prior analytics-µÚ11½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
by¡¡conversion¡£¡¡But¡¡if¡¡both¡¡premisses¡¡should¡¡be¡¡negative¡the¡¡one
universal¡¡and¡¡the¡¡other¡¡particular¡although¡¡no¡¡syllogistic
conclusion¡¡will¡¡follow¡¡from¡¡the¡¡premisses¡¡as¡¡they¡¡are¡¡put£»¡¡it¡¡will
follow¡¡if¡¡they¡¡are¡¡converted£»¡¡as¡¡above¡£¡¡But¡¡when¡¡both¡¡premisses¡¡are
indefinite¡¡or¡¡particular£»¡¡no¡¡syllogism¡¡can¡¡be¡¡formed£º¡¡for¡¡A¡¡must
belong¡¡sometimes¡¡to¡¡all¡¡B¡¡and¡¡sometimes¡¡to¡¡no¡¡B¡£¡¡To¡¡illustrate¡¡the
affirmative¡¡relation¡¡take¡¡the¡¡terms¡¡animal¡man¡white£»¡¡to¡¡illustrate
the¡¡negative£»¡¡take¡¡the¡¡terms¡¡horse¡man¡whitewhite¡¡being¡¡the¡¡middle
term¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡21
¡¡¡¡If¡¡one¡¡premiss¡¡is¡¡pure£»¡¡the¡¡other¡¡problematic£»¡¡the¡¡conclusion¡¡will
be¡¡problematic£»¡¡not¡¡pure£»¡¡and¡¡a¡¡syllogism¡¡will¡¡be¡¡possible¡¡under¡¡the
same¡¡arrangement¡¡of¡¡the¡¡terms¡¡as¡¡before¡£¡¡First¡¡let¡¡the¡¡premisses¡¡be
affirmative£º¡¡suppose¡¡that¡¡A¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡B¡¡may¡¡possibly
belong¡¡to¡¡all¡¡C¡£¡¡If¡¡the¡¡proposition¡¡BC¡¡is¡¡converted£»¡¡we¡¡shall¡¡have¡¡the
first¡¡figure£»¡¡and¡¡the¡¡conclusion¡¡that¡¡A¡¡may¡¡possibly¡¡belong¡¡to¡¡some¡¡of
the¡¡Bs¡£¡¡For¡¡when¡¡one¡¡of¡¡the¡¡premisses¡¡in¡¡the¡¡first¡¡figure¡¡is
problematic£»¡¡the¡¡conclusion¡¡also¡¡£¨as¡¡we¡¡saw£©¡¡is¡¡problematic¡£¡¡Similarly
if¡¡the¡¡proposition¡¡BC¡¡is¡¡pure£»¡¡AC¡¡problematic£»¡¡or¡¡if¡¡AC¡¡is¡¡negative£»
BC¡¡affirmative£»¡¡no¡¡matter¡¡which¡¡of¡¡the¡¡two¡¡is¡¡pure£»¡¡in¡¡both¡¡cases
the¡¡conclusion¡¡will¡¡be¡¡problematic£º¡¡for¡¡the¡¡first¡¡figure¡¡is¡¡obtained
once¡¡more£»¡¡and¡¡it¡¡has¡¡been¡¡proved¡¡that¡¡if¡¡one¡¡premiss¡¡is¡¡problematic
in¡¡that¡¡figure¡¡the¡¡conclusion¡¡also¡¡will¡¡be¡¡problematic¡£¡¡But¡¡if¡¡the
minor¡¡premiss¡¡BC¡¡is¡¡negative£»¡¡or¡¡if¡¡both¡¡premisses¡¡are¡¡negative£»¡¡no
syllogistic¡¡conclusion¡¡can¡¡be¡¡drawn¡¡from¡¡the¡¡premisses¡¡as¡¡they
stand£»¡¡but¡¡if¡¡they¡¡are¡¡converted¡¡a¡¡syllogism¡¡is¡¡obtained¡¡as¡¡before¡£
¡¡¡¡If¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡universal£»¡¡the¡¡other¡¡particular£»¡¡then
when¡¡both¡¡are¡¡affirmative£»¡¡or¡¡when¡¡the¡¡universal¡¡is¡¡negative£»¡¡the
particular¡¡affirmative£»¡¡we¡¡shall¡¡have¡¡the¡¡same¡¡sort¡¡of¡¡syllogisms£º¡¡for
all¡¡are¡¡completed¡¡by¡¡means¡¡of¡¡the¡¡first¡¡figure¡£¡¡So¡¡it¡¡is¡¡clear¡¡that¡¡we
shall¡¡have¡¡not¡¡a¡¡pure¡¡but¡¡a¡¡problematic¡¡syllogistic¡¡conclusion¡£¡¡But¡¡if
the¡¡affirmative¡¡premiss¡¡is¡¡universal£»¡¡the¡¡negative¡¡particular£»¡¡the
proof¡¡will¡¡proceed¡¡by¡¡a¡¡reductio¡¡ad¡¡impossibile¡£¡¡Suppose¡¡that¡¡B
belongs¡¡to¡¡all¡¡C£»¡¡and¡¡A¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡C£º¡¡it
follows¡¡that¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡B¡£¡¡For¡¡if¡¡A¡¡necessarily
belongs¡¡to¡¡all¡¡B£»¡¡and¡¡B¡¡£¨as¡¡has¡¡been¡¡assumed£©¡¡belongs¡¡to¡¡all¡¡C£»¡¡A¡¡will
necessarily¡¡belong¡¡to¡¡all¡¡C£º¡¡for¡¡this¡¡has¡¡been¡¡proved¡¡before¡£¡¡But¡¡it
was¡¡assumed¡¡at¡¡the¡¡outset¡¡that¡¡A¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡C¡£
¡¡¡¡Whenever¡¡both¡¡premisses¡¡are¡¡indefinite¡¡or¡¡particular£»¡¡no¡¡syllogism
will¡¡be¡¡possible¡£¡¡The¡¡demonstration¡¡is¡¡the¡¡same¡¡as¡¡was¡¡given¡¡in¡¡the
case¡¡of¡¡universal¡¡premisses£»¡¡and¡¡proceeds¡¡by¡¡means¡¡of¡¡the¡¡same¡¡terms¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡22
¡¡¡¡If¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡necessary£»¡¡the¡¡other¡¡problematic£»¡¡when
the¡¡premisses¡¡are¡¡affirmative¡¡a¡¡problematic¡¡affirmative¡¡conclusion¡¡can
always¡¡be¡¡drawn£»¡¡when¡¡one¡¡proposition¡¡is¡¡affirmative£»¡¡the¡¡other
negative£»¡¡if¡¡the¡¡affirmative¡¡is¡¡necessary¡¡a¡¡problematic¡¡negative¡¡can
be¡¡inferred£»¡¡but¡¡if¡¡the¡¡negative¡¡proposition¡¡is¡¡necessary¡¡both¡¡a
problematic¡¡and¡¡a¡¡pure¡¡negative¡¡conclusion¡¡are¡¡possible¡£¡¡But¡¡a
necessary¡¡negative¡¡conclusion¡¡will¡¡not¡¡be¡¡possible£»¡¡any¡¡more¡¡than¡¡in
the¡¡other¡¡figures¡£¡¡Suppose¡¡first¡¡that¡¡the¡¡premisses¡¡are¡¡affirmative£»
i¡£e¡£¡¡that¡¡A¡¡necessarily¡¡belongs¡¡to¡¡all¡¡C£»¡¡and¡¡B¡¡may¡¡possibly¡¡belong¡¡to
all¡¡C¡£¡¡Since¡¡then¡¡A¡¡must¡¡belong¡¡to¡¡all¡¡C£»¡¡and¡¡C¡¡may¡¡belong¡¡to¡¡some
B£»¡¡it¡¡follows¡¡that¡¡A¡¡may¡¡£¨not¡¡does£©¡¡belong¡¡to¡¡some¡¡B£º¡¡for¡¡so¡¡it
resulted¡¡in¡¡the¡¡first¡¡figure¡£¡¡A¡¡similar¡¡proof¡¡may¡¡be¡¡given¡¡if¡¡the
proposition¡¡BC¡¡is¡¡necessary£»¡¡and¡¡AC¡¡is¡¡problematic¡£¡¡Again¡¡suppose
one¡¡proposition¡¡is¡¡affirmative£»¡¡the¡¡other¡¡negative£»¡¡the¡¡affirmative
being¡¡necessary£º¡¡i¡£e¡£¡¡suppose¡¡A¡¡may¡¡possibly¡¡belong¡¡to¡¡no¡¡C£»¡¡but¡¡B
necessarily¡¡belongs¡¡to¡¡all¡¡C¡£¡¡We¡¡shall¡¡have¡¡the¡¡first¡¡figure¡¡once
more£º¡¡and¡since¡¡the¡¡negative¡¡premiss¡¡is¡¡problematic¡it¡¡is¡¡clear¡¡that
the¡¡conclusion¡¡will¡¡be¡¡problematic£º¡¡for¡¡when¡¡the¡¡premisses¡¡stand
thus¡¡in¡¡the¡¡first¡¡figure£»¡¡the¡¡conclusion¡¡£¨as¡¡we¡¡found£©¡¡is¡¡problematic¡£
But¡¡if¡¡the¡¡negative¡¡premiss¡¡is¡¡necessary£»¡¡the¡¡conclusion¡¡will¡¡be¡¡not
only¡¡that¡¡A¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡B¡¡but¡¡also¡¡that¡¡it¡¡does
not¡¡belong¡¡to¡¡some¡¡B¡£¡¡For¡¡suppose¡¡that¡¡A¡¡necessarily¡¡does¡¡not¡¡belong
to¡¡C£»¡¡but¡¡B¡¡may¡¡belong¡¡to¡¡all¡¡C¡£¡¡If¡¡the¡¡affirmative¡¡proposition¡¡BC
is¡¡converted£»¡¡we¡¡shall¡¡have¡¡the¡¡first¡¡figure£»¡¡and¡¡the¡¡negative¡¡premiss
is¡¡necessary¡£¡¡But¡¡when¡¡the¡¡premisses¡¡stood¡¡thus£»¡¡it¡¡resulted¡¡that¡¡A
might¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡C£»¡¡and¡¡that¡¡it¡¡did¡¡not¡¡belong¡¡to
some¡¡C£»¡¡consequently¡¡here¡¡it¡¡follows¡¡that¡¡A¡¡does¡¡not¡¡belong¡¡to¡¡some¡¡B¡£
But¡¡when¡¡the¡¡minor¡¡premiss¡¡is¡¡negative£»¡¡if¡¡it¡¡is¡¡problematic¡¡we
shall¡¡have¡¡a¡¡syllogism¡¡by¡¡altering¡¡the¡¡premiss¡¡into¡¡its
complementary¡¡affirmative£»¡¡as¡¡before£»¡¡but¡¡if¡¡it¡¡is¡¡necessary¡¡no
syllogism¡¡can¡¡be¡¡formed¡£¡¡For¡¡A¡¡sometimes¡¡necessarily¡¡belongs¡¡to¡¡all¡¡B£»
and¡¡sometimes¡¡cannot¡¡possibly¡¡belong¡¡to¡¡any¡¡B¡£¡¡To¡¡illustrate¡¡the
former¡¡take¡¡the¡¡terms¡¡sleep¡sleeping¡¡horse¡man£»¡¡to¡¡illustrate¡¡the
latter¡¡take¡¡the¡¡terms¡¡sleep¡waking¡¡horse¡man¡£
¡¡¡¡Similar¡¡results¡¡will¡¡obtain¡¡if¡¡one¡¡of¡¡the¡¡terms¡¡is¡¡related
universally¡¡to¡¡the¡¡middle£»¡¡the¡¡other¡¡in¡¡part¡£¡¡If¡¡both¡¡premisses¡¡are
affirmative£»¡¡the¡¡conclusion¡¡will¡¡be¡¡problematic£»¡¡not¡¡pure£»¡¡and¡¡also
when¡¡one¡¡premiss¡¡is¡¡negative£»¡¡the¡¡other¡¡affirmative£»¡¡the¡¡latter
being¡¡necessary¡£¡¡But¡¡when¡¡the¡¡negative¡¡premiss¡¡is¡¡necessary£»¡¡the
conclusion¡¡also¡¡will¡¡be¡¡a¡¡pure¡¡negative¡¡proposition£»¡¡for¡¡the¡¡same¡¡kind
of¡¡proof¡¡can¡¡be¡¡given¡¡whether¡¡the¡¡terms¡¡are¡¡universal¡¡or¡¡not¡£¡¡For
the¡¡syllogisms¡¡must¡¡be¡¡made¡¡perfect¡¡by¡¡means¡¡of¡¡the¡¡first¡¡figure£»¡¡so
that¡¡a¡¡result¡¡which¡¡follows¡¡in¡¡the¡¡first¡¡figure¡¡follows¡¡also¡¡in¡¡the
third¡£¡¡But¡¡when¡¡the¡¡minor¡¡premiss¡¡is¡¡negative¡¡and¡¡universal£»¡¡if¡¡it
is¡¡problematic¡¡a¡¡syllogism¡¡can¡¡be¡¡formed¡¡by¡¡means¡¡of¡¡conversion£»¡¡but
if¡¡it¡¡is¡¡necessary¡¡a¡¡syllogism¡¡is¡¡not¡¡possible¡£¡¡The¡¡proof¡¡will
follow¡¡the¡¡same¡¡course¡¡as¡¡where¡¡the¡¡premisses¡¡are¡¡universal£»¡¡and¡¡the
same¡¡terms¡¡may¡¡be¡¡used¡£
¡¡¡¡It¡¡is¡¡clear¡¡then¡¡in¡¡this¡¡figure¡¡also¡¡when¡¡and¡¡how¡¡a¡¡syllogism¡¡can¡¡be
formed£»¡¡and¡¡when¡¡the¡¡conclusion¡¡is¡¡problematic£»¡¡and¡¡when¡¡it¡¡is¡¡pure¡£
It¡¡is¡¡evident¡¡also¡¡that¡¡all¡¡syllogisms¡¡in¡¡this¡¡figure¡¡are¡¡imperfect£»
and¡¡that¡¡they¡¡are¡¡made¡¡perfect¡¡by¡¡means¡¡of¡¡the¡¡first¡¡figure¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡23
¡¡¡¡It¡¡is¡¡clear¡¡from¡¡what¡¡has¡¡been¡¡said¡¡that¡¡the¡¡syllogisms¡¡in¡¡these
figures¡¡are¡¡made¡¡perfect¡¡by¡¡means¡¡of¡¡universal¡¡syllogisms¡¡in¡¡the¡¡first
figure¡¡and¡¡are¡¡reduced¡¡to¡¡them¡£¡¡That¡¡every¡¡syllogism¡¡without
qualification¡¡can¡¡be¡¡so¡¡treated£»¡¡will¡¡be¡¡clear¡¡presently£»¡¡when¡¡it
has¡¡been¡¡proved¡¡that¡¡every¡¡syllogism¡¡is¡¡formed¡¡through¡¡one¡¡or¡¡other¡¡of
these¡¡figures¡£
¡¡¡¡It¡¡is¡¡necessary¡¡that¡¡every¡¡demonstration¡¡and¡¡every¡¡syllogism
should¡¡prove¡¡either¡¡that¡¡something¡¡belongs¡¡or¡¡that¡¡it¡¡does¡¡not£»¡¡and
this¡¡either¡¡universally¡¡or¡¡in¡¡part£»¡¡and¡¡further¡¡either¡¡ostensively
or¡¡hypothetically¡£¡¡One¡¡sort¡¡of¡¡hypothetical¡¡proof¡¡is¡¡the¡¡reductio¡¡ad
impossibile¡£¡¡Let¡¡us¡¡speak¡¡first¡¡of¡¡ostensive¡¡syllogisms£º¡¡for¡¡after
these¡¡have¡¡been¡¡pointed¡¡out¡¡the¡¡truth¡¡of¡¡our¡¡contention¡¡will¡¡be
clear¡¡with¡¡regard¡¡to¡¡those¡¡which¡¡are¡¡proved¡¡per¡¡impossibile£»¡¡and¡¡in
general¡¡hypothetically¡£
¡¡¡¡If¡¡then¡¡one¡¡wants¡¡to¡¡prove¡¡syllogistically¡¡A¡¡of¡¡B£»¡¡either¡¡as¡¡an
attribute¡¡of¡¡it¡¡or¡¡as¡¡not¡¡an¡¡attribute¡¡of¡¡it£»¡¡one¡¡must¡¡assert
something¡¡of¡¡something¡¡else¡£¡¡If¡¡now¡¡A¡¡should¡¡be¡¡asserted¡¡of¡¡B£»¡¡the
proposition¡¡originally¡¡in¡¡question¡¡will¡¡have¡¡been¡¡assumed¡£¡¡But¡¡if¡¡A
should¡¡be¡¡asserted¡¡of¡¡C£»¡¡but¡¡C¡¡should¡¡not¡¡be¡¡asserted¡¡of¡¡anything£»¡¡nor
anything¡¡of¡¡it£»¡¡nor¡¡anything¡¡else¡¡of¡¡A£»¡¡no¡¡syllogism¡¡will¡¡be¡¡possible¡£
For¡¡nothing¡¡necessarily¡¡follows¡¡from¡¡the¡¡assertion¡¡of¡¡some¡¡one¡¡thing
concerning¡¡some¡¡other¡¡single¡¡thing¡£¡¡Thus¡¡we¡¡must¡¡take¡¡another
premiss¡¡as¡¡well¡£¡¡If¡¡then¡¡A¡¡be¡¡asserted¡¡of¡¡something¡¡else£»¡¡or¡¡something
else¡¡of¡¡A£»¡¡or¡¡something¡¡different¡¡of¡¡C£»¡¡nothing¡¡prevents¡¡a¡¡syllogism
being¡¡formed£»¡¡but¡¡it¡¡will¡¡not¡¡be¡¡in¡¡relation¡¡to¡¡B¡¡through¡¡the
premisses¡¡taken¡£¡¡Nor¡¡when¡¡C¡¡belongs¡¡to¡¡something¡¡else£»¡¡and¡¡that¡¡to
something¡¡else¡¡and¡¡so¡¡on£»¡¡no¡¡connexion¡¡however¡¡being¡¡made¡¡with¡¡B£»¡¡will
a¡¡syllogism¡¡be¡¡possible¡¡concerning¡¡A¡¡in¡¡its¡¡relation¡¡to¡¡B¡£¡¡For¡¡in
general¡¡we¡¡stated¡¡that¡¡no¡¡syllogism¡¡can¡¡establish¡¡the¡¡attribution¡¡of
one¡¡thing¡¡to¡¡another£»¡¡unless¡¡some¡¡middle¡¡term¡¡is¡¡taken£»¡¡which¡¡is
somehow¡¡related¡¡to¡¡each¡¡by¡¡way¡¡of¡¡predication¡£¡¡For¡¡the¡¡syllogism¡¡in
general¡¡is¡¡made¡¡out¡¡of¡¡premisses£»¡¡and¡¡a¡¡syllogism¡¡referring¡¡to¡¡this
out¡¡of¡¡premisses¡¡with¡¡the¡¡same¡¡reference£»¡¡and¡¡a¡¡syllogism¡¡relating
this¡¡to¡¡that¡¡proceeds¡¡through¡¡premisses¡¡which¡¡relate¡¡this¡¡to¡¡that¡£¡¡But
it¡¡