Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ10½Ú

prior analytics-µÚ10½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






they¡¡stand£»¡¡but¡¡if¡¡the¡¡problematic¡¡premiss¡¡is¡¡converted¡¡into¡¡its



complementary¡¡affirmative¡¡a¡¡syllogism¡¡is¡¡formed¡¡to¡¡prove¡¡that¡¡B¡¡may



belong¡¡to¡¡no¡¡C£»¡¡as¡¡before£º¡¡for¡¡we¡¡shall¡¡again¡¡have¡¡the¡¡first¡¡figure¡£



But¡¡if¡¡both¡¡premisses¡¡are¡¡affirmative£»¡¡no¡¡syllogism¡¡will¡¡be



possible¡£¡¡This¡¡arrangement¡¡of¡¡terms¡¡is¡¡possible¡¡both¡¡when¡¡the¡¡relation



is¡¡positive£»¡¡e¡£g¡£¡¡health£»¡¡animal£»¡¡man£»¡¡and¡¡when¡¡it¡¡is¡¡negative£»¡¡e¡£g¡£



health£»¡¡horse£»¡¡man¡£



¡¡¡¡The¡¡same¡¡will¡¡hold¡¡good¡¡if¡¡the¡¡syllogisms¡¡are¡¡particular¡£¡¡Whenever



the¡¡affirmative¡¡proposition¡¡is¡¡assertoric£»¡¡whether¡¡universal¡¡or



particular£»¡¡no¡¡syllogism¡¡is¡¡possible¡¡£¨this¡¡is¡¡proved¡¡similarly¡¡and



by¡¡the¡¡same¡¡examples¡¡as¡¡above£©£»¡¡but¡¡when¡¡the¡¡negative¡¡proposition¡¡is



assertoric£»¡¡a¡¡conclusion¡¡can¡¡be¡¡drawn¡¡by¡¡means¡¡of¡¡conversion£»¡¡as



before¡£¡¡Again¡¡if¡¡both¡¡the¡¡relations¡¡are¡¡negative£»¡¡and¡¡the¡¡assertoric



proposition¡¡is¡¡universal£»¡¡although¡¡no¡¡conclusion¡¡follows¡¡from¡¡the



actual¡¡premisses£»¡¡a¡¡syllogism¡¡can¡¡be¡¡obtained¡¡by¡¡converting¡¡the



problematic¡¡premiss¡¡into¡¡its¡¡complementary¡¡affirmative¡¡as¡¡before¡£



But¡¡if¡¡the¡¡negative¡¡proposition¡¡is¡¡assertoric£»¡¡but¡¡particular£»¡¡no



syllogism¡¡is¡¡possible£»¡¡whether¡¡the¡¡other¡¡premiss¡¡is¡¡affirmative¡¡or



negative¡£¡¡Nor¡¡can¡¡a¡¡conclusion¡¡be¡¡drawn¡¡when¡¡both¡¡premisses¡¡are



indefinite£»¡¡whether¡¡affirmative¡¡or¡¡negative£»¡¡or¡¡particular¡£¡¡The



proof¡¡is¡¡the¡¡same¡¡and¡¡by¡¡the¡¡same¡¡terms¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡19







¡¡¡¡If¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡necessary£»¡¡the¡¡other¡¡problematic£»¡¡then¡¡if



the¡¡negative¡¡is¡¡necessary¡¡a¡¡syllogistic¡¡conclusion¡¡can¡¡be¡¡drawn£»¡¡not



merely¡¡a¡¡negative¡¡problematic¡¡but¡¡also¡¡a¡¡negative¡¡assertoric



conclusion£»¡¡but¡¡if¡¡the¡¡affirmative¡¡premiss¡¡is¡¡necessary£»¡¡no¡¡conclusion



is¡¡possible¡£¡¡Suppose¡¡that¡¡A¡¡necessarily¡¡belongs¡¡to¡¡no¡¡B£»¡¡but¡¡may



belong¡¡to¡¡all¡¡C¡£¡¡If¡¡the¡¡negative¡¡premiss¡¡is¡¡converted¡¡B¡¡will¡¡belong¡¡to



no¡¡A£º¡¡but¡¡A¡¡ex¡¡hypothesi¡¡is¡¡capable¡¡of¡¡belonging¡¡to¡¡all¡¡C£º¡¡so¡¡once



more¡¡a¡¡conclusion¡¡is¡¡drawn¡¡by¡¡the¡¡first¡¡figure¡¡that¡¡B¡¡may¡¡belong¡¡to¡¡no



C¡£¡¡But¡¡at¡¡the¡¡same¡¡time¡¡it¡¡is¡¡clear¡¡that¡¡B¡¡will¡¡not¡¡belong¡¡to¡¡any¡¡C¡£



For¡¡assume¡¡that¡¡it¡¡does£º¡¡then¡¡if¡¡A¡¡cannot¡¡belong¡¡to¡¡any¡¡B£»¡¡and¡¡B



belongs¡¡to¡¡some¡¡of¡¡the¡¡Cs£»¡¡A¡¡cannot¡¡belong¡¡to¡¡some¡¡of¡¡the¡¡Cs£º¡¡but¡¡ex



hypothesi¡¡it¡¡may¡¡belong¡¡to¡¡all¡£¡¡A¡¡similar¡¡proof¡¡can¡¡be¡¡given¡¡if¡¡the



minor¡¡premiss¡¡is¡¡negative¡£¡¡Again¡¡let¡¡the¡¡affirmative¡¡proposition¡¡be



necessary£»¡¡and¡¡the¡¡other¡¡problematic£»¡¡i¡£e¡£¡¡suppose¡¡that¡¡A¡¡may¡¡belong



to¡¡no¡¡B£»¡¡but¡¡necessarily¡¡belongs¡¡to¡¡all¡¡C¡£¡¡When¡¡the¡¡terms¡¡are¡¡arranged



in¡¡this¡¡way£»¡¡no¡¡syllogism¡¡is¡¡possible¡£¡¡For¡¡£¨1£©¡¡it¡¡sometimes¡¡turns



out¡¡that¡¡B¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡C¡£¡¡Let¡¡A¡¡be¡¡white£»¡¡B¡¡man£»



C¡¡swan¡£¡¡White¡¡then¡¡necessarily¡¡belongs¡¡to¡¡swan£»¡¡but¡¡may¡¡belong¡¡to¡¡no



man£»¡¡and¡¡man¡¡necessarily¡¡belongs¡¡to¡¡no¡¡swan£»¡¡Clearly¡¡then¡¡we¡¡cannot



draw¡¡a¡¡problematic¡¡conclusion£»¡¡for¡¡that¡¡which¡¡is¡¡necessary¡¡is



admittedly¡¡distinct¡¡from¡¡that¡¡which¡¡is¡¡possible¡£¡¡£¨2£©¡¡Nor¡¡again¡¡can



we¡¡draw¡¡a¡¡necessary¡¡conclusion£º¡¡for¡¡that¡¡presupposes¡¡that¡¡both



premisses¡¡are¡¡necessary£»¡¡or¡¡at¡¡any¡¡rate¡¡the¡¡negative¡¡premiss¡£¡¡£¨3£©



Further¡¡it¡¡is¡¡possible¡¡also£»¡¡when¡¡the¡¡terms¡¡are¡¡so¡¡arranged£»¡¡that¡¡B



should¡¡belong¡¡to¡¡C£º¡¡for¡¡nothing¡¡prevents¡¡C¡¡falling¡¡under¡¡B£»¡¡A¡¡being



possible¡¡for¡¡all¡¡B£»¡¡and¡¡necessarily¡¡belonging¡¡to¡¡C£»¡¡e¡£g¡£¡¡if¡¡C¡¡stands



for¡¡'awake'£»¡¡B¡¡for¡¡'animal'£»¡¡A¡¡for¡¡'motion'¡£¡¡For¡¡motion¡¡necessarily



belongs¡¡to¡¡what¡¡is¡¡awake£»¡¡and¡¡is¡¡possible¡¡for¡¡every¡¡animal£º¡¡and



everything¡¡that¡¡is¡¡awake¡¡is¡¡animal¡£¡¡Clearly¡¡then¡¡the¡¡conclusion¡¡cannot



be¡¡the¡¡negative¡¡assertion£»¡¡if¡¡the¡¡relation¡¡must¡¡be¡¡positive¡¡when¡¡the



terms¡¡are¡¡related¡¡as¡¡above¡£¡¡Nor¡¡can¡¡the¡¡opposite¡¡affirmations¡¡be



established£º¡¡consequently¡¡no¡¡syllogism¡¡is¡¡possible¡£¡¡A¡¡similar¡¡proof¡¡is



possible¡¡if¡¡the¡¡major¡¡premiss¡¡is¡¡affirmative¡£



¡¡¡¡But¡¡if¡¡the¡¡premisses¡¡are¡¡similar¡¡in¡¡quality£»¡¡when¡¡they¡¡are



negative¡¡a¡¡syllogism¡¡can¡¡always¡¡be¡¡formed¡¡by¡¡converting¡¡the



problematic¡¡premiss¡¡into¡¡its¡¡complementary¡¡affirmative¡¡as¡¡before¡£



Suppose¡¡A¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡B£»¡¡and¡¡possibly¡¡may¡¡not



belong¡¡to¡¡C£º¡¡if¡¡the¡¡premisses¡¡are¡¡converted¡¡B¡¡belongs¡¡to¡¡no¡¡A£»¡¡and¡¡A



may¡¡possibly¡¡belong¡¡to¡¡all¡¡C£º¡¡thus¡¡we¡¡have¡¡the¡¡first¡¡figure¡£¡¡Similarly



if¡¡the¡¡minor¡¡premiss¡¡is¡¡negative¡£¡¡But¡¡if¡¡the¡¡premisses¡¡are¡¡affirmative



there¡¡cannot¡¡be¡¡a¡¡syllogism¡£¡¡Clearly¡¡the¡¡conclusion¡¡cannot¡¡be¡¡a



negative¡¡assertoric¡¡or¡¡a¡¡negative¡¡necessary¡¡proposition¡¡because¡¡no



negative¡¡premiss¡¡has¡¡been¡¡laid¡¡down¡¡either¡¡in¡¡the¡¡assertoric¡¡or¡¡in¡¡the



necessary¡¡mode¡£¡¡Nor¡¡can¡¡the¡¡conclusion¡¡be¡¡a¡¡problematic¡¡negative



proposition¡£¡¡For¡¡if¡¡the¡¡terms¡¡are¡¡so¡¡related£»¡¡there¡¡are¡¡cases¡¡in¡¡which



B¡¡necessarily¡¡will¡¡not¡¡belong¡¡to¡¡C£»¡¡e¡£g¡£¡¡suppose¡¡that¡¡A¡¡is¡¡white£»¡¡B



swan£»¡¡C¡¡man¡£¡¡Nor¡¡can¡¡the¡¡opposite¡¡affirmations¡¡be¡¡established£»¡¡since



we¡¡have¡¡shown¡¡a¡¡case¡¡in¡¡which¡¡B¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡C¡£¡¡A



syllogism¡¡then¡¡is¡¡not¡¡possible¡¡at¡¡all¡£



¡¡¡¡Similar¡¡relations¡¡will¡¡obtain¡¡in¡¡particular¡¡syllogisms¡£¡¡For¡¡whenever



the¡¡negative¡¡proposition¡¡is¡¡universal¡¡and¡¡necessary£»¡¡a¡¡syllogism



will¡¡always¡¡be¡¡possible¡¡to¡¡prove¡¡both¡¡a¡¡problematic¡¡and¡¡a¡¡negative



assertoric¡¡proposition¡¡£¨the¡¡proof¡¡proceeds¡¡by¡¡conversion£©£»¡¡but¡¡when



the¡¡affirmative¡¡proposition¡¡is¡¡universal¡¡and¡¡necessary£»¡¡no¡¡syllogistic



conclusion¡¡can¡¡be¡¡drawn¡£¡¡This¡¡can¡¡be¡¡proved¡¡in¡¡the¡¡same¡¡way¡¡as¡¡for



universal¡¡propositions£»¡¡and¡¡by¡¡the¡¡same¡¡terms¡£¡¡Nor¡¡is¡¡a¡¡syllogistic



conclusion¡¡possible¡¡when¡¡both¡¡premisses¡¡are¡¡affirmative£º¡¡this¡¡also¡¡may



be¡¡proved¡¡as¡¡above¡£¡¡But¡¡when¡¡both¡¡premisses¡¡are¡¡negative£»¡¡and¡¡the



premiss¡¡that¡¡definitely¡¡disconnects¡¡two¡¡terms¡¡is¡¡universal¡¡and



necessary£»¡¡though¡¡nothing¡¡follows¡¡necessarily¡¡from¡¡the¡¡premisses¡¡as



they¡¡are¡¡stated£»¡¡a¡¡conclusion¡¡can¡¡be¡¡drawn¡¡as¡¡above¡¡if¡¡the¡¡problematic



premiss¡¡is¡¡converted¡¡into¡¡its¡¡complementary¡¡affirmative¡£¡¡But¡¡if¡¡both



are¡¡indefinite¡¡or¡¡particular£»¡¡no¡¡syllogism¡¡can¡¡be¡¡formed¡£¡¡The¡¡same



proof¡¡will¡¡serve£»¡¡and¡¡the¡¡same¡¡terms¡£



¡¡¡¡It¡¡is¡¡clear¡¡then¡¡from¡¡what¡¡has¡¡been¡¡said¡¡that¡¡if¡¡the¡¡universal¡¡and



negative¡¡premiss¡¡is¡¡necessary£»¡¡a¡¡syllogism¡¡is¡¡always¡¡possible£»¡¡proving



not¡¡merely¡¡a¡¡negative¡¡problematic£»¡¡but¡¡also¡¡a¡¡negative¡¡assertoric



proposition£»¡¡but¡¡if¡¡the¡¡affirmative¡¡premiss¡¡is¡¡necessary¡¡no¡¡conclusion



can¡¡be¡¡drawn¡£¡¡It¡¡is¡¡clear¡¡too¡¡that¡¡a¡¡syllogism¡¡is¡¡possible¡¡or¡¡not



under¡¡the¡¡same¡¡conditions¡¡whether¡¡the¡¡mode¡¡of¡¡the¡¡premisses¡¡is



assertoric¡¡or¡¡necessary¡£¡¡And¡¡it¡¡is¡¡clear¡¡that¡¡all¡¡the¡¡syllogisms¡¡are



imperfect£»¡¡and¡¡are¡¡completed¡¡by¡¡means¡¡of¡¡the¡¡figures¡¡mentioned¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡20



¡¡¡¡In¡¡the¡¡last¡¡figure¡¡a¡¡syllogism¡¡is¡¡possible¡¡whether¡¡both¡¡or¡¡only



one¡¡of¡¡the¡¡premisses¡¡is¡¡problematic¡£¡¡When¡¡the¡¡premisses¡¡are



problematic¡¡the¡¡conclusion¡¡will¡¡be¡¡problematic£»¡¡and¡¡also¡¡when¡¡one



premiss¡¡is¡¡problematic£»¡¡the¡¡other¡¡assertoric¡£¡¡But¡¡when¡¡the¡¡other



premiss¡¡is¡¡necessary£»¡¡if¡¡it¡¡is¡¡affirmative¡¡the¡¡conclusion¡¡will¡¡be



neither¡¡necessary¡¡or¡¡assertoric£»¡¡but¡¡if¡¡it¡¡is¡¡negative¡¡the¡¡syllogism



will¡¡result¡¡in¡¡a¡¡negative¡¡assertoric¡¡proposition£»¡¡as¡¡above¡£¡¡In¡¡these



also¡¡we¡¡must¡¡understand¡¡the¡¡expression¡¡'possible'¡¡in¡¡the¡¡conclusion¡¡in



the¡¡same¡¡way¡¡as¡¡before¡£



¡¡¡¡First¡¡let¡¡the¡¡premisses¡¡be¡¡problematic¡¡and¡¡suppose¡¡that¡¡both¡¡A¡¡and¡¡B



may¡¡possibly¡¡belong¡¡to¡¡every¡¡C¡£¡¡Since¡¡then¡¡the¡¡affirmative¡¡proposition



is¡¡convertible¡¡into¡¡a¡¡particular£»¡¡and¡¡B¡¡may¡¡possibly¡¡belong¡¡to¡¡every



C£»¡¡it¡¡follows¡¡that¡¡C¡¡may¡¡possibly¡¡belong¡¡to¡¡some¡¡B¡£¡¡So£»¡¡if¡¡A¡¡is



possible¡¡for¡¡every¡¡C£»¡¡and¡¡C¡¡is¡¡possible¡¡for¡¡some¡¡of¡¡the¡¡Bs£»¡¡then¡¡A



is¡¡possible¡¡for¡¡some¡¡of¡¡the¡¡Bs¡£¡¡For¡¡we¡¡have¡¡got¡¡the¡¡first¡¡figure¡£



And¡¡A¡¡if¡¡may¡¡possibly¡¡belong¡¡to¡¡no¡¡C£»¡¡but¡¡B¡¡may¡¡possibly¡¡belong¡¡to¡¡all



C£»¡¡it¡¡follows¡¡that¡¡A¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡some¡¡B£º¡¡for¡¡we¡¡shall



have¡¡the¡¡first¡¡figure¡¡again¡¡by¡¡conversion¡£¡¡But¡¡if¡¡both¡¡premisses



should¡¡be¡¡negative¡¡no¡¡necessary¡¡consequence¡¡will¡¡follow¡¡from¡¡them¡¡as



they¡¡are¡¡stated£»¡¡but¡¡if¡¡the¡¡premisses¡¡are¡¡converted¡¡into¡¡their



corresponding¡¡affirmatives¡¡there¡¡will¡¡be¡¡a¡¡syllogism¡¡as¡¡before¡£¡¡For¡¡if



A¡¡and¡¡B¡¡may¡¡possibly¡¡not¡¡belong¡¡to¡¡C£»¡¡if¡¡'may¡¡possibly¡¡belong'¡¡is



substituted¡¡we¡¡shall¡¡again¡¡have¡¡the¡¡first¡¡figure¡¡by¡¡means¡¡of



conversion¡£¡¡But¡¡if¡¡one¡¡of¡¡the¡¡premisses¡¡is¡¡universal£»¡¡the¡¡other



particular£»¡¡a¡¡syllogism¡¡will¡¡be¡¡possible£»¡¡or¡¡not£»¡¡under¡¡the



arrangement¡¡of¡¡the¡¡terms¡¡as¡¡in¡¡the¡¡case¡¡of¡¡assertoric¡¡propositions¡£



Suppose¡¡that¡¡A¡¡may¡¡possibly¡¡belong¡¡to¡¡all¡¡C£»¡¡and¡¡B¡¡to¡¡some¡¡C¡£¡¡We¡¡shall



have¡¡the¡¡first¡¡figure¡¡again¡¡if¡¡the¡¡particular¡¡premiss¡¡is¡¡converted¡£



For¡¡if¡¡A¡¡is¡¡possible¡¡for¡¡all¡¡C£»¡¡and¡¡C¡¡for¡¡some¡¡of¡¡the¡¡Bs£»¡¡then¡¡A¡¡is



possible¡¡for¡¡some¡¡of¡¡the¡¡Bs¡£¡¡Similarly¡¡if¡¡the¡¡proposition¡¡BC¡¡is



universal¡£¡¡Likewise¡¡also¡¡if¡¡the¡¡proposition¡¡AC¡¡is¡¡negative£»¡¡and¡¡the



proposition¡¡BC¡¡affirmative£º¡¡for¡¡we¡¡shall¡¡again¡¡have¡¡the¡¡first¡¡figure



by¡¡conversion¡£¡¡But¡¡if¡¡both¡¡premisses¡¡should¡¡be¡¡negative¡­the¡¡one



universal¡¡and¡¡the¡¡other¡¡particular¡­although¡¡no¡¡

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ