Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ13½Ú

prior analytics-µÚ13½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






not¡¡been¡¡drawn¡¡syllogistically¡¡or¡¡it¡¡has¡¡assumed¡¡more¡¡than¡¡was



necessary¡¡to¡¡establish¡¡its¡¡thesis¡£



¡¡¡¡If¡¡then¡¡syllogisms¡¡are¡¡taken¡¡with¡¡respect¡¡to¡¡their¡¡main¡¡premisses£»



every¡¡syllogism¡¡will¡¡consist¡¡of¡¡an¡¡even¡¡number¡¡of¡¡premisses¡¡and¡¡an¡¡odd



number¡¡of¡¡terms¡¡£¨for¡¡the¡¡terms¡¡exceed¡¡the¡¡premisses¡¡by¡¡one£©£»¡¡and¡¡the



conclusions¡¡will¡¡be¡¡half¡¡the¡¡number¡¡of¡¡the¡¡premisses¡£¡¡But¡¡whenever¡¡a



conclusion¡¡is¡¡reached¡¡by¡¡means¡¡of¡¡prosyllogisms¡¡or¡¡by¡¡means¡¡of¡¡several



continuous¡¡middle¡¡terms£»¡¡e¡£g¡£¡¡the¡¡proposition¡¡AB¡¡by¡¡means¡¡of¡¡the



middle¡¡terms¡¡C¡¡and¡¡D£»¡¡the¡¡number¡¡of¡¡the¡¡terms¡¡will¡¡similarly¡¡exceed



that¡¡of¡¡the¡¡premisses¡¡by¡¡one¡¡£¨for¡¡the¡¡extra¡¡term¡¡must¡¡either¡¡be



added¡¡outside¡¡or¡¡inserted£º¡¡but¡¡in¡¡either¡¡case¡¡it¡¡follows¡¡that¡¡the



relations¡¡of¡¡predication¡¡are¡¡one¡¡fewer¡¡than¡¡the¡¡terms¡¡related£©£»¡¡and



the¡¡premisses¡¡will¡¡be¡¡equal¡¡in¡¡number¡¡to¡¡the¡¡relations¡¡of¡¡predication¡£



The¡¡premisses¡¡however¡¡will¡¡not¡¡always¡¡be¡¡even£»¡¡the¡¡terms¡¡odd£»¡¡but¡¡they



will¡¡alternate¡­when¡¡the¡¡premisses¡¡are¡¡even£»¡¡the¡¡terms¡¡must¡¡be¡¡odd£»



when¡¡the¡¡terms¡¡are¡¡even£»¡¡the¡¡premisses¡¡must¡¡be¡¡odd£º¡¡for¡¡along¡¡with¡¡one



term¡¡one¡¡premiss¡¡is¡¡added£»¡¡if¡¡a¡¡term¡¡is¡¡added¡¡from¡¡any¡¡quarter¡£



Consequently¡¡since¡¡the¡¡premisses¡¡were¡¡£¨as¡¡we¡¡saw£©¡¡even£»¡¡and¡¡the



terms¡¡odd£»¡¡we¡¡must¡¡make¡¡them¡¡alternately¡¡even¡¡and¡¡odd¡¡at¡¡each



addition¡£¡¡But¡¡the¡¡conclusions¡¡will¡¡not¡¡follow¡¡the¡¡same¡¡arrangement



either¡¡in¡¡respect¡¡to¡¡the¡¡terms¡¡or¡¡to¡¡the¡¡premisses¡£¡¡For¡¡if¡¡one¡¡term¡¡is



added£»¡¡conclusions¡¡will¡¡be¡¡added¡¡less¡¡by¡¡one¡¡than¡¡the¡¡pre¡­existing



terms£º¡¡for¡¡the¡¡conclusion¡¡is¡¡drawn¡¡not¡¡in¡¡relation¡¡to¡¡the¡¡single



term¡¡last¡¡added£»¡¡but¡¡in¡¡relation¡¡to¡¡all¡¡the¡¡rest£»¡¡e¡£g¡£¡¡if¡¡to¡¡ABC¡¡the



term¡¡D¡¡is¡¡added£»¡¡two¡¡conclusions¡¡are¡¡thereby¡¡added£»¡¡one¡¡in¡¡relation¡¡to



A£»¡¡the¡¡other¡¡in¡¡relation¡¡to¡¡B¡£¡¡Similarly¡¡with¡¡any¡¡further¡¡additions¡£



And¡¡similarly¡¡too¡¡if¡¡the¡¡term¡¡is¡¡inserted¡¡in¡¡the¡¡middle£º¡¡for¡¡in



relation¡¡to¡¡one¡¡term¡¡only£»¡¡a¡¡syllogism¡¡will¡¡not¡¡be¡¡constructed¡£



Consequently¡¡the¡¡conclusions¡¡will¡¡be¡¡much¡¡more¡¡numerous¡¡than¡¡the¡¡terms



or¡¡the¡¡premisses¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡26







¡¡¡¡Since¡¡we¡¡understand¡¡the¡¡subjects¡¡with¡¡which¡¡syllogisms¡¡are



concerned£»¡¡what¡¡sort¡¡of¡¡conclusion¡¡is¡¡established¡¡in¡¡each¡¡figure£»



and¡¡in¡¡how¡¡many¡¡moods¡¡this¡¡is¡¡done£»¡¡it¡¡is¡¡evident¡¡to¡¡us¡¡both¡¡what¡¡sort



of¡¡problem¡¡is¡¡difficult¡¡and¡¡what¡¡sort¡¡is¡¡easy¡¡to¡¡prove¡£¡¡For¡¡that¡¡which



is¡¡concluded¡¡in¡¡many¡¡figures¡¡and¡¡through¡¡many¡¡moods¡¡is¡¡easier£»¡¡that



which¡¡is¡¡concluded¡¡in¡¡few¡¡figures¡¡and¡¡through¡¡few¡¡moods¡¡is¡¡more



difficult¡¡to¡¡attempt¡£¡¡The¡¡universal¡¡affirmative¡¡is¡¡proved¡¡by¡¡means



of¡¡the¡¡first¡¡figure¡¡only¡¡and¡¡by¡¡this¡¡in¡¡only¡¡one¡¡mood£»¡¡the¡¡universal



negative¡¡is¡¡proved¡¡both¡¡through¡¡the¡¡first¡¡figure¡¡and¡¡through¡¡the



second£»¡¡through¡¡the¡¡first¡¡in¡¡one¡¡mood£»¡¡through¡¡the¡¡second¡¡in¡¡two¡£



The¡¡particular¡¡affirmative¡¡is¡¡proved¡¡through¡¡the¡¡first¡¡and¡¡through¡¡the



last¡¡figure£»¡¡in¡¡one¡¡mood¡¡through¡¡the¡¡first£»¡¡in¡¡three¡¡moods¡¡through¡¡the



last¡£¡¡The¡¡particular¡¡negative¡¡is¡¡proved¡¡in¡¡all¡¡the¡¡figures£»¡¡but¡¡once



in¡¡the¡¡first£»¡¡in¡¡two¡¡moods¡¡in¡¡the¡¡second£»¡¡in¡¡three¡¡moods¡¡in¡¡the¡¡third¡£



It¡¡is¡¡clear¡¡then¡¡that¡¡the¡¡universal¡¡affirmative¡¡is¡¡most¡¡difficult¡¡to



establish£»¡¡most¡¡easy¡¡to¡¡overthrow¡£¡¡In¡¡general£»¡¡universals¡¡are¡¡easier



game¡¡for¡¡the¡¡destroyer¡¡than¡¡particulars£º¡¡for¡¡whether¡¡the¡¡predicate



belongs¡¡to¡¡none¡¡or¡¡not¡¡to¡¡some£»¡¡they¡¡are¡¡destroyed£º¡¡and¡¡the¡¡particular



negative¡¡is¡¡proved¡¡in¡¡all¡¡the¡¡figures£»¡¡the¡¡universal¡¡negative¡¡in



two¡£¡¡Similarly¡¡with¡¡universal¡¡negatives£º¡¡the¡¡original¡¡statement¡¡is



destroyed£»¡¡whether¡¡the¡¡predicate¡¡belongs¡¡to¡¡all¡¡or¡¡to¡¡some£º¡¡and¡¡this



we¡¡found¡¡possible¡¡in¡¡two¡¡figures¡£¡¡But¡¡particular¡¡statements¡¡can¡¡be



refuted¡¡in¡¡one¡¡way¡¡only¡­by¡¡proving¡¡that¡¡the¡¡predicate¡¡belongs¡¡either



to¡¡all¡¡or¡¡to¡¡none¡£¡¡But¡¡particular¡¡statements¡¡are¡¡easier¡¡to



establish£º¡¡for¡¡proof¡¡is¡¡possible¡¡in¡¡more¡¡figures¡¡and¡¡through¡¡more



moods¡£¡¡And¡¡in¡¡general¡¡we¡¡must¡¡not¡¡forget¡¡that¡¡it¡¡is¡¡possible¡¡to¡¡refute



statements¡¡by¡¡means¡¡of¡¡one¡¡another£»¡¡I¡¡mean£»¡¡universal¡¡statements¡¡by



means¡¡of¡¡particular£»¡¡and¡¡particular¡¡statements¡¡by¡¡means¡¡of



universal£º¡¡but¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡establish¡¡universal¡¡statements¡¡by



means¡¡of¡¡particular£»¡¡though¡¡it¡¡is¡¡possible¡¡to¡¡establish¡¡particular



statements¡¡by¡¡means¡¡of¡¡universal¡£¡¡At¡¡the¡¡same¡¡time¡¡it¡¡is¡¡evident



that¡¡it¡¡is¡¡easier¡¡to¡¡refute¡¡than¡¡to¡¡establish¡£



¡¡¡¡The¡¡manner¡¡in¡¡which¡¡every¡¡syllogism¡¡is¡¡produced£»¡¡the¡¡number¡¡of¡¡the



terms¡¡and¡¡premisses¡¡through¡¡which¡¡it¡¡proceeds£»¡¡the¡¡relation¡¡of¡¡the



premisses¡¡to¡¡one¡¡another£»¡¡the¡¡character¡¡of¡¡the¡¡problem¡¡proved¡¡in



each¡¡figure£»¡¡and¡¡the¡¡number¡¡of¡¡the¡¡figures¡¡appropriate¡¡to¡¡each



problem£»¡¡all¡¡these¡¡matters¡¡are¡¡clear¡¡from¡¡what¡¡has¡¡been¡¡said¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡27







¡¡¡¡We¡¡must¡¡now¡¡state¡¡how¡¡we¡¡may¡¡ourselves¡¡always¡¡have¡¡a¡¡supply¡¡of



syllogisms¡¡in¡¡reference¡¡to¡¡the¡¡problem¡¡proposed¡¡and¡¡by¡¡what¡¡road¡¡we



may¡¡reach¡¡the¡¡principles¡¡relative¡¡to¡¡the¡¡problem£º¡¡for¡¡perhaps¡¡we¡¡ought



not¡¡only¡¡to¡¡investigate¡¡the¡¡construction¡¡of¡¡syllogisms£»¡¡but¡¡also¡¡to



have¡¡the¡¡power¡¡of¡¡making¡¡them¡£



¡¡¡¡Of¡¡all¡¡the¡¡things¡¡which¡¡exist¡¡some¡¡are¡¡such¡¡that¡¡they¡¡cannot¡¡be



predicated¡¡of¡¡anything¡¡else¡¡truly¡¡and¡¡universally£»¡¡e¡£g¡£¡¡Cleon¡¡and



Callias£»¡¡i¡£e¡£¡¡the¡¡individual¡¡and¡¡sensible£»¡¡but¡¡other¡¡things¡¡may¡¡be



predicated¡¡of¡¡them¡¡£¨for¡¡each¡¡of¡¡these¡¡is¡¡both¡¡man¡¡and¡¡animal£©£»¡¡and



some¡¡things¡¡are¡¡themselves¡¡predicated¡¡of¡¡others£»¡¡but¡¡nothing¡¡prior



is¡¡predicated¡¡of¡¡them£»¡¡and¡¡some¡¡are¡¡predicated¡¡of¡¡others£»¡¡and¡¡yet



others¡¡of¡¡them£»¡¡e¡£g¡£¡¡man¡¡of¡¡Callias¡¡and¡¡animal¡¡of¡¡man¡£¡¡It¡¡is¡¡clear



then¡¡that¡¡some¡¡things¡¡are¡¡naturally¡¡not¡¡stated¡¡of¡¡anything£º¡¡for¡¡as¡¡a



rule¡¡each¡¡sensible¡¡thing¡¡is¡¡such¡¡that¡¡it¡¡cannot¡¡be¡¡predicated¡¡of



anything£»¡¡save¡¡incidentally£º¡¡for¡¡we¡¡sometimes¡¡say¡¡that¡¡that¡¡white



object¡¡is¡¡Socrates£»¡¡or¡¡that¡¡that¡¡which¡¡approaches¡¡is¡¡Callias¡£¡¡We¡¡shall



explain¡¡in¡¡another¡¡place¡¡that¡¡there¡¡is¡¡an¡¡upward¡¡limit¡¡also¡¡to¡¡the



process¡¡of¡¡predicating£º¡¡for¡¡the¡¡present¡¡we¡¡must¡¡assume¡¡this¡£¡¡Of



these¡¡ultimate¡¡predicates¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡demonstrate¡¡another



predicate£»¡¡save¡¡as¡¡a¡¡matter¡¡of¡¡opinion£»¡¡but¡¡these¡¡may¡¡be¡¡predicated¡¡of



other¡¡things¡£¡¡Neither¡¡can¡¡individuals¡¡be¡¡predicated¡¡of¡¡other¡¡things£»



though¡¡other¡¡things¡¡can¡¡be¡¡predicated¡¡of¡¡them¡£¡¡Whatever¡¡lies¡¡between



these¡¡limits¡¡can¡¡be¡¡spoken¡¡of¡¡in¡¡both¡¡ways£º¡¡they¡¡may¡¡be¡¡stated¡¡of



others£»¡¡and¡¡others¡¡stated¡¡of¡¡them¡£¡¡And¡¡as¡¡a¡¡rule¡¡arguments¡¡and



inquiries¡¡are¡¡concerned¡¡with¡¡these¡¡things¡£¡¡We¡¡must¡¡select¡¡the



premisses¡¡suitable¡¡to¡¡each¡¡problem¡¡in¡¡this¡¡manner£º¡¡first¡¡we¡¡must¡¡lay



down¡¡the¡¡subject¡¡and¡¡the¡¡definitions¡¡and¡¡the¡¡properties¡¡of¡¡the



thing£»¡¡next¡¡we¡¡must¡¡lay¡¡down¡¡those¡¡attributes¡¡which¡¡follow¡¡the



thing£»¡¡and¡¡again¡¡those¡¡which¡¡the¡¡thing¡¡follows£»¡¡and¡¡those¡¡which¡¡cannot



belong¡¡to¡¡it¡£¡¡But¡¡those¡¡to¡¡which¡¡it¡¡cannot¡¡belong¡¡need¡¡not¡¡be



selected£»¡¡because¡¡the¡¡negative¡¡statement¡¡implied¡¡above¡¡is¡¡convertible¡£



Of¡¡the¡¡attributes¡¡which¡¡follow¡¡we¡¡must¡¡distinguish¡¡those¡¡which¡¡fall



within¡¡the¡¡definition£»¡¡those¡¡which¡¡are¡¡predicated¡¡as¡¡properties£»¡¡and



those¡¡which¡¡are¡¡predicated¡¡as¡¡accidents£»¡¡and¡¡of¡¡the¡¡latter¡¡those¡¡which



apparently¡¡and¡¡those¡¡which¡¡really¡¡belong¡£¡¡The¡¡larger¡¡the¡¡supply¡¡a



man¡¡has¡¡of¡¡these£»¡¡the¡¡more¡¡quickly¡¡will¡¡he¡¡reach¡¡a¡¡conclusion£»¡¡and



in¡¡proportion¡¡as¡¡he¡¡apprehends¡¡those¡¡which¡¡are¡¡truer£»¡¡the¡¡more



cogently¡¡will¡¡he¡¡demonstrate¡£¡¡But¡¡he¡¡must¡¡select¡¡not¡¡those¡¡which



follow¡¡some¡¡particular¡¡but¡¡those¡¡which¡¡follow¡¡the¡¡thing¡¡as¡¡a¡¡whole£»



e¡£g¡£¡¡not¡¡what¡¡follows¡¡a¡¡particular¡¡man¡¡but¡¡what¡¡follows¡¡every¡¡man£º¡¡for



the¡¡syllogism¡¡proceeds¡¡through¡¡universal¡¡premisses¡£¡¡If¡¡the¡¡statement



is¡¡indefinite£»¡¡it¡¡is¡¡uncertain¡¡whether¡¡the¡¡premiss¡¡is¡¡universal£»¡¡but



if¡¡the¡¡statement¡¡is¡¡definite£»¡¡the¡¡matter¡¡is¡¡clear¡£¡¡Similarly¡¡one



must¡¡select¡¡those¡¡attributes¡¡which¡¡the¡¡subject¡¡follows¡¡as¡¡wholes£»



for¡¡the¡¡reason¡¡given¡£¡¡But¡¡that¡¡which¡¡follows¡¡one¡¡must¡¡not¡¡suppose¡¡to



follow¡¡as¡¡a¡¡whole£»¡¡e¡£g¡£¡¡that¡¡every¡¡animal¡¡follows¡¡man¡¡or¡¡every¡¡science



music£»¡¡but¡¡only¡¡that¡¡it¡¡follows£»¡¡without¡¡qualification£»¡¡and¡¡indeed



we¡¡state¡¡it¡¡in¡¡a¡¡proposition£º¡¡for¡¡the¡¡other¡¡statement¡¡is¡¡useless¡¡and



impossible£»¡¡e¡£g¡£¡¡that¡¡every¡¡man¡¡is¡¡every¡¡animal¡¡or¡¡justice¡¡is¡¡all



good¡£¡¡But¡¡that¡¡which¡¡something¡¡follows¡¡receives¡¡the¡¡mark¡¡'every'¡£



Whenever¡¡the¡¡subject£»¡¡for¡¡which¡¡we¡¡must¡¡obtain¡¡the¡¡attributes¡¡that



follow£»¡¡is¡¡contained¡¡by¡¡something¡¡else£»¡¡what¡¡follows¡¡or¡¡does¡¡not



follow¡¡the¡¡highest¡¡term¡¡universally¡¡must¡¡not¡¡be¡¡selected¡¡in¡¡dealing



with¡¡the¡¡subordinate¡¡term¡¡£¨for¡¡these¡¡attributes¡¡have¡¡been¡¡taken¡¡in



dealing¡¡with¡¡the¡¡superior¡¡term£»¡¡for¡¡what¡¡follows¡¡animal¡¡also¡¡follows



man£»¡¡and¡¡what¡¡does¡¡not¡¡belong¡¡to¡¡animal¡¡does¡¡not¡¡belong¡¡to¡¡man£©£»¡¡but



we¡¡must¡¡choose¡¡those¡¡attributes¡¡which¡¡are¡¡peculiar¡¡to¡¡each¡¡subject¡£



For¡¡some¡¡things¡¡are¡¡peculiar¡¡to¡¡the¡¡species¡¡as¡¡distinct¡¡from¡¡the



genus£»¡¡for¡¡species¡¡being¡¡distinct¡¡there¡¡must¡¡be¡¡attr

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ