prior analytics-µÚ14½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
For¡¡some¡¡things¡¡are¡¡peculiar¡¡to¡¡the¡¡species¡¡as¡¡distinct¡¡from¡¡the
genus£»¡¡for¡¡species¡¡being¡¡distinct¡¡there¡¡must¡¡be¡¡attributes¡¡peculiar¡¡to
each¡£¡¡Nor¡¡must¡¡we¡¡take¡¡as¡¡things¡¡which¡¡the¡¡superior¡¡term¡¡follows£»
those¡¡things¡¡which¡¡the¡¡inferior¡¡term¡¡follows£»¡¡e¡£g¡£¡¡take¡¡as¡¡subjects¡¡of
the¡¡predicate¡¡'animal'¡¡what¡¡are¡¡really¡¡subjects¡¡of¡¡the¡¡predicate
'man'¡£¡¡It¡¡is¡¡necessary¡¡indeed£»¡¡if¡¡animal¡¡follows¡¡man£»¡¡that¡¡it¡¡should
follow¡¡all¡¡these¡¡also¡£¡¡But¡¡these¡¡belong¡¡more¡¡properly¡¡to¡¡the¡¡choice¡¡of
what¡¡concerns¡¡man¡£¡¡One¡¡must¡¡apprehend¡¡also¡¡normal¡¡consequents¡¡and
normal¡¡antecedents¡£»¡¡for¡¡propositions¡¡which¡¡obtain¡¡normally¡¡are
established¡¡syllogistically¡¡from¡¡premisses¡¡which¡¡obtain¡¡normally£»¡¡some
if¡¡not¡¡all¡¡of¡¡them¡¡having¡¡this¡¡character¡¡of¡¡normality¡£¡¡For¡¡the
conclusion¡¡of¡¡each¡¡syllogism¡¡resembles¡¡its¡¡principles¡£¡¡We¡¡must¡¡not
however¡¡choose¡¡attributes¡¡which¡¡are¡¡consequent¡¡upon¡¡all¡¡the¡¡terms£º¡¡for
no¡¡syllogism¡¡can¡¡be¡¡made¡¡out¡¡of¡¡such¡¡premisses¡£¡¡The¡¡reason¡¡why¡¡this¡¡is
so¡¡will¡¡be¡¡clear¡¡in¡¡the¡¡sequel¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡28
¡¡¡¡If¡¡men¡¡wish¡¡to¡¡establish¡¡something¡¡about¡¡some¡¡whole£»¡¡they¡¡must
look¡¡to¡¡the¡¡subjects¡¡of¡¡that¡¡which¡¡is¡¡being¡¡established¡¡£¨the
subjects¡¡of¡¡which¡¡it¡¡happens¡¡to¡¡be¡¡asserted£©£»¡¡and¡¡the¡¡attributes¡¡which
follow¡¡that¡¡of¡¡which¡¡it¡¡is¡¡to¡¡be¡¡predicated¡£¡¡For¡¡if¡¡any¡¡of¡¡these
subjects¡¡is¡¡the¡¡same¡¡as¡¡any¡¡of¡¡these¡¡attributes£»¡¡the¡¡attribute
originally¡¡in¡¡question¡¡must¡¡belong¡¡to¡¡the¡¡subject¡¡originally¡¡in
question¡£¡¡But¡¡if¡¡the¡¡purpose¡¡is¡¡to¡¡establish¡¡not¡¡a¡¡universal¡¡but¡¡a
particular¡¡proposition£»¡¡they¡¡must¡¡look¡¡for¡¡the¡¡terms¡¡of¡¡which¡¡the
terms¡¡in¡¡question¡¡are¡¡predicable£º¡¡for¡¡if¡¡any¡¡of¡¡these¡¡are¡¡identical£»
the¡¡attribute¡¡in¡¡question¡¡must¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡subject¡¡in
question¡£¡¡Whenever¡¡the¡¡one¡¡term¡¡has¡¡to¡¡belong¡¡to¡¡none¡¡of¡¡the¡¡other£»
one¡¡must¡¡look¡¡to¡¡the¡¡consequents¡¡of¡¡the¡¡subject£»¡¡and¡¡to¡¡those
attributes¡¡which¡¡cannot¡¡possibly¡¡be¡¡present¡¡in¡¡the¡¡predicate¡¡in
question£º¡¡or¡¡conversely¡¡to¡¡the¡¡attributes¡¡which¡¡cannot¡¡possibly¡¡be
present¡¡in¡¡the¡¡subject£»¡¡and¡¡to¡¡the¡¡consequents¡¡of¡¡the¡¡predicate¡£¡¡If
any¡¡members¡¡of¡¡these¡¡groups¡¡are¡¡identical£»¡¡one¡¡of¡¡the¡¡terms¡¡in
question¡¡cannot¡¡possibly¡¡belong¡¡to¡¡any¡¡of¡¡the¡¡other¡£¡¡For¡¡sometimes¡¡a
syllogism¡¡in¡¡the¡¡first¡¡figure¡¡results£»¡¡sometimes¡¡a¡¡syllogism¡¡in¡¡the
second¡£¡¡But¡¡if¡¡the¡¡object¡¡is¡¡to¡¡establish¡¡a¡¡particular¡¡negative
proposition£»¡¡we¡¡must¡¡find¡¡antecedents¡¡of¡¡the¡¡subject¡¡in¡¡question¡¡and
attributes¡¡which¡¡cannot¡¡possibly¡¡belong¡¡to¡¡the¡¡predicate¡¡in
question¡£¡¡If¡¡any¡¡members¡¡of¡¡these¡¡two¡¡groups¡¡are¡¡identical£»¡¡it¡¡follows
that¡¡one¡¡of¡¡the¡¡terms¡¡in¡¡question¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the
other¡£¡¡Perhaps¡¡each¡¡of¡¡these¡¡statements¡¡will¡¡become¡¡clearer¡¡in¡¡the
following¡¡way¡£¡¡Suppose¡¡the¡¡consequents¡¡of¡¡A¡¡are¡¡designated¡¡by¡¡B£»¡¡the
antecedents¡¡of¡¡A¡¡by¡¡C£»¡¡attributes¡¡which¡¡cannot¡¡possibly¡¡belong¡¡to¡¡A¡¡by
D¡£¡¡Suppose¡¡again¡¡that¡¡the¡¡attributes¡¡of¡¡E¡¡are¡¡designated¡¡by¡¡F£»¡¡the
antecedents¡¡of¡¡E¡¡by¡¡G£»¡¡and¡¡attributes¡¡which¡¡cannot¡¡belong¡¡to¡¡E¡¡by¡¡H¡£
If¡¡then¡¡one¡¡of¡¡the¡¡Cs¡¡should¡¡be¡¡identical¡¡with¡¡one¡¡of¡¡the¡¡Fs£»¡¡A¡¡must
belong¡¡to¡¡all¡¡E£º¡¡for¡¡F¡¡belongs¡¡to¡¡all¡¡E£»¡¡and¡¡A¡¡to¡¡all¡¡C£»
consequently¡¡A¡¡belongs¡¡to¡¡all¡¡E¡£¡¡If¡¡C¡¡and¡¡G¡¡are¡¡identical£»¡¡A¡¡must
belong¡¡to¡¡some¡¡of¡¡the¡¡Es£º¡¡for¡¡A¡¡follows¡¡C£»¡¡and¡¡E¡¡follows¡¡all¡¡G¡£¡¡If¡¡F
and¡¡D¡¡are¡¡identical£»¡¡A¡¡will¡¡belong¡¡to¡¡none¡¡of¡¡the¡¡Es¡¡by¡¡a
prosyllogism£º¡¡for¡¡since¡¡the¡¡negative¡¡proposition¡¡is¡¡convertible£»¡¡and¡¡F
is¡¡identical¡¡with¡¡D£»¡¡A¡¡will¡¡belong¡¡to¡¡none¡¡of¡¡the¡¡Fs£»¡¡but¡¡F¡¡belongs¡¡to
all¡¡E¡£¡¡Again£»¡¡if¡¡B¡¡and¡¡H¡¡are¡¡identical£»¡¡A¡¡will¡¡belong¡¡to¡¡none¡¡of¡¡the
Es£º¡¡for¡¡B¡¡will¡¡belong¡¡to¡¡all¡¡A£»¡¡but¡¡to¡¡no¡¡E£º¡¡for¡¡it¡¡was¡¡assumed¡¡to
be¡¡identical¡¡with¡¡H£»¡¡and¡¡H¡¡belonged¡¡to¡¡none¡¡of¡¡the¡¡Es¡£¡¡If¡¡D¡¡and¡¡G
are¡¡identical£»¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Es£º¡¡for¡¡it¡¡will¡¡not
belong¡¡to¡¡G£»¡¡because¡¡it¡¡does¡¡not¡¡belong¡¡to¡¡D£º¡¡but¡¡G¡¡falls¡¡under¡¡E£º
consequently¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Es¡£¡¡If¡¡B¡¡is¡¡identical
with¡¡G£»¡¡there¡¡will¡¡be¡¡a¡¡converted¡¡syllogism£º¡¡for¡¡E¡¡will¡¡belong¡¡to
all¡¡A¡¡since¡¡B¡¡belongs¡¡to¡¡A¡¡and¡¡E¡¡to¡¡B¡¡£¨for¡¡B¡¡was¡¡found¡¡to¡¡be¡¡identical
with¡¡G£©£º¡¡but¡¡that¡¡A¡¡should¡¡belong¡¡to¡¡all¡¡E¡¡is¡¡not¡¡necessary£»¡¡but¡¡it
must¡¡belong¡¡to¡¡some¡¡E¡¡because¡¡it¡¡is¡¡possible¡¡to¡¡convert¡¡the
universal¡¡statement¡¡into¡¡a¡¡particular¡£
¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡in¡¡every¡¡proposition¡¡which¡¡requires¡¡proof¡¡we
must¡¡look¡¡to¡¡the¡¡aforesaid¡¡relations¡¡of¡¡the¡¡subject¡¡and¡¡predicate¡¡in
question£º¡¡for¡¡all¡¡syllogisms¡¡proceed¡¡through¡¡these¡£¡¡But¡¡if¡¡we¡¡are
seeking¡¡consequents¡¡and¡¡antecedents¡¡we¡¡must¡¡look¡¡for¡¡those¡¡which¡¡are
primary¡¡and¡¡most¡¡universal£»¡¡e¡£g¡£¡¡in¡¡reference¡¡to¡¡E¡¡we¡¡must¡¡look¡¡to
KF¡¡rather¡¡than¡¡to¡¡F¡¡alone£»¡¡and¡¡in¡¡reference¡¡to¡¡A¡¡we¡¡must¡¡look¡¡to¡¡KC
rather¡¡than¡¡to¡¡C¡¡alone¡£¡¡For¡¡if¡¡A¡¡belongs¡¡to¡¡KF£»¡¡it¡¡belongs¡¡both¡¡to¡¡F
and¡¡to¡¡E£º¡¡but¡¡if¡¡it¡¡does¡¡not¡¡follow¡¡KF£»¡¡it¡¡may¡¡yet¡¡follow¡¡F¡£¡¡Similarly
we¡¡must¡¡consider¡¡the¡¡antecedents¡¡of¡¡A¡¡itself£º¡¡for¡¡if¡¡a¡¡term¡¡follows
the¡¡primary¡¡antecedents£»¡¡it¡¡will¡¡follow¡¡those¡¡also¡¡which¡¡are
subordinate£»¡¡but¡¡if¡¡it¡¡does¡¡not¡¡follow¡¡the¡¡former£»¡¡it¡¡may¡¡yet¡¡follow
the¡¡latter¡£
¡¡¡¡It¡¡is¡¡clear¡¡too¡¡that¡¡the¡¡inquiry¡¡proceeds¡¡through¡¡the¡¡three¡¡terms
and¡¡the¡¡two¡¡premisses£»¡¡and¡¡that¡¡all¡¡the¡¡syllogisms¡¡proceed¡¡through¡¡the
aforesaid¡¡figures¡£¡¡For¡¡it¡¡is¡¡proved¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡E£»
whenever¡¡an¡¡identical¡¡term¡¡is¡¡found¡¡among¡¡the¡¡Cs¡¡and¡¡Fs¡£¡¡This¡¡will
be¡¡the¡¡middle¡¡term£»¡¡A¡¡and¡¡E¡¡will¡¡be¡¡the¡¡extremes¡£¡¡So¡¡the¡¡first
figure¡¡is¡¡formed¡£¡¡And¡¡A¡¡will¡¡belong¡¡to¡¡some¡¡E£»¡¡whenever¡¡C¡¡and¡¡G¡¡are
apprehended¡¡to¡¡be¡¡the¡¡same¡£¡¡This¡¡is¡¡the¡¡last¡¡figure£º¡¡for¡¡G¡¡becomes¡¡the
middle¡¡term¡£¡¡And¡¡A¡¡will¡¡belong¡¡to¡¡no¡¡E£»¡¡when¡¡D¡¡and¡¡F¡¡are¡¡identical¡£
Thus¡¡we¡¡have¡¡both¡¡the¡¡first¡¡figure¡¡and¡¡the¡¡middle¡¡figure£»¡¡the¡¡first£»
because¡¡A¡¡belongs¡¡to¡¡no¡¡F£»¡¡since¡¡the¡¡negative¡¡statement¡¡is
convertible£»¡¡and¡¡F¡¡belongs¡¡to¡¡all¡¡E£º¡¡the¡¡middle¡¡figure¡¡because¡¡D
belongs¡¡to¡¡no¡¡A£»¡¡and¡¡to¡¡all¡¡E¡£¡¡And¡¡A¡¡will¡¡not¡¡belong¡¡to¡¡some¡¡E£»
whenever¡¡D¡¡and¡¡G¡¡are¡¡identical¡£¡¡This¡¡is¡¡the¡¡last¡¡figure£º¡¡for¡¡A¡¡will
belong¡¡to¡¡no¡¡G£»¡¡and¡¡E¡¡will¡¡belong¡¡to¡¡all¡¡G¡£¡¡Clearly¡¡then¡¡all
syllogisms¡¡proceed¡¡through¡¡the¡¡aforesaid¡¡figures£»¡¡and¡¡we¡¡must¡¡not
select¡¡consequents¡¡of¡¡all¡¡the¡¡terms£»¡¡because¡¡no¡¡syllogism¡¡is
produced¡¡from¡¡them¡£¡¡For¡¡£¨as¡¡we¡¡saw£©¡¡it¡¡is¡¡not¡¡possible¡¡at¡¡all¡¡to
establish¡¡a¡¡proposition¡¡from¡¡consequents£»¡¡and¡¡it¡¡is¡¡not¡¡possible¡¡to
refute¡¡by¡¡means¡¡of¡¡a¡¡consequent¡¡of¡¡both¡¡the¡¡terms¡¡in¡¡question£º¡¡for¡¡the
middle¡¡term¡¡must¡¡belong¡¡to¡¡the¡¡one£»¡¡and¡¡not¡¡belong¡¡to¡¡the¡¡other¡£
¡¡¡¡It¡¡is¡¡clear¡¡too¡¡that¡¡other¡¡methods¡¡of¡¡inquiry¡¡by¡¡selection¡¡of¡¡middle
terms¡¡are¡¡useless¡¡to¡¡produce¡¡a¡¡syllogism£»¡¡e¡£g¡£¡¡if¡¡the¡¡consequents¡¡of
the¡¡terms¡¡in¡¡question¡¡are¡¡identical£»¡¡or¡¡if¡¡the¡¡antecedents¡¡of¡¡A¡¡are
identical¡¡with¡¡those¡¡attributes¡¡which¡¡cannot¡¡possibly¡¡belong¡¡to¡¡E£»
or¡¡if¡¡those¡¡attributes¡¡are¡¡identical¡¡which¡¡cannot¡¡belong¡¡to¡¡either
term£º¡¡for¡¡no¡¡syllogism¡¡is¡¡produced¡¡by¡¡means¡¡of¡¡these¡£¡¡For¡¡if¡¡the
consequents¡¡are¡¡identical£»¡¡e¡£g¡£¡¡B¡¡and¡¡F£»¡¡we¡¡have¡¡the¡¡middle¡¡figure
with¡¡both¡¡premisses¡¡affirmative£º¡¡if¡¡the¡¡antecedents¡¡of¡¡A¡¡are¡¡identical
with¡¡attributes¡¡which¡¡cannot¡¡belong¡¡to¡¡E£»¡¡e¡£g¡£¡¡C¡¡with¡¡H£»¡¡we¡¡have¡¡the
first¡¡figure¡¡with¡¡its¡¡minor¡¡premiss¡¡negative¡£¡¡If¡¡attributes¡¡which
cannot¡¡belong¡¡to¡¡either¡¡term¡¡are¡¡identical£»¡¡e¡£g¡£¡¡C¡¡and¡¡H£»¡¡both
premisses¡¡are¡¡negative£»¡¡either¡¡in¡¡the¡¡first¡¡or¡¡in¡¡the¡¡middle¡¡figure¡£
But¡¡no¡¡syllogism¡¡is¡¡possible¡¡in¡¡this¡¡way¡£
¡¡¡¡It¡¡is¡¡evident¡¡too¡¡that¡¡we¡¡must¡¡find¡¡out¡¡which¡¡terms¡¡in¡¡this
inquiry¡¡are¡¡identical£»¡¡not¡¡which¡¡are¡¡different¡¡or¡¡contrary£»¡¡first
because¡¡the¡¡object¡¡of¡¡our¡¡investigation¡¡is¡¡the¡¡middle¡¡term£»¡¡and¡¡the
middle¡¡term¡¡must¡¡be¡¡not¡¡diverse¡¡but¡¡identical¡£¡¡Secondly£»¡¡wherever¡¡it
happens¡¡that¡¡a¡¡syllogism¡¡results¡¡from¡¡taking¡¡contraries¡¡or¡¡terms¡¡which
cannot¡¡belong¡¡to¡¡the¡¡same¡¡thing£»¡¡all¡¡arguments¡¡can¡¡be¡¡reduced¡¡to¡¡the
aforesaid¡¡moods£»¡¡e¡£g¡£¡¡if¡¡B¡¡and¡¡F¡¡are¡¡contraries¡¡or¡¡cannot¡¡belong¡¡to
the¡¡same¡¡thing¡£¡¡For¡¡if¡¡these¡¡are¡¡taken£»¡¡a¡¡syllogism¡¡will¡¡be¡¡formed
to¡¡prove¡¡that¡¡A¡¡belongs¡¡to¡¡none¡¡of¡¡the¡¡Es£»¡¡not¡¡however¡¡from¡¡the
premisses¡¡taken¡¡but¡¡in¡¡the¡¡aforesaid¡¡mood¡£¡¡For¡¡B¡¡will¡¡belong¡¡to¡¡all
A¡¡and¡¡to¡¡no¡¡E¡£¡¡Consequently¡¡B¡¡must¡¡be¡¡identical¡¡with¡¡one¡¡of¡¡the¡¡Hs¡£
Again£»¡¡if¡¡B¡¡and¡¡G¡¡cannot¡¡belong¡¡to¡¡the¡¡same¡¡thing£»¡¡it¡¡follows¡¡that¡¡A
will¡¡not¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Es£º¡¡for¡¡then¡¡too¡¡we¡¡shall¡¡have¡¡the
middle¡¡figure£º¡¡for¡¡B¡¡will¡¡belong¡¡to¡¡all¡¡A¡¡and¡¡to¡¡no¡¡G¡£¡¡Consequently
B¡¡must¡¡be¡¡identical¡¡with¡¡some¡¡of¡¡the¡¡Hs¡£¡¡For¡¡the¡¡fact¡¡that¡¡B¡¡and¡¡G
cannot¡¡belong¡¡to¡¡the¡¡same¡¡thing¡¡differs¡¡in¡¡no¡¡way¡¡from¡¡the¡¡fact¡¡that¡¡B
is¡¡identical¡¡with¡¡some¡¡of¡¡the¡¡Hs£º¡¡for¡¡that¡¡includes¡¡everything¡¡which
cannot¡¡belong¡¡to¡¡E¡£
¡¡¡¡It¡¡is¡¡clear¡¡then¡¡that¡¡from¡¡the¡¡inquiries¡¡taken¡¡by¡¡themselves¡¡no
syllogism¡¡results£»¡¡but¡¡if¡¡B¡¡and¡¡F¡¡are¡¡contraries¡¡B¡¡must¡¡be¡¡identical
with¡¡one¡¡of¡¡the¡¡Hs£»¡¡and¡¡the¡¡syllogism¡¡results¡¡through¡¡these¡¡terms¡£
It¡¡turns¡¡out¡¡then¡¡that¡¡those¡¡who¡¡inquire¡¡in¡¡this¡¡ma