡¡conclusion¡¡may¡¡relate£»¡¡so¡¡that¡¡if
this¡¡premiss¡¡is¡¡converted£»¡¡and¡¡the¡¡other¡¡remains¡¡as¡¡it¡¡is£»¡¡the
syllogism¡¡will¡¡be¡¡ostensive¡¡by¡¡means¡¡of¡¡the¡¡same¡¡terms¡£¡¡For¡¡the
ostensive¡¡syllogism¡¡differs¡¡from¡¡the¡¡reductio¡¡ad¡¡impossibile¡¡in
this£º¡¡in¡¡the¡¡ostensive¡¡syllogism¡¡both¡¡remisses¡¡are¡¡laid¡¡down¡¡in
accordance¡¡with¡¡the¡¡truth£»¡¡in¡¡the¡¡reductio¡¡ad¡¡impossibile¡¡one¡¡of¡¡the
premisses¡¡is¡¡assumed¡¡falsely¡£
¡¡¡¡These¡¡points¡¡will¡¡be¡¡made¡¡clearer¡¡by¡¡the¡¡sequel£»¡¡when¡¡we¡¡discuss¡¡the
reduction¡¡to¡¡impossibility£º¡¡at¡¡present¡¡this¡¡much¡¡must¡¡be¡¡clear£»¡¡that
we¡¡must¡¡look¡¡to¡¡terms¡¡of¡¡the¡¡kinds¡¡mentioned¡¡whether¡¡we¡¡wish¡¡to¡¡use¡¡an
ostensive¡¡syllogism¡¡or¡¡a¡¡reduction¡¡to¡¡impossibility¡£¡¡In¡¡the¡¡other
hypothetical¡¡syllogisms£»¡¡I¡¡mean¡¡those¡¡which¡¡proceed¡¡by¡¡substitution£»
or¡¡by¡¡positing¡¡a¡¡certain¡¡quality£»¡¡the¡¡inquiry¡¡will¡¡be¡¡directed¡¡to
the¡¡terms¡¡of¡¡the¡¡problem¡¡to¡¡be¡¡proved¡not¡¡the¡¡terms¡¡of¡¡the¡¡original
problem£»¡¡but¡¡the¡¡new¡¡terms¡¡introduced£»¡¡and¡¡the¡¡method¡¡of¡¡the¡¡inquiry
will¡¡be¡¡the¡¡same¡¡as¡¡before¡£¡¡But¡¡we¡¡must¡¡consider¡¡and¡¡determine¡¡in
how¡¡many¡¡ways¡¡hypothetical¡¡syllogisms¡¡are¡¡possible¡£
¡¡¡¡Each¡¡of¡¡the¡¡problems¡¡then¡¡can¡¡be¡¡proved¡¡in¡¡the¡¡manner¡¡described£»¡¡but
it¡¡is¡¡possible¡¡to¡¡establish¡¡some¡¡of¡¡them¡¡syllogistically¡¡in¡¡another
way£»¡¡e¡£g¡£¡¡universal¡¡problems¡¡by¡¡the¡¡inquiry¡¡which¡¡leads¡¡up¡¡to¡¡a
particular¡¡conclusion£»¡¡with¡¡the¡¡addition¡¡of¡¡an¡¡hypothesis¡£¡¡For¡¡if
the¡¡Cs¡¡and¡¡the¡¡Gs¡¡should¡¡be¡¡identical£»¡¡but¡¡E¡¡should¡¡be¡¡assumed¡¡to
belong¡¡to¡¡the¡¡Gs¡¡only£»¡¡then¡¡A¡¡would¡¡belong¡¡to¡¡every¡¡E£º¡¡and¡¡again¡¡if
the¡¡Ds¡¡and¡¡the¡¡Gs¡¡should¡¡be¡¡identical£»¡¡but¡¡E¡¡should¡¡be¡¡predicated¡¡of
the¡¡Gs¡¡only£»¡¡it¡¡follows¡¡that¡¡A¡¡will¡¡belong¡¡to¡¡none¡¡of¡¡the¡¡Es¡£
Clearly¡¡then¡¡we¡¡must¡¡consider¡¡the¡¡matter¡¡in¡¡this¡¡way¡¡also¡£¡¡The
method¡¡is¡¡the¡¡same¡¡whether¡¡the¡¡relation¡¡is¡¡necessary¡¡or¡¡possible¡£
For¡¡the¡¡inquiry¡¡will¡¡be¡¡the¡¡same£»¡¡and¡¡the¡¡syllogism¡¡will¡¡proceed
through¡¡terms¡¡arranged¡¡in¡¡the¡¡same¡¡order¡¡whether¡¡a¡¡possible¡¡or¡¡a
pure¡¡proposition¡¡is¡¡proved¡£¡¡We¡¡must¡¡find¡¡in¡¡the¡¡case¡¡of¡¡possible
relations£»¡¡as¡¡well¡¡as¡¡terms¡¡that¡¡belong£»¡¡terms¡¡which¡¡can¡¡belong¡¡though
they¡¡actually¡¡do¡¡not£º¡¡for¡¡we¡¡have¡¡proved¡¡that¡¡the¡¡syllogism¡¡which
establishes¡¡a¡¡possible¡¡relation¡¡proceeds¡¡through¡¡these¡¡terms¡¡as
well¡£¡¡Similarly¡¡also¡¡with¡¡the¡¡other¡¡modes¡¡of¡¡predication¡£
¡¡¡¡It¡¡is¡¡clear¡¡then¡¡from¡¡what¡¡has¡¡been¡¡said¡¡not¡¡only¡¡that¡¡all
syllogisms¡¡can¡¡be¡¡formed¡¡in¡¡this¡¡way£»¡¡but¡¡also¡¡that¡¡they¡¡cannot¡¡be
formed¡¡in¡¡any¡¡other¡£¡¡For¡¡every¡¡syllogism¡¡has¡¡been¡¡proved¡¡to¡¡be
formed¡¡through¡¡one¡¡of¡¡the¡¡aforementioned¡¡figures£»¡¡and¡¡these¡¡cannot
be¡¡composed¡¡through¡¡other¡¡terms¡¡than¡¡the¡¡consequents¡¡and¡¡antecedents
of¡¡the¡¡terms¡¡in¡¡question£º¡¡for¡¡from¡¡these¡¡we¡¡obtain¡¡the¡¡premisses¡¡and
find¡¡the¡¡middle¡¡term¡£¡¡Consequently¡¡a¡¡syllogism¡¡cannot¡¡be¡¡formed¡¡by
means¡¡of¡¡other¡¡terms¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡30
¡¡¡¡The¡¡method¡¡is¡¡the¡¡same¡¡in¡¡all¡¡cases£»¡¡in¡¡philosophy£»¡¡in¡¡any¡¡art¡¡or
study¡£¡¡We¡¡must¡¡look¡¡for¡¡the¡¡attributes¡¡and¡¡the¡¡subjects¡¡of¡¡both¡¡our
terms£»¡¡and¡¡we¡¡must¡¡supply¡¡ourselves¡¡with¡¡as¡¡many¡¡of¡¡these¡¡as¡¡possible£»
and¡¡consider¡¡them¡¡by¡¡means¡¡of¡¡the¡¡three¡¡terms£»¡¡refuting¡¡statements
in¡¡one¡¡way£»¡¡confirming¡¡them¡¡in¡¡another£»¡¡in¡¡the¡¡pursuit¡¡of¡¡truth
starting¡¡from¡¡premisses¡¡in¡¡which¡¡the¡¡arrangement¡¡of¡¡the¡¡terms¡¡is¡¡in
accordance¡¡with¡¡truth£»¡¡while¡¡if¡¡we¡¡look¡¡for¡¡dialectical¡¡syllogisms
we¡¡must¡¡start¡¡from¡¡probable¡¡premisses¡£¡¡The¡¡principles¡¡of¡¡syllogisms
have¡¡been¡¡stated¡¡in¡¡general¡¡terms£»¡¡both¡¡how¡¡they¡¡are¡¡characterized¡¡and
how¡¡we¡¡must¡¡hunt¡¡for¡¡them£»¡¡so¡¡as¡¡not¡¡to¡¡look¡¡to¡¡everything¡¡that¡¡is
said¡¡about¡¡the¡¡terms¡¡of¡¡the¡¡problem¡¡or¡¡to¡¡the¡¡same¡¡points¡¡whether¡¡we
are¡¡confirming¡¡or¡¡refuting£»¡¡or¡¡again¡¡whether¡¡we¡¡are¡¡confirming¡¡of
all¡¡or¡¡of¡¡some£»¡¡and¡¡whether¡¡we¡¡are¡¡refuting¡¡of¡¡all¡¡or¡¡some¡£¡¡we¡¡must
look¡¡to¡¡fewer¡¡points¡¡and¡¡they¡¡must¡¡be¡¡definite¡£¡¡We¡¡have¡¡also¡¡stated
how¡¡we¡¡must¡¡select¡¡with¡¡reference¡¡to¡¡everything¡¡that¡¡is£»¡¡e¡£g¡£¡¡about
good¡¡or¡¡knowledge¡£¡¡But¡¡in¡¡each¡¡science¡¡the¡¡principles¡¡which¡¡are
peculiar¡¡are¡¡the¡¡most¡¡numerous¡£¡¡Consequently¡¡it¡¡is¡¡the¡¡business¡¡of
experience¡¡to¡¡give¡¡the¡¡principles¡¡which¡¡belong¡¡to¡¡each¡¡subject¡£¡¡I¡¡mean
for¡¡example¡¡that¡¡astronomical¡¡experience¡¡supplies¡¡the¡¡principles¡¡of
astronomical¡¡science£º¡¡for¡¡once¡¡the¡¡phenomena¡¡were¡¡adequately
apprehended£»¡¡the¡¡demonstrations¡¡of¡¡astronomy¡¡were¡¡discovered¡£
Similarly¡¡with¡¡any¡¡other¡¡art¡¡or¡¡science¡£¡¡Consequently£»¡¡if¡¡the
attributes¡¡of¡¡the¡¡thing¡¡are¡¡apprehended£»¡¡our¡¡business¡¡will¡¡then¡¡be
to¡¡exhibit¡¡readily¡¡the¡¡demonstrations¡£¡¡For¡¡if¡¡none¡¡of¡¡the¡¡true
attributes¡¡of¡¡things¡¡had¡¡been¡¡omitted¡¡in¡¡the¡¡historical¡¡survey£»¡¡we
should¡¡be¡¡able¡¡to¡¡discover¡¡the¡¡proof¡¡and¡¡demonstrate¡¡everything
which¡¡admitted¡¡of¡¡proof£»¡¡and¡¡to¡¡make¡¡that¡¡clear£»¡¡whose¡¡nature¡¡does¡¡not
admit¡¡of¡¡proof¡£
¡¡¡¡In¡¡general¡¡then¡¡we¡¡have¡¡explained¡¡fairly¡¡well¡¡how¡¡we¡¡must¡¡select
premisses£º¡¡we¡¡have¡¡discussed¡¡the¡¡matter¡¡accurately¡¡in¡¡the¡¡treatise
concerning¡¡dialectic¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡31
¡¡¡¡It¡¡is¡¡easy¡¡to¡¡see¡¡that¡¡division¡¡into¡¡classes¡¡is¡¡a¡¡small¡¡part¡¡of
the¡¡method¡¡we¡¡have¡¡described£º¡¡for¡¡division¡¡is£»¡¡so¡¡to¡¡speak£»¡¡a¡¡weak
syllogism£»¡¡for¡¡what¡¡it¡¡ought¡¡to¡¡prove£»¡¡it¡¡begs£»¡¡and¡¡it¡¡always
establishes¡¡something¡¡more¡¡general¡¡than¡¡the¡¡attribute¡¡in¡¡question¡£
First£»¡¡this¡¡very¡¡point¡¡had¡¡escaped¡¡all¡¡those¡¡who¡¡used¡¡the¡¡method¡¡of
division£»¡¡and¡¡they¡¡attempted¡¡to¡¡persuade¡¡men¡¡that¡¡it¡¡was¡¡possible¡¡to
make¡¡a¡¡demonstration¡¡of¡¡substance¡¡and¡¡essence¡£¡¡Consequently¡¡they¡¡did
not¡¡understand¡¡what¡¡it¡¡is¡¡possible¡¡to¡¡prove¡¡syllogistically¡¡by
division£»¡¡nor¡¡did¡¡they¡¡understand¡¡that¡¡it¡¡was¡¡possible¡¡to¡¡prove
syllogistically¡¡in¡¡the¡¡manner¡¡we¡¡have¡¡described¡£¡¡In¡¡demonstrations£»
when¡¡there¡¡is¡¡a¡¡need¡¡to¡¡prove¡¡a¡¡positive¡¡statement£»¡¡the¡¡middle¡¡term
through¡¡which¡¡the¡¡syllogism¡¡is¡¡formed¡¡must¡¡always¡¡be¡¡inferior¡¡to¡¡and
not¡¡comprehend¡¡the¡¡first¡¡of¡¡the¡¡extremes¡£¡¡But¡¡division¡¡has¡¡a
contrary¡¡intention£º¡¡for¡¡it¡¡takes¡¡the¡¡universal¡¡as¡¡middle¡£¡¡Let¡¡animal
be¡¡the¡¡term¡¡signified¡¡by¡¡A£»¡¡mortal¡¡by¡¡B£»¡¡and¡¡immortal¡¡by¡¡C£»¡¡and¡¡let
man£»¡¡whose¡¡definition¡¡is¡¡to¡¡be¡¡got£»¡¡be¡¡signified¡¡by¡¡D¡£¡¡The¡¡man¡¡who
divides¡¡assumes¡¡that¡¡every¡¡animal¡¡is¡¡either¡¡mortal¡¡or¡¡immortal£º¡¡i¡£e¡£
whatever¡¡is¡¡A¡¡is¡¡all¡¡either¡¡B¡¡or¡¡C¡£¡¡Again£»¡¡always¡¡dividing£»¡¡he¡¡lays¡¡it
down¡¡that¡¡man¡¡is¡¡an¡¡animal£»¡¡so¡¡he¡¡assumes¡¡A¡¡of¡¡D¡¡as¡¡belonging¡¡to¡¡it¡£
Now¡¡the¡¡true¡¡conclusion¡¡is¡¡that¡¡every¡¡D¡¡is¡¡either¡¡B¡¡or¡¡C£»¡¡consequently
man¡¡must¡¡be¡¡either¡¡mortal¡¡or¡¡immortal£»¡¡but¡¡it¡¡is¡¡not¡¡necessary¡¡that
man¡¡should¡¡be¡¡a¡¡mortal¡¡animal¡this¡¡is¡¡begged£º¡¡and¡¡this¡¡is¡¡what¡¡ought
to¡¡have¡¡been¡¡proved¡¡syllogistically¡£¡¡And¡¡again£»¡¡taking¡¡A¡¡as¡¡mortal
animal£»¡¡B¡¡as¡¡footed£»¡¡C¡¡as¡¡footless£»¡¡and¡¡D¡¡as¡¡man£»¡¡he¡¡assumes¡¡in¡¡the
same¡¡way¡¡that¡¡A¡¡inheres¡¡either¡¡in¡¡B¡¡or¡¡in¡¡C¡¡£¨for¡¡every¡¡mortal¡¡animal
is¡¡either¡¡footed¡¡or¡¡fo