博弈论-第29节
按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
卖股票或债券时已预期利率的变动,不管猜得对不对,都有助于市场效率。同样的,战争、维持和平、政治事件等新闻都会影响市场的平均价格,如果你能比竞争者猜得更准,就可以因此获利。每日市场平均的变动是由各种大大小小的因素所造成的,它们会影响到不同股票与投资,加起来就像赌场醉鬼随机漫步的情况一样。
然而,究竟这些变动有多随机?以纽约证交所一个普通交易日来看,大约有1000种个股红盘作收,1000种个股走软,另有700多种则维持平盘。如果这些涨跌变动真如习惯所称的随机,而个股变动也彼此独立,那么就可以采用平方根法则,以上涨与下跌个股支数的差约为1000,求其平方根,约等于30左右,与实际的40种相仿,属合理范围。因此,由这个粗略的案例,可看出个股涨跌就跟前面的那个醉鬼在断崖边漫步一样,总和平均就像身处在千百个醉鬼的正中心一样。
类似分析的研究结论是股市每日平均变化的确很接近随机漫步,皆几乎找不到可辨识的模式,这也跟效率市场概念相当一致,认为应能找出某种可加利用的规律,如果它真的存在;而这种规律也会对价格结构产生足够的影响力以自我补偿。如果可以接受这个概念,应该明白想利用平均值找出这个规律,就像要猜出一群醉鬼下一步想怎么走一样。尽管为了这些分析,投资人已花下大笔金钱,塞满了预言家的口袋,但因为证据仍是模棱两可,因此投资大众永远存有希望,大师们与其他赌博性企业家才能飞黄腾达。不过人们也不必全知全能,就可以利用所知的一切获得成功。
再进一步往下探究,到底股市平均值日复一日的变动中,有多少是由随机漫步的累积效果所造成的(别忘了,随机漫步者在一段时间后,会从起始点向其他方向移动)。同样也可以用平方根法则及同性质但较复杂的定理来加以分析,结果亦很具说服力,只是不够清楚明白,那就是每日、每周、每月平均值的变动多因市场上个股随机、互不协调的变动所造成,就像是醉鬼移动路线一样。人们在认知上常犯的谬误是无中生有,自以为可在无规律中看出规律、在无秩序中找到秩序。
启示:下面的一组试题可以测验你承担风险的能力:
(1)你有足够的收入应付家庭的基本需要吗?
(2)你有合适的人寿、健康保险吗?
(3)万一你的主要收入中断了,你是否有足够的积蓄应付?
(4)你是否摆脱得了繁重的财务负担?
(5)你若在股市中损失了部分钱,你承受得了吗?
巴菲特为什么能赚钱
根据最近的统计报告,世界首富依然是比尔·盖茨,排名第二的就是巴菲特,他是惟一只靠经营股票而跻身富翁排行榜前列的人。
他在谈他怎样选择理想股票时说:〃我花了很多时间来研究沃特·迪斯尼公司。我最喜欢的公司是:美丽的城堡,周围是一圈又深又险的护城河,里面住着一位诚实而高贵的首领。最好有个神灵守护着这个城池。护城河就像一个强大的威慑,使得敌人不敢进攻。首领不断地创造财富,但不独占它。换句话说,我们喜欢那种具有市场统治地位,别人难以模仿,耐久可靠的大公司。〃他还说:〃当我买股票时,我就认为是买下了整个公司,就像在街边买了家商店。如果买下了商店,我就要了解它的一切。〃
因此,在网络股沸反盈天的时候,有人嘲笑巴菲特老了,他的投资思想已经过时,投资人也向他施加压力,希望他也投入〃淘金〃热潮。可巴菲特一直不为所动,他承认这些股票可能给投资者带来巨大的利润,但是他同时表示〃不理解这些网络公司的赢利方式〃。事过境迁,随着网络泡沫的破灭,高高在上的网络股也土崩瓦解,〃老了〃的巴菲特再次笑到了最后。
巴菲特这种充满感情而又十分理智的炒股思想,使他在变幻莫测的股市始终把握着正确的方向,成为股市上一个著名的不倒翁。
〃股神〃巴菲特曾经在美国华盛顿大学发表了以下这番谈话:〃我何以至此,不是智商问题,关键是理性。我一直视智商和天才如同发动机的马力,但是输出功率发动机赖以运转的效能依赖于理性。许多人驾驭400马力的发动机,但是只得到100马力的输出功率。更好的方式是用200马力的发动机并使之输出全部功率。〃
你也可以是〃大师〃
好了,乱七八糟地谈了一通股经,该回到〃博弈〃的正题上来了。如果你希望在股市上赚钱,就该先明确你的目的。你要的是红利还是博取差价?如果是前者,你就该像巴菲特那样,选择合适的时机,找几支值得投资的股票(如业绩良好、安全可靠、市盈率低等)买下,然后就该干什么干什么;如果是后者,你就要明白,实际上你是要从别人腰包里掏钱,这可能与道德无关,但与策略大有关系。既然玩股票的大多输钱,你就必须跟大多数人反着来。
当然,这里不是要告诉你应该在大家狂抛股票时逆流而上,我们说过,股市是个心理市,兵败如山倒时企图做〃中流砥柱〃只能被踩成肉饼。你应该比他们反应更快而不是更慢,别人疯狂买进时你退出(一个在股市上赚了大钱的人是这样〃分析行情〃的:当他发现营业大厅外停放的自行车超过一定数量时就卖出),市场一片低靡时进入,既然你就是要赚大家的钱,你就一定要先知道他们的玩法错在什么地方。
〃跑赢大市〃(即自己的收益高于指数增长)其实并不如想像的那样容易,即使在所谓〃牛市〃中,个股还是有的会涨,有的会跌。如果能比别人早一步得到内幕消息,就可因此获利。
用决策方法在股市使获利极大化也非常复杂,且跟上述那些繁杂的统计脱离不了关系。所谓〃快速上升通道〃、〃形态辨认〃、〃找出三上一下〃等都不太管用,要从股价的过去走势里看出点端倪有如找出天上白云像什么,人人都办得到。另一方面,证据也显示股市运作并不完全随机,市场更非有绝对效率,所以投资就像本书提到的其他例子一样,对努力和拥有充分信息的人相当有利,同时也让懒惰与没有信息的人遭受损失。也许无知者真的有福,但绝不是在赚取财富方面。
有一位大主教曾呼吁信徒一定要永远行在善恶间那条又直又窄的道路上,他指的是宗教信仰,不过这也正是破解股市的最佳方法。其实,也许惟一〃理性〃的投资方法就是巴菲特式,除此以外,真的没有任何策略保证你只赚不赔。
启示:股票投资,没有世袭的技巧,只有利用活钱的智慧。
第12章 悖论:〃交换信封〃
我们的知识体系、我们对世界的认识也许并不是建立在〃惟一正确〃的基础上,而在这个基础上建立起的认识世界的方式,既是一条道路,也是一个囚笼。
悖论逻辑的套索
逻辑是有用的,也是有趣的,但这并不能保证它时时刻刻都让你放心。逻辑是一切演绎推理的基础。也许最有趣的就是像福尔摩斯那样通过严密的推理,发现事情的真相。然而,有时你会发现,正是你似乎无懈可击的推理和论证把你送进了死胡同。到底什么错了?是你的推理过程出了问题,还是逻辑本身隐伏着某种致命的缺陷?
有个很有趣、很简单的概念悖论(也被译作〃吊诡〃),简单说就是自相矛盾的说法。即如果承认这个说法正确,就能推出这个说法不正确,反之,如果承认这个说法不正确,却又能推出这个说法正确。至今仍令统计专家与决策理论学者争论不休。
你很聪明?很有逻辑头脑?当有人这样评价你时,你会感到高兴。事实怎么样呢?想不想试试看?看看下面的几个悖论吧!
1。鳄鱼和小孩的悖论
鳄鱼抓住了一个小孩,对他说:〃我会不会吃掉你?你要答对了,我就放了你;答错了,就吃了你。〃
小孩想了想,说:〃你会吃掉我。〃
鳄鱼懵了,它该怎么办呢?〃我要是吃了你,你就说对了,我不该吃你;我要是不吃你,你又说错了,我该吃了你。。。。。。我晕!〃
小孩乘机跑了,鳄鱼十分沮丧:妈的,他要说我会放了他就好了!
2。《堂吉珂德》悖论
《堂吉珂德》里描写了一个国家,它有一条奇怪的法律:每个异乡人到此都要回答一个问题:你来做什么?你答对了,一切好说;你答错了,就要被绞死。(当然,对错是由人家说了算的)
一个人回答:〃我来是为了被绞死。〃士兵像鳄鱼一样懵了:如果绞死他,他就对了,不该死;可是放了呢?他又错了,该死。怎么办?
到了国王那里,他也想了好久,说:〃无论怎么做都不对,还是我法外开恩,放了他吧。〃
3。理发师悖论
理发师悖论是由罗素提出的,罗素不但是哲学家,也是一位数学家,他提出这个悖论是为了说明数学中的集合问题。其大意是:某城里有一个理发师,他只给不肯自己刮脸的人刮脸,那么,他给不给自己刮脸呢?
你可能要争辩:事实上,没有鳄鱼肯跟你讲道理,没有一个国家会通过这么古怪的法律,也不会有一个针对理发师的如此严格的规定。。。。。。这些都是编造出来的。你是对的,在现实中,我们的确不大可能被这些难题困扰。但是对悖论的研究不是没有意义的,更不是所谓〃吃饱了撑的〃。
悖论不是存在于现实中,而是存在于我们对现实的认识和表述中,但这两者不可能分开。如果没有人类,世界仍然存在,但是却没有意义,意义正是人类认识的结果。
博尔赫斯曾写过一个令人着迷的小故事。在这个故事中,〃我〃得到了一把小石子,这些石子的特别之处在于:你每次数它们,数目都不同,这一次是3,下一次就可能是5或13。想想这个故事,想想故事中的疑问:如果毕达哥拉斯(古希腊数学家,在这里代表人类的数学传统)抓起的是这样一把石子。。。。。。
这个故事暗示的是:我们的知识体系、我们对世界的认识也许并不是建立在〃惟一正确〃的基础上,而在这个基础上建立起的认知世界的方式,既是一条道路,也是一个囚笼。问题是,没有人可以离开惯常的知识结构,只要他活着,就必须找几条安身立命、为人处世的原则和方法,而他自己,也就被这些原则和方法规定起来。
启示:我们都不是生活在疯人院里,逻辑思考能力是必须具备的。可是逻辑就像牛仔手里的套索,弄不好也会把自己套住。
艾毕曼德悖论
理性的决策要靠逻辑,理性思考也不例外,悖论存在逻辑领域里,主要是挑战人类思考的协调一致性,以确定每个螺丝都配对了螺帽。如果两个论述互相矛盾,就不会同时为真,就像掷一枚铜板,不会同时出现正面,又出现反面。所谓逻辑的内部一致性,就是指不论用什么方法,都无法证明两个叙述处于绝对对立的情况。如果想长智慧,解决自己明显的内部不一致是不二法门。
伟大的科学家爱因斯坦曾协助发现了量子力学的理论,但又自觉不完善,故在中年花了很长的时间想找个悖论以证明其不具一致性。爱因斯坦失败了,量子力学到今天仍然存在,但当时悖论确实吸引许多物理界的精英投入研究。至今部分问题仍困扰着科学家们,而那些宣称不感困惑的绝非专家。
逻辑的悖论中有个最古老的、也不错的例子,即艾毕曼德悖论,它是2500年前由一个克里特人艾毕曼德提出的。他宣称:〃所有的克里特人都是骗子。〃这就是一个典型悖论。这句话究竟是真是假?如果是真的,那就不能相信说这句话的人,因为他自己就是克里特人,所以不可能为真。那么,难道它是谎言?这么一来,连这个人都是骗子,又怎么能相信他的谎言和对克里特人的批评?
再将这种想法延伸、扩展,大可在本书中插进一句话,请读者不要相信书中的每一句话,当然也包括这一句在内,这是艾毕曼德悖论的延伸。
著名的数学家哥德尔于1931年创造出革命性的定律。他指出,所有的数学体系都包含一些定律,无法证明,也无法推翻但这个定律并不是其中之一,因为他已做出了漂亮的证明。这个说法吓坏了许多数学家,因为长久以来他们一直相信所有的数学定律都可以被证明是真或假,因此绝没有任何问题。这种模棱两可的情况造成极大的震撼,哥德尔用一个明确的例子来说明,并指出数学的深层意义。
再回到艾毕曼德悖论。聪明的读者可能会想:啊哈,这个狡猾的家伙以为可以骗得到我,尽管这个理论已有2500年的历史,但其实它是不存在的。因为艾毕曼