prior analytics-µÚ13½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
not¡¡been¡¡drawn¡¡syllogistically¡¡or¡¡it¡¡has¡¡assumed¡¡more¡¡than¡¡was
necessary¡¡to¡¡establish¡¡its¡¡thesis¡£
¡¡¡¡If¡¡then¡¡syllogisms¡¡are¡¡taken¡¡with¡¡respect¡¡to¡¡their¡¡main¡¡premisses£»
every¡¡syllogism¡¡will¡¡consist¡¡of¡¡an¡¡even¡¡number¡¡of¡¡premisses¡¡and¡¡an¡¡odd
number¡¡of¡¡terms¡¡£¨for¡¡the¡¡terms¡¡exceed¡¡the¡¡premisses¡¡by¡¡one£©£»¡¡and¡¡the
conclusions¡¡will¡¡be¡¡half¡¡the¡¡number¡¡of¡¡the¡¡premisses¡£¡¡But¡¡whenever¡¡a
conclusion¡¡is¡¡reached¡¡by¡¡means¡¡of¡¡prosyllogisms¡¡or¡¡by¡¡means¡¡of¡¡several
continuous¡¡middle¡¡terms£»¡¡e¡£g¡£¡¡the¡¡proposition¡¡AB¡¡by¡¡means¡¡of¡¡the
middle¡¡terms¡¡C¡¡and¡¡D£»¡¡the¡¡number¡¡of¡¡the¡¡terms¡¡will¡¡similarly¡¡exceed
that¡¡of¡¡the¡¡premisses¡¡by¡¡one¡¡£¨for¡¡the¡¡extra¡¡term¡¡must¡¡either¡¡be
added¡¡outside¡¡or¡¡inserted£º¡¡but¡¡in¡¡either¡¡case¡¡it¡¡follows¡¡that¡¡the
relations¡¡of¡¡predication¡¡are¡¡one¡¡fewer¡¡than¡¡the¡¡terms¡¡related£©£»¡¡and
the¡¡premisses¡¡will¡¡be¡¡equal¡¡in¡¡number¡¡to¡¡the¡¡relations¡¡of¡¡predication¡£
The¡¡premisses¡¡however¡¡will¡¡not¡¡always¡¡be¡¡even£»¡¡the¡¡terms¡¡odd£»¡¡but¡¡they
will¡¡alternate¡when¡¡the¡¡premisses¡¡are¡¡even£»¡¡the¡¡terms¡¡must¡¡be¡¡odd£»
when¡¡the¡¡terms¡¡are¡¡even£»¡¡the¡¡premisses¡¡must¡¡be¡¡odd£º¡¡for¡¡along¡¡with¡¡one
term¡¡one¡¡premiss¡¡is¡¡added£»¡¡if¡¡a¡¡term¡¡is¡¡added¡¡from¡¡any¡¡quarter¡£
Consequently¡¡since¡¡the¡¡premisses¡¡were¡¡£¨as¡¡we¡¡saw£©¡¡even£»¡¡and¡¡the
terms¡¡odd£»¡¡we¡¡must¡¡make¡¡them¡¡alternately¡¡even¡¡and¡¡odd¡¡at¡¡each
addition¡£¡¡But¡¡the¡¡conclusions¡¡will¡¡not¡¡follow¡¡the¡¡same¡¡arrangement
either¡¡in¡¡respect¡¡to¡¡the¡¡terms¡¡or¡¡to¡¡the¡¡premisses¡£¡¡For¡¡if¡¡one¡¡term¡¡is
added£»¡¡conclusions¡¡will¡¡be¡¡added¡¡less¡¡by¡¡one¡¡than¡¡the¡¡pre¡existing
terms£º¡¡for¡¡the¡¡conclusion¡¡is¡¡drawn¡¡not¡¡in¡¡relation¡¡to¡¡the¡¡single
term¡¡last¡¡added£»¡¡but¡¡in¡¡relation¡¡to¡¡all¡¡the¡¡rest£»¡¡e¡£g¡£¡¡if¡¡to¡¡ABC¡¡the
term¡¡D¡¡is¡¡added£»¡¡two¡¡conclusions¡¡are¡¡thereby¡¡added£»¡¡one¡¡in¡¡relation¡¡to
A£»¡¡the¡¡other¡¡in¡¡relation¡¡to¡¡B¡£¡¡Similarly¡¡with¡¡any¡¡further¡¡additions¡£
And¡¡similarly¡¡too¡¡if¡¡the¡¡term¡¡is¡¡inserted¡¡in¡¡the¡¡middle£º¡¡for¡¡in
relation¡¡to¡¡one¡¡term¡¡only£»¡¡a¡¡syllogism¡¡will¡¡not¡¡be¡¡constructed¡£
Consequently¡¡the¡¡conclusions¡¡will¡¡be¡¡much¡¡more¡¡numerous¡¡than¡¡the¡¡terms
or¡¡the¡¡premisses¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡26
¡¡¡¡Since¡¡we¡¡understand¡¡the¡¡subjects¡¡with¡¡which¡¡syllogisms¡¡are
concerned£»¡¡what¡¡sort¡¡of¡¡conclusion¡¡is¡¡established¡¡in¡¡each¡¡figure£»
and¡¡in¡¡how¡¡many¡¡moods¡¡this¡¡is¡¡done£»¡¡it¡¡is¡¡evident¡¡to¡¡us¡¡both¡¡what¡¡sort
of¡¡problem¡¡is¡¡difficult¡¡and¡¡what¡¡sort¡¡is¡¡easy¡¡to¡¡prove¡£¡¡For¡¡that¡¡which
is¡¡concluded¡¡in¡¡many¡¡figures¡¡and¡¡through¡¡many¡¡moods¡¡is¡¡easier£»¡¡that
which¡¡is¡¡concluded¡¡in¡¡few¡¡figures¡¡and¡¡through¡¡few¡¡moods¡¡is¡¡more
difficult¡¡to¡¡attempt¡£¡¡The¡¡universal¡¡affirmative¡¡is¡¡proved¡¡by¡¡means
of¡¡the¡¡first¡¡figure¡¡only¡¡and¡¡by¡¡this¡¡in¡¡only¡¡one¡¡mood£»¡¡the¡¡universal
negative¡¡is¡¡proved¡¡both¡¡through¡¡the¡¡first¡¡figure¡¡and¡¡through¡¡the
second£»¡¡through¡¡the¡¡first¡¡in¡¡one¡¡mood£»¡¡through¡¡the¡¡second¡¡in¡¡two¡£
The¡¡particular¡¡affirmative¡¡is¡¡proved¡¡through¡¡the¡¡first¡¡and¡¡through¡¡the
last¡¡figure£»¡¡in¡¡one¡¡mood¡¡through¡¡the¡¡first£»¡¡in¡¡three¡¡moods¡¡through¡¡the
last¡£¡¡The¡¡particular¡¡negative¡¡is¡¡proved¡¡in¡¡all¡¡the¡¡figures£»¡¡but¡¡once
in¡¡the¡¡first£»¡¡in¡¡two¡¡moods¡¡in¡¡the¡¡second£»¡¡in¡¡three¡¡moods¡¡in¡¡the¡¡third¡£
It¡¡is¡¡clear¡¡then¡¡that¡¡the¡¡universal¡¡affirmative¡¡is¡¡most¡¡difficult¡¡to
establish£»¡¡most¡¡easy¡¡to¡¡overthrow¡£¡¡In¡¡general£»¡¡universals¡¡are¡¡easier
game¡¡for¡¡the¡¡destroyer¡¡than¡¡particulars£º¡¡for¡¡whether¡¡the¡¡predicate
belongs¡¡to¡¡none¡¡or¡¡not¡¡to¡¡some£»¡¡they¡¡are¡¡destroyed£º¡¡and¡¡the¡¡particular
negative¡¡is¡¡proved¡¡in¡¡all¡¡the¡¡figures£»¡¡the¡¡universal¡¡negative¡¡in
two¡£¡¡Similarly¡¡with¡¡universal¡¡negatives£º¡¡the¡¡original¡¡statement¡¡is
destroyed£»¡¡whether¡¡the¡¡predicate¡¡belongs¡¡to¡¡all¡¡or¡¡to¡¡some£º¡¡and¡¡this
we¡¡found¡¡possible¡¡in¡¡two¡¡figures¡£¡¡But¡¡particular¡¡statements¡¡can¡¡be
refuted¡¡in¡¡one¡¡way¡¡only¡by¡¡proving¡¡that¡¡the¡¡predicate¡¡belongs¡¡either
to¡¡all¡¡or¡¡to¡¡none¡£¡¡But¡¡particular¡¡statements¡¡are¡¡easier¡¡to
establish£º¡¡for¡¡proof¡¡is¡¡possible¡¡in¡¡more¡¡figures¡¡and¡¡through¡¡more
moods¡£¡¡And¡¡in¡¡general¡¡we¡¡must¡¡not¡¡forget¡¡that¡¡it¡¡is¡¡possible¡¡to¡¡refute
statements¡¡by¡¡means¡¡of¡¡one¡¡another£»¡¡I¡¡mean£»¡¡universal¡¡statements¡¡by
means¡¡of¡¡particular£»¡¡and¡¡particular¡¡statements¡¡by¡¡means¡¡of
universal£º¡¡but¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡establish¡¡universal¡¡statements¡¡by
means¡¡of¡¡particular£»¡¡though¡¡it¡¡is¡¡possible¡¡to¡¡establish¡¡particular
statements¡¡by¡¡means¡¡of¡¡universal¡£¡¡At¡¡the¡¡same¡¡time¡¡it¡¡is¡¡evident
that¡¡it¡¡is¡¡easier¡¡to¡¡refute¡¡than¡¡to¡¡establish¡£
¡¡¡¡The¡¡manner¡¡in¡¡which¡¡every¡¡syllogism¡¡is¡¡produced£»¡¡the¡¡number¡¡of¡¡the
terms¡¡and¡¡premisses¡¡through¡¡which¡¡it¡¡proceeds£»¡¡the¡¡relation¡¡of¡¡the
premisses¡¡to¡¡one¡¡another£»¡¡the¡¡character¡¡of¡¡the¡¡problem¡¡proved¡¡in
each¡¡figure£»¡¡and¡¡the¡¡number¡¡of¡¡the¡¡figures¡¡appropriate¡¡to¡¡each
problem£»¡¡all¡¡these¡¡matters¡¡are¡¡clear¡¡from¡¡what¡¡has¡¡been¡¡said¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡27
¡¡¡¡We¡¡must¡¡now¡¡state¡¡how¡¡we¡¡may¡¡ourselves¡¡always¡¡have¡¡a¡¡supply¡¡of
syllogisms¡¡in¡¡reference¡¡to¡¡the¡¡problem¡¡proposed¡¡and¡¡by¡¡what¡¡road¡¡we
may¡¡reach¡¡the¡¡principles¡¡relative¡¡to¡¡the¡¡problem£º¡¡for¡¡perhaps¡¡we¡¡ought
not¡¡only¡¡to¡¡investigate¡¡the¡¡construction¡¡of¡¡syllogisms£»¡¡but¡¡also¡¡to
have¡¡the¡¡power¡¡of¡¡making¡¡them¡£
¡¡¡¡Of¡¡all¡¡the¡¡things¡¡which¡¡exist¡¡some¡¡are¡¡such¡¡that¡¡they¡¡cannot¡¡be
predicated¡¡of¡¡anything¡¡else¡¡truly¡¡and¡¡universally£»¡¡e¡£g¡£¡¡Cleon¡¡and
Callias£»¡¡i¡£e¡£¡¡the¡¡individual¡¡and¡¡sensible£»¡¡but¡¡other¡¡things¡¡may¡¡be
predicated¡¡of¡¡them¡¡£¨for¡¡each¡¡of¡¡these¡¡is¡¡both¡¡man¡¡and¡¡animal£©£»¡¡and
some¡¡things¡¡are¡¡themselves¡¡predicated¡¡of¡¡others£»¡¡but¡¡nothing¡¡prior
is¡¡predicated¡¡of¡¡them£»¡¡and¡¡some¡¡are¡¡predicated¡¡of¡¡others£»¡¡and¡¡yet
others¡¡of¡¡them£»¡¡e¡£g¡£¡¡man¡¡of¡¡Callias¡¡and¡¡animal¡¡of¡¡man¡£¡¡It¡¡is¡¡clear
then¡¡that¡¡some¡¡things¡¡are¡¡naturally¡¡not¡¡stated¡¡of¡¡anything£º¡¡for¡¡as¡¡a
rule¡¡each¡¡sensible¡¡thing¡¡is¡¡such¡¡that¡¡it¡¡cannot¡¡be¡¡predicated¡¡of
anything£»¡¡save¡¡incidentally£º¡¡for¡¡we¡¡sometimes¡¡say¡¡that¡¡that¡¡white
object¡¡is¡¡Socrates£»¡¡or¡¡that¡¡that¡¡which¡¡approaches¡¡is¡¡Callias¡£¡¡We¡¡shall
explain¡¡in¡¡another¡¡place¡¡that¡¡there¡¡is¡¡an¡¡upward¡¡limit¡¡also¡¡to¡¡the
process¡¡of¡¡predicating£º¡¡for¡¡the¡¡present¡¡we¡¡must¡¡assume¡¡this¡£¡¡Of
these¡¡ultimate¡¡predicates¡¡it¡¡is¡¡not¡¡possible¡¡to¡¡demonstrate¡¡another
predicate£»¡¡save¡¡as¡¡a¡¡matter¡¡of¡¡opinion£»¡¡but¡¡these¡¡may¡¡be¡¡predicated¡¡of
other¡¡things¡£¡¡Neither¡¡can¡¡individuals¡¡be¡¡predicated¡¡of¡¡other¡¡things£»
though¡¡other¡¡things¡¡can¡¡be¡¡predicated¡¡of¡¡them¡£¡¡Whatever¡¡lies¡¡between
these¡¡limits¡¡can¡¡be¡¡spoken¡¡of¡¡in¡¡both¡¡ways£º¡¡they¡¡may¡¡be¡¡stated¡¡of
others£»¡¡and¡¡others¡¡stated¡¡of¡¡them¡£¡¡And¡¡as¡¡a¡¡rule¡¡arguments¡¡and
inquiries¡¡are¡¡concerned¡¡with¡¡these¡¡things¡£¡¡We¡¡must¡¡select¡¡the
premisses¡¡suitable¡¡to¡¡each¡¡problem¡¡in¡¡this¡¡manner£º¡¡first¡¡we¡¡must¡¡lay
down¡¡the¡¡subject¡¡and¡¡the¡¡definitions¡¡and¡¡the¡¡properties¡¡of¡¡the
thing£»¡¡next¡¡we¡¡must¡¡lay¡¡down¡¡those¡¡attributes¡¡which¡¡follow¡¡the
thing£»¡¡and¡¡again¡¡those¡¡which¡¡the¡¡thing¡¡follows£»¡¡and¡¡those¡¡which¡¡cannot
belong¡¡to¡¡it¡£¡¡But¡¡those¡¡to¡¡which¡¡it¡¡cannot¡¡belong¡¡need¡¡not¡¡be
selected£»¡¡because¡¡the¡¡negative¡¡statement¡¡implied¡¡above¡¡is¡¡convertible¡£
Of¡¡the¡¡attributes¡¡which¡¡follow¡¡we¡¡must¡¡distinguish¡¡those¡¡which¡¡fall
within¡¡the¡¡definition£»¡¡those¡¡which¡¡are¡¡predicated¡¡as¡¡properties£»¡¡and
those¡¡which¡¡are¡¡predicated¡¡as¡¡accidents£»¡¡and¡¡of¡¡the¡¡latter¡¡those¡¡which
apparently¡¡and¡¡those¡¡which¡¡really¡¡belong¡£¡¡The¡¡larger¡¡the¡¡supply¡¡a
man¡¡has¡¡of¡¡these£»¡¡the¡¡more¡¡quickly¡¡will¡¡he¡¡reach¡¡a¡¡conclusion£»¡¡and
in¡¡proportion¡¡as¡¡he¡¡apprehends¡¡those¡¡which¡¡are¡¡truer£»¡¡the¡¡more
cogently¡¡will¡¡he¡¡demonstrate¡£¡¡But¡¡he¡¡must¡¡select¡¡not¡¡those¡¡which
follow¡¡some¡¡particular¡¡but¡¡those¡¡which¡¡follow¡¡the¡¡thing¡¡as¡¡a¡¡whole£»
e¡£g¡£¡¡not¡¡what¡¡follows¡¡a¡¡particular¡¡man¡¡but¡¡what¡¡follows¡¡every¡¡man£º¡¡for
the¡¡syllogism¡¡proceeds¡¡through¡¡universal¡¡premisses¡£¡¡If¡¡the¡¡statement
is¡¡indefinite£»¡¡it¡¡is¡¡uncertain¡¡whether¡¡the¡¡premiss¡¡is¡¡universal£»¡¡but
if¡¡the¡¡statement¡¡is¡¡definite£»¡¡the¡¡matter¡¡is¡¡clear¡£¡¡Similarly¡¡one
must¡¡select¡¡those¡¡attributes¡¡which¡¡the¡¡subject¡¡follows¡¡as¡¡wholes£»
for¡¡the¡¡reason¡¡given¡£¡¡But¡¡that¡¡which¡¡follows¡¡one¡¡must¡¡not¡¡suppose¡¡to
follow¡¡as¡¡a¡¡whole£»¡¡e¡£g¡£¡¡that¡¡every¡¡animal¡¡follows¡¡man¡¡or¡¡every¡¡science
music£»¡¡but¡¡only¡¡that¡¡it¡¡follows£»¡¡without¡¡qualification£»¡¡and¡¡indeed
we¡¡state¡¡it¡¡in¡¡a¡¡proposition£º¡¡for¡¡the¡¡other¡¡statement¡¡is¡¡useless¡¡and
impossible£»¡¡e¡£g¡£¡¡that¡¡every¡¡man¡¡is¡¡every¡¡animal¡¡or¡¡justice¡¡is¡¡all
good¡£¡¡But¡¡that¡¡which¡¡something¡¡follows¡¡receives¡¡the¡¡mark¡¡'every'¡£
Whenever¡¡the¡¡subject£»¡¡for¡¡which¡¡we¡¡must¡¡obtain¡¡the¡¡attributes¡¡that
follow£»¡¡is¡¡contained¡¡by¡¡something¡¡else£»¡¡what¡¡follows¡¡or¡¡does¡¡not
follow¡¡the¡¡highest¡¡term¡¡universally¡¡must¡¡not¡¡be¡¡selected¡¡in¡¡dealing
with¡¡the¡¡subordinate¡¡term¡¡£¨for¡¡these¡¡attributes¡¡have¡¡been¡¡taken¡¡in
dealing¡¡with¡¡the¡¡superior¡¡term£»¡¡for¡¡what¡¡follows¡¡animal¡¡also¡¡follows
man£»¡¡and¡¡what¡¡does¡¡not¡¡belong¡¡to¡¡animal¡¡does¡¡not¡¡belong¡¡to¡¡man£©£»¡¡but
we¡¡must¡¡choose¡¡those¡¡attributes¡¡which¡¡are¡¡peculiar¡¡to¡¡each¡¡subject¡£
For¡¡some¡¡things¡¡are¡¡peculiar¡¡to¡¡the¡¡species¡¡as¡¡distinct¡¡from¡¡the
genus£»¡¡for¡¡species¡¡being¡¡distinct¡¡there¡¡must¡¡be¡¡attr