Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > prior analytics >

µÚ1½Ú

prior analytics-µÚ1½Ú

С˵£º prior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡PRIOR¡¡ANALYTICS



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡by¡¡Aristotle



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡translated¡¡by¡¡A¡£¡¡J¡£¡¡Jenkinson



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Book¡¡I



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1







¡¡¡¡WE¡¡must¡¡first¡¡state¡¡the¡¡subject¡¡of¡¡our¡¡inquiry¡¡and¡¡the¡¡faculty¡¡to



which¡¡it¡¡belongs£º¡¡its¡¡subject¡¡is¡¡demonstration¡¡and¡¡the¡¡faculty¡¡that



carries¡¡it¡¡out¡¡demonstrative¡¡science¡£¡¡We¡¡must¡¡next¡¡define¡¡a¡¡premiss£»¡¡a



term£»¡¡and¡¡a¡¡syllogism£»¡¡and¡¡the¡¡nature¡¡of¡¡a¡¡perfect¡¡and¡¡of¡¡an¡¡imperfect



syllogism£»¡¡and¡¡after¡¡that£»¡¡the¡¡inclusion¡¡or¡¡noninclusion¡¡of¡¡one¡¡term



in¡¡another¡¡as¡¡in¡¡a¡¡whole£»¡¡and¡¡what¡¡we¡¡mean¡¡by¡¡predicating¡¡one¡¡term



of¡¡all£»¡¡or¡¡none£»¡¡of¡¡another¡£



¡¡¡¡A¡¡premiss¡¡then¡¡is¡¡a¡¡sentence¡¡affirming¡¡or¡¡denying¡¡one¡¡thing¡¡of



another¡£¡¡This¡¡is¡¡either¡¡universal¡¡or¡¡particular¡¡or¡¡indefinite¡£¡¡By



universal¡¡I¡¡mean¡¡the¡¡statement¡¡that¡¡something¡¡belongs¡¡to¡¡all¡¡or¡¡none



of¡¡something¡¡else£»¡¡by¡¡particular¡¡that¡¡it¡¡belongs¡¡to¡¡some¡¡or¡¡not¡¡to



some¡¡or¡¡not¡¡to¡¡all£»¡¡by¡¡indefinite¡¡that¡¡it¡¡does¡¡or¡¡does¡¡not¡¡belong£»



without¡¡any¡¡mark¡¡to¡¡show¡¡whether¡¡it¡¡is¡¡universal¡¡or¡¡particular£»¡¡e¡£g¡£



'contraries¡¡are¡¡subjects¡¡of¡¡the¡¡same¡¡science'£»¡¡or¡¡'pleasure¡¡is¡¡not



good'¡£¡¡The¡¡demonstrative¡¡premiss¡¡differs¡¡from¡¡the¡¡dialectical£»¡¡because



the¡¡demonstrative¡¡premiss¡¡is¡¡the¡¡assertion¡¡of¡¡one¡¡of¡¡two¡¡contradictory



statements¡¡£¨the¡¡demonstrator¡¡does¡¡not¡¡ask¡¡for¡¡his¡¡premiss£»¡¡but¡¡lays¡¡it



down£©£»¡¡whereas¡¡the¡¡dialectical¡¡premiss¡¡depends¡¡on¡¡the¡¡adversary's



choice¡¡between¡¡two¡¡contradictories¡£¡¡But¡¡this¡¡will¡¡make¡¡no¡¡difference



to¡¡the¡¡production¡¡of¡¡a¡¡syllogism¡¡in¡¡either¡¡case£»¡¡for¡¡both¡¡the



demonstrator¡¡and¡¡the¡¡dialectician¡¡argue¡¡syllogistically¡¡after



stating¡¡that¡¡something¡¡does¡¡or¡¡does¡¡not¡¡belong¡¡to¡¡something¡¡else¡£



Therefore¡¡a¡¡syllogistic¡¡premiss¡¡without¡¡qualification¡¡will¡¡be¡¡an



affirmation¡¡or¡¡denial¡¡of¡¡something¡¡concerning¡¡something¡¡else¡¡in¡¡the



way¡¡we¡¡have¡¡described£»¡¡it¡¡will¡¡be¡¡demonstrative£»¡¡if¡¡it¡¡is¡¡true¡¡and



obtained¡¡through¡¡the¡¡first¡¡principles¡¡of¡¡its¡¡science£»¡¡while¡¡a



dialectical¡¡premiss¡¡is¡¡the¡¡giving¡¡of¡¡a¡¡choice¡¡between¡¡two



contradictories£»¡¡when¡¡a¡¡man¡¡is¡¡proceeding¡¡by¡¡question£»¡¡but¡¡when¡¡he



is¡¡syllogizing¡¡it¡¡is¡¡the¡¡assertion¡¡of¡¡that¡¡which¡¡is¡¡apparent¡¡and



generally¡¡admitted£»¡¡as¡¡has¡¡been¡¡said¡¡in¡¡the¡¡Topics¡£¡¡The¡¡nature¡¡then¡¡of



a¡¡premiss¡¡and¡¡the¡¡difference¡¡between¡¡syllogistic£»¡¡demonstrative£»¡¡and



dialectical¡¡premisses£»¡¡may¡¡be¡¡taken¡¡as¡¡sufficiently¡¡defined¡¡by¡¡us¡¡in



relation¡¡to¡¡our¡¡present¡¡need£»¡¡but¡¡will¡¡be¡¡stated¡¡accurately¡¡in¡¡the



sequel¡£



¡¡¡¡I¡¡call¡¡that¡¡a¡¡term¡¡into¡¡which¡¡the¡¡premiss¡¡is¡¡resolved£»¡¡i¡£e¡£¡¡both¡¡the



predicate¡¡and¡¡that¡¡of¡¡which¡¡it¡¡is¡¡predicated£»¡¡'being'¡¡being¡¡added



and¡¡'not¡¡being'¡¡removed£»¡¡or¡¡vice¡¡versa¡£



¡¡¡¡A¡¡syllogism¡¡is¡¡discourse¡¡in¡¡which£»¡¡certain¡¡things¡¡being¡¡stated£»



something¡¡other¡¡than¡¡what¡¡is¡¡stated¡¡follows¡¡of¡¡necessity¡¡from¡¡their



being¡¡so¡£¡¡I¡¡mean¡¡by¡¡the¡¡last¡¡phrase¡¡that¡¡they¡¡produce¡¡the¡¡consequence£»



and¡¡by¡¡this£»¡¡that¡¡no¡¡further¡¡term¡¡is¡¡required¡¡from¡¡without¡¡in¡¡order¡¡to



make¡¡the¡¡consequence¡¡necessary¡£



¡¡¡¡I¡¡call¡¡that¡¡a¡¡perfect¡¡syllogism¡¡which¡¡needs¡¡nothing¡¡other¡¡than



what¡¡has¡¡been¡¡stated¡¡to¡¡make¡¡plain¡¡what¡¡necessarily¡¡follows£»¡¡a



syllogism¡¡is¡¡imperfect£»¡¡if¡¡it¡¡needs¡¡either¡¡one¡¡or¡¡more¡¡propositions£»



which¡¡are¡¡indeed¡¡the¡¡necessary¡¡consequences¡¡of¡¡the¡¡terms¡¡set¡¡down£»¡¡but



have¡¡not¡¡been¡¡expressly¡¡stated¡¡as¡¡premisses¡£



¡¡¡¡That¡¡one¡¡term¡¡should¡¡be¡¡included¡¡in¡¡another¡¡as¡¡in¡¡a¡¡whole¡¡is¡¡the



same¡¡as¡¡for¡¡the¡¡other¡¡to¡¡be¡¡predicated¡¡of¡¡all¡¡of¡¡the¡¡first¡£¡¡And¡¡we¡¡say



that¡¡one¡¡term¡¡is¡¡predicated¡¡of¡¡all¡¡of¡¡another£»¡¡whenever¡¡no¡¡instance¡¡of



the¡¡subject¡¡can¡¡be¡¡found¡¡of¡¡which¡¡the¡¡other¡¡term¡¡cannot¡¡be¡¡asserted£º



'to¡¡be¡¡predicated¡¡of¡¡none'¡¡must¡¡be¡¡understood¡¡in¡¡the¡¡same¡¡way¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2







¡¡¡¡Every¡¡premiss¡¡states¡¡that¡¡something¡¡either¡¡is¡¡or¡¡must¡¡be¡¡or¡¡may¡¡be



the¡¡attribute¡¡of¡¡something¡¡else£»¡¡of¡¡premisses¡¡of¡¡these¡¡three¡¡kinds



some¡¡are¡¡affirmative£»¡¡others¡¡negative£»¡¡in¡¡respect¡¡of¡¡each¡¡of¡¡the¡¡three



modes¡¡of¡¡attribution£»¡¡again¡¡some¡¡affirmative¡¡and¡¡negative¡¡premisses



are¡¡universal£»¡¡others¡¡particular£»¡¡others¡¡indefinite¡£¡¡It¡¡is¡¡necessary



then¡¡that¡¡in¡¡universal¡¡attribution¡¡the¡¡terms¡¡of¡¡the¡¡negative¡¡premiss



should¡¡be¡¡convertible£»¡¡e¡£g¡£¡¡if¡¡no¡¡pleasure¡¡is¡¡good£»¡¡then¡¡no¡¡good



will¡¡be¡¡pleasure£»¡¡the¡¡terms¡¡of¡¡the¡¡affirmative¡¡must¡¡be¡¡convertible£»



not¡¡however£»¡¡universally£»¡¡but¡¡in¡¡part£»¡¡e¡£g¡£¡¡if¡¡every¡¡pleasure£»is¡¡good£»



some¡¡good¡¡must¡¡be¡¡pleasure£»¡¡the¡¡particular¡¡affirmative¡¡must¡¡convert¡¡in



part¡¡£¨for¡¡if¡¡some¡¡pleasure¡¡is¡¡good£»¡¡then¡¡some¡¡good¡¡will¡¡be



pleasure£©£»¡¡but¡¡the¡¡particular¡¡negative¡¡need¡¡not¡¡convert£»¡¡for¡¡if¡¡some



animal¡¡is¡¡not¡¡man£»¡¡it¡¡does¡¡not¡¡follow¡¡that¡¡some¡¡man¡¡is¡¡not¡¡animal¡£



¡¡¡¡First¡¡then¡¡take¡¡a¡¡universal¡¡negative¡¡with¡¡the¡¡terms¡¡A¡¡and¡¡B¡£¡¡If¡¡no¡¡B



is¡¡A£»¡¡neither¡¡can¡¡any¡¡A¡¡be¡¡B¡£¡¡For¡¡if¡¡some¡¡A¡¡£¨say¡¡C£©¡¡were¡¡B£»¡¡it¡¡would



not¡¡be¡¡true¡¡that¡¡no¡¡B¡¡is¡¡A£»¡¡for¡¡C¡¡is¡¡a¡¡B¡£¡¡But¡¡if¡¡every¡¡B¡¡is¡¡A¡¡then



some¡¡A¡¡is¡¡B¡£¡¡For¡¡if¡¡no¡¡A¡¡were¡¡B£»¡¡then¡¡no¡¡B¡¡could¡¡be¡¡A¡£¡¡But¡¡we



assumed¡¡that¡¡every¡¡B¡¡is¡¡A¡£¡¡Similarly¡¡too£»¡¡if¡¡the¡¡premiss¡¡is



particular¡£¡¡For¡¡if¡¡some¡¡B¡¡is¡¡A£»¡¡then¡¡some¡¡of¡¡the¡¡As¡¡must¡¡be¡¡B¡£¡¡For



if¡¡none¡¡were£»¡¡then¡¡no¡¡B¡¡would¡¡be¡¡A¡£¡¡But¡¡if¡¡some¡¡B¡¡is¡¡not¡¡A£»¡¡there¡¡is



no¡¡necessity¡¡that¡¡some¡¡of¡¡the¡¡As¡¡should¡¡not¡¡be¡¡B£»¡¡e¡£g¡£¡¡let¡¡B¡¡stand¡¡for



animal¡¡and¡¡A¡¡for¡¡man¡£¡¡Not¡¡every¡¡animal¡¡is¡¡a¡¡man£»¡¡but¡¡every¡¡man¡¡is¡¡an



animal¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3







¡¡¡¡The¡¡same¡¡manner¡¡of¡¡conversion¡¡will¡¡hold¡¡good¡¡also¡¡in¡¡respect¡¡of



necessary¡¡premisses¡£¡¡The¡¡universal¡¡negative¡¡converts¡¡universally£»¡¡each



of¡¡the¡¡affirmatives¡¡converts¡¡into¡¡a¡¡particular¡£¡¡If¡¡it¡¡is¡¡necessary



that¡¡no¡¡B¡¡is¡¡A£»¡¡it¡¡is¡¡necessary¡¡also¡¡that¡¡no¡¡A¡¡is¡¡B¡£¡¡For¡¡if¡¡it¡¡is



possible¡¡that¡¡some¡¡A¡¡is¡¡B£»¡¡it¡¡would¡¡be¡¡possible¡¡also¡¡that¡¡some¡¡B¡¡is¡¡A¡£



If¡¡all¡¡or¡¡some¡¡B¡¡is¡¡A¡¡of¡¡necessity£»¡¡it¡¡is¡¡necessary¡¡also¡¡that¡¡some¡¡A



is¡¡B£º¡¡for¡¡if¡¡there¡¡were¡¡no¡¡necessity£»¡¡neither¡¡would¡¡some¡¡of¡¡the¡¡Bs



be¡¡A¡¡necessarily¡£¡¡But¡¡the¡¡particular¡¡negative¡¡does¡¡not¡¡convert£»¡¡for



the¡¡same¡¡reason¡¡which¡¡we¡¡have¡¡already¡¡stated¡£



¡¡¡¡In¡¡respect¡¡of¡¡possible¡¡premisses£»¡¡since¡¡possibility¡¡is¡¡used¡¡in



several¡¡senses¡¡£¨for¡¡we¡¡say¡¡that¡¡what¡¡is¡¡necessary¡¡and¡¡what¡¡is¡¡not



necessary¡¡and¡¡what¡¡is¡¡potential¡¡is¡¡possible£©£»¡¡affirmative¡¡statements



will¡¡all¡¡convert¡¡in¡¡a¡¡manner¡¡similar¡¡to¡¡those¡¡described¡£¡¡For¡¡if¡¡it



is¡¡possible¡¡that¡¡all¡¡or¡¡some¡¡B¡¡is¡¡A£»¡¡it¡¡will¡¡be¡¡possible¡¡that¡¡some¡¡A



is¡¡B¡£¡¡For¡¡if¡¡that¡¡were¡¡not¡¡possible£»¡¡then¡¡no¡¡B¡¡could¡¡possibly¡¡be¡¡A¡£



This¡¡has¡¡been¡¡already¡¡proved¡£¡¡But¡¡in¡¡negative¡¡statements¡¡the¡¡case¡¡is



different¡£¡¡Whatever¡¡is¡¡said¡¡to¡¡be¡¡possible£»¡¡either¡¡because¡¡B



necessarily¡¡is¡¡A£»¡¡or¡¡because¡¡B¡¡is¡¡not¡¡necessarily¡¡A£»¡¡admits¡¡of



conversion¡¡like¡¡other¡¡negative¡¡statements£»¡¡e¡£g¡£¡¡if¡¡one¡¡should¡¡say£»



it¡¡is¡¡possible¡¡that¡¡man¡¡is¡¡not¡¡horse£»¡¡or¡¡that¡¡no¡¡garment¡¡is¡¡white¡£¡¡For



in¡¡the¡¡former¡¡case¡¡the¡¡one¡¡term¡¡necessarily¡¡does¡¡not¡¡belong¡¡to¡¡the



other£»¡¡in¡¡the¡¡latter¡¡there¡¡is¡¡no¡¡necessity¡¡that¡¡it¡¡should£º¡¡and¡¡the



premiss¡¡converts¡¡like¡¡other¡¡negative¡¡statements¡£¡¡For¡¡if¡¡it¡¡is¡¡possible



for¡¡no¡¡man¡¡to¡¡be¡¡a¡¡horse£»¡¡it¡¡is¡¡also¡¡admissible¡¡for¡¡no¡¡horse¡¡to¡¡be¡¡a



man£»¡¡and¡¡if¡¡it¡¡is¡¡admissible¡¡for¡¡no¡¡garment¡¡to¡¡be¡¡white£»¡¡it¡¡is¡¡also



admissible¡¡for¡¡nothing¡¡white¡¡to¡¡be¡¡a¡¡garment¡£¡¡For¡¡if¡¡any¡¡white¡¡thing



must¡¡be¡¡a¡¡garment£»¡¡then¡¡some¡¡garment¡¡will¡¡necessarily¡¡be¡¡white¡£¡¡This



has¡¡been¡¡already¡¡proved¡£¡¡The¡¡particular¡¡negative¡¡also¡¡must¡¡be



treated¡¡like¡¡those¡¡dealt¡¡with¡¡above¡£¡¡But¡¡if¡¡anything¡¡is¡¡said¡¡to¡¡be



possible¡¡because¡¡it¡¡is¡¡the¡¡general¡¡rule¡¡and¡¡natural¡¡£¨and¡¡it¡¡is¡¡in¡¡this



way¡¡we¡¡define¡¡the¡¡possible£©£»¡¡the¡¡negative¡¡premisses¡¡can¡¡no¡¡longer¡¡be



converted¡¡like¡¡the¡¡simple¡¡negatives£»¡¡the¡¡universal¡¡negative¡¡premiss



does¡¡not¡¡convert£»¡¡and¡¡the¡¡particular¡¡does¡£¡¡This¡¡will¡¡be¡¡plain¡¡when



we¡¡speak¡¡about¡¡the¡¡possible¡£¡¡At¡¡present¡¡we¡¡may¡¡take¡¡this¡¡much¡¡as¡¡clear



in¡¡addition¡¡to¡¡what¡¡has¡¡been¡¡said£º¡¡the¡¡statement¡¡that¡¡it¡¡is¡¡possible



that¡¡no¡¡B¡¡is¡¡A¡¡or¡¡some¡¡B¡¡is¡¡not¡¡A¡¡is¡¡affirmative¡¡in¡¡form£º¡¡for¡¡the



expression¡¡'is¡¡possible'¡¡ranks¡¡along¡¡with¡¡'is'£»¡¡and¡¡'is'¡¡makes¡¡an



affirmation¡¡always¡¡and¡¡in¡¡every¡¡case£»¡¡whatever¡¡the¡¡terms¡¡to¡¡which¡¡it



is¡¡added£»¡¡in¡¡predication£»¡¡e¡£g¡£¡¡'it¡¡is¡¡not¡­good'¡¡or¡¡'it¡¡is¡¡not¡­white'



or¡¡in¡¡a¡¡word¡¡'it¡¡is¡¡not¡­this'¡£¡¡But¡¡this¡¡also¡¡will¡¡be¡¡proved¡¡in¡¡the



sequel¡£¡¡In¡¡conversion¡¡these¡¡premisses¡¡will¡¡behave¡¡like¡¡the¡¡other



affirmative¡¡propositions¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4







¡¡¡¡After¡¡these¡¡distinctions¡¡we¡¡now¡¡state¡¡by¡¡what¡¡means£»¡¡when£»¡¡and¡¡how



every¡¡syllogism¡¡is¡¡produced£»¡¡subsequently¡¡we¡¡must¡¡speak¡¡of



demonstration¡£¡¡Syllogism¡¡should¡¡be¡¡discussed¡¡before¡¡demonstration



because¡¡syllogism¡¡is¡¡the¡¡general£º¡¡the¡¡demonstration¡¡is¡¡a¡¡sort¡¡of



syllogism£»¡¡but¡¡not¡¡every¡¡syllogism¡¡is¡¡a¡¡demonstration¡£



¡¡¡¡Whenever¡¡three¡¡terms¡¡are¡¡so¡¡related¡¡to¡¡one¡¡another¡¡that¡¡the¡¡last



is¡¡contained¡¡in¡¡the¡¡middle¡¡as

·µ»ØĿ¼ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ