Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > the critique of pure reason >

µÚ76½Ú

the critique of pure reason-µÚ76½Ú

С˵£º the critique of pure reason ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




up¡¡to¡¡a¡¡given¡¡moment£»¡¡although¡¡that¡¡time¡¡is¡¡not¡¡determinable¡¡by¡¡us¡£

But¡¡as¡¡regards¡¡time¡¡future£»¡¡which¡¡is¡¡not¡¡the¡¡condition¡¡of¡¡arriving

at¡¡the¡¡present£»¡¡in¡¡order¡¡to¡¡conceive¡¡it£»¡¡it¡¡is¡¡quite¡¡indifferent

whether¡¡we¡¡consider¡¡future¡¡time¡¡as¡¡ceasing¡¡at¡¡some¡¡point£»¡¡or¡¡as

prolonging¡¡itself¡¡to¡¡infinity¡£¡¡Take£»¡¡for¡¡example£»¡¡the¡¡series¡¡m£»¡¡n£»

o£»¡¡in¡¡which¡¡n¡¡is¡¡given¡¡as¡¡conditioned¡¡in¡¡relation¡¡to¡¡m£»¡¡but¡¡at¡¡the

same¡¡time¡¡as¡¡the¡¡condition¡¡of¡¡o£»¡¡and¡¡let¡¡the¡¡series¡¡proceed¡¡upwards

from¡¡the¡¡conditioned¡¡n¡¡to¡¡m¡¡£¨l£»¡¡k£»¡¡i£»¡¡etc¡££©£»¡¡and¡¡also¡¡downwards¡¡from

the¡¡condition¡¡n¡¡to¡¡the¡¡conditioned¡¡o¡¡£¨p£»¡¡q£»¡¡r£»¡¡etc¡££©¡­¡¡I¡¡must

presuppose¡¡the¡¡former¡¡series£»¡¡to¡¡be¡¡able¡¡to¡¡consider¡¡n¡¡as¡¡given£»¡¡and¡¡n

is¡¡according¡¡to¡¡reason¡¡£¨the¡¡totality¡¡of¡¡conditions£©¡¡possible¡¡only¡¡by

means¡¡of¡¡that¡¡series¡£¡¡But¡¡its¡¡possibility¡¡does¡¡not¡¡rest¡¡on¡¡the

following¡¡series¡¡o£»¡¡p£»¡¡q£»¡¡r£»¡¡which¡¡for¡¡this¡¡reason¡¡cannot¡¡be

regarded¡¡as¡¡given£»¡¡but¡¡only¡¡as¡¡capable¡¡of¡¡being¡¡given¡¡£¨dabilis£©¡£

¡¡¡¡I¡¡shall¡¡term¡¡the¡¡synthesis¡¡of¡¡the¡¡series¡¡on¡¡the¡¡side¡¡of¡¡the

conditions¡­¡¡from¡¡that¡¡nearest¡¡to¡¡the¡¡given¡¡phenomenon¡¡up¡¡to¡¡the¡¡more

remote¡­¡¡regressive£»¡¡that¡¡which¡¡proceeds¡¡on¡¡the¡¡side¡¡of¡¡the

conditioned£»¡¡from¡¡the¡¡immediate¡¡consequence¡¡to¡¡the¡¡more¡¡remote£»¡¡I

shall¡¡call¡¡the¡¡progressive¡¡synthesis¡£¡¡The¡¡former¡¡proceeds¡¡in

antecedentia£»¡¡the¡¡latter¡¡in¡¡consequentia¡£¡¡The¡¡cosmological¡¡ideas¡¡are

therefore¡¡occupied¡¡with¡¡the¡¡totality¡¡of¡¡the¡¡regressive¡¡synthesis£»

and¡¡proceed¡¡in¡¡antecedentia£»¡¡not¡¡in¡¡consequentia¡£¡¡When¡¡the¡¡latter

takes¡¡place£»¡¡it¡¡is¡¡an¡¡arbitrary¡¡and¡¡not¡¡a¡¡necessary¡¡problem¡¡of¡¡pure

reason£»¡¡for¡¡we¡¡require£»¡¡for¡¡the¡¡complete¡¡understanding¡¡of¡¡what¡¡is

given¡¡in¡¡a¡¡phenomenon£»¡¡not¡¡the¡¡consequences¡¡which¡¡succeed£»¡¡but¡¡the

grounds¡¡or¡¡principles¡¡which¡¡precede¡£

¡¡¡¡In¡¡order¡¡to¡¡construct¡¡the¡¡table¡¡of¡¡ideas¡¡in¡¡correspondence¡¡with

the¡¡table¡¡of¡¡categories£»¡¡we¡¡take¡¡first¡¡the¡¡two¡¡primitive¡¡quanta¡¡of¡¡all

our¡¡intuitions£»¡¡time¡¡and¡¡space¡£¡¡Time¡¡is¡¡in¡¡itself¡¡a¡¡series¡¡£¨and¡¡the

formal¡¡condition¡¡of¡¡all¡¡series£©£»¡¡and¡¡hence£»¡¡in¡¡relation¡¡to¡¡a¡¡given

present£»¡¡we¡¡must¡¡distinguish¡¡a¡¡priori¡¡in¡¡it¡¡the¡¡antecedentia¡¡as

conditions¡¡£¨time¡¡past£©¡¡from¡¡the¡¡consequentia¡¡£¨time¡¡future£©¡£

Consequently£»¡¡the¡¡transcendental¡¡idea¡¡of¡¡the¡¡absolute¡¡totality¡¡of

the¡¡series¡¡of¡¡the¡¡conditions¡¡of¡¡a¡¡given¡¡conditioned£»¡¡relates¡¡merely¡¡to

all¡¡past¡¡time¡£¡¡According¡¡to¡¡the¡¡idea¡¡of¡¡reason£»¡¡the¡¡whole¡¡past¡¡time£»

as¡¡the¡¡condition¡¡of¡¡the¡¡given¡¡moment£»¡¡is¡¡necessarily¡¡cogitated¡¡as

given¡£¡¡But£»¡¡as¡¡regards¡¡space£»¡¡there¡¡exists¡¡in¡¡it¡¡no¡¡distinction

between¡¡progressus¡¡and¡¡regressus£»¡¡for¡¡it¡¡is¡¡an¡¡aggregate¡¡and¡¡not¡¡a

series¡­¡¡its¡¡parts¡¡existing¡¡together¡¡at¡¡the¡¡same¡¡time¡£¡¡I¡¡can¡¡consider¡¡a

given¡¡point¡¡of¡¡time¡¡in¡¡relation¡¡to¡¡past¡¡time¡¡only¡¡as¡¡conditioned£»

because¡¡this¡¡given¡¡moment¡¡comes¡¡into¡¡existence¡¡only¡¡through¡¡the¡¡past

time¡¡rather¡¡through¡¡the¡¡passing¡¡of¡¡the¡¡preceding¡¡time¡£¡¡But¡¡as¡¡the

parts¡¡of¡¡space¡¡are¡¡not¡¡subordinated£»¡¡but¡¡co¡­ordinated¡¡to¡¡each¡¡other£»

one¡¡part¡¡cannot¡¡be¡¡the¡¡condition¡¡of¡¡the¡¡possibility¡¡of¡¡the¡¡other£»

and¡¡space¡¡is¡¡not¡¡in¡¡itself£»¡¡like¡¡time£»¡¡a¡¡series¡£¡¡But¡¡the¡¡synthesis

of¡¡the¡¡manifold¡¡parts¡¡of¡¡space¡­¡¡£¨the¡¡syntheses¡¡whereby¡¡we¡¡apprehend

space£©¡­¡¡is¡¡nevertheless¡¡successive£»¡¡it¡¡takes¡¡place£»¡¡therefore£»¡¡in

time£»¡¡and¡¡contains¡¡a¡¡series¡£¡¡And¡¡as¡¡in¡¡this¡¡series¡¡of¡¡aggregated

spaces¡¡£¨for¡¡example£»¡¡the¡¡feet¡¡in¡¡a¡¡rood£©£»¡¡beginning¡¡with¡¡a¡¡given

portion¡¡of¡¡space£»¡¡those¡¡which¡¡continue¡¡to¡¡be¡¡annexed¡¡form¡¡the

condition¡¡of¡¡the¡¡limits¡¡of¡¡the¡¡former¡­¡¡the¡¡measurement¡¡of¡¡a¡¡space¡¡must

also¡¡be¡¡regarded¡¡as¡¡a¡¡synthesis¡¡of¡¡the¡¡series¡¡of¡¡the¡¡conditions¡¡of¡¡a

given¡¡conditioned¡£¡¡It¡¡differs£»¡¡however£»¡¡in¡¡this¡¡respect¡¡from¡¡that¡¡of

time£»¡¡that¡¡the¡¡side¡¡of¡¡the¡¡conditioned¡¡is¡¡not¡¡in¡¡itself

distinguishable¡¡from¡¡the¡¡side¡¡of¡¡the¡¡condition£»¡¡and£»¡¡consequently£»

regressus¡¡and¡¡progressus¡¡in¡¡space¡¡seem¡¡to¡¡be¡¡identical¡£¡¡But£»

inasmuch¡¡as¡¡one¡¡part¡¡of¡¡space¡¡is¡¡not¡¡given£»¡¡but¡¡only¡¡limited£»¡¡by¡¡and

through¡¡another£»¡¡we¡¡must¡¡also¡¡consider¡¡every¡¡limited¡¡space¡¡as

conditioned£»¡¡in¡¡so¡¡far¡¡as¡¡it¡¡presupposes¡¡some¡¡other¡¡space¡¡as¡¡the

condition¡¡of¡¡its¡¡limitation£»¡¡and¡¡so¡¡on¡£¡¡As¡¡regards¡¡limitation£»

therefore£»¡¡our¡¡procedure¡¡in¡¡space¡¡is¡¡also¡¡a¡¡regressus£»¡¡and¡¡the

transcendental¡¡idea¡¡of¡¡the¡¡absolute¡¡totality¡¡of¡¡the¡¡synthesis¡¡in¡¡a

series¡¡of¡¡conditions¡¡applies¡¡to¡¡space¡¡also£»¡¡and¡¡I¡¡am¡¡entitled¡¡to

demand¡¡the¡¡absolute¡¡totality¡¡of¡¡the¡¡phenomenal¡¡synthesis¡¡in¡¡space¡¡as

well¡¡as¡¡in¡¡time¡£¡¡Whether¡¡my¡¡demand¡¡can¡¡be¡¡satisfied¡¡is¡¡a¡¡question¡¡to

be¡¡answered¡¡in¡¡the¡¡sequel¡£

¡¡¡¡Secondly£»¡¡the¡¡real¡¡in¡¡space¡­¡¡that¡¡is£»¡¡matter¡­¡¡is¡¡conditioned¡£¡¡Its

internal¡¡conditions¡¡are¡¡its¡¡parts£»¡¡and¡¡the¡¡parts¡¡of¡¡parts¡¡its¡¡remote

conditions£»¡¡so¡¡that¡¡in¡¡this¡¡case¡¡we¡¡find¡¡a¡¡regressive¡¡synthesis£»¡¡the

absolute¡¡totality¡¡of¡¡which¡¡is¡¡a¡¡demand¡¡of¡¡reason¡£¡¡But¡¡this¡¡cannot¡¡be

obtained¡¡otherwise¡¡than¡¡by¡¡a¡¡complete¡¡division¡¡of¡¡parts£»¡¡whereby¡¡the

real¡¡in¡¡matter¡¡becomes¡¡either¡¡nothing¡¡or¡¡that¡¡which¡¡is¡¡not¡¡matter£»

that¡¡is¡¡to¡¡say£»¡¡the¡¡simple¡£¡¡Consequently¡¡we¡¡find¡¡here¡¡also¡¡a¡¡series¡¡of

conditions¡¡and¡¡a¡¡progress¡¡to¡¡the¡¡unconditioned¡£

¡¡¡¡Thirdly£»¡¡as¡¡regards¡¡the¡¡categories¡¡of¡¡a¡¡real¡¡relation¡¡between

phenomena£»¡¡the¡¡category¡¡of¡¡substance¡¡and¡¡its¡¡accidents¡¡is¡¡not¡¡suitable

for¡¡the¡¡formation¡¡of¡¡a¡¡transcendental¡¡idea£»¡¡that¡¡is¡¡to¡¡say£»¡¡reason¡¡has

no¡¡ground£»¡¡in¡¡regard¡¡to¡¡it£»¡¡to¡¡proceed¡¡regressively¡¡with¡¡conditions¡£

For¡¡accidents¡¡£¨in¡¡so¡¡far¡¡as¡¡they¡¡inhere¡¡in¡¡a¡¡substance£©¡¡are

co¡­ordinated¡¡with¡¡each¡¡other£»¡¡and¡¡do¡¡not¡¡constitute¡¡a¡¡series¡£¡¡And£»

in¡¡relation¡¡to¡¡substance£»¡¡they¡¡are¡¡not¡¡properly¡¡subordinated¡¡to¡¡it£»

but¡¡are¡¡the¡¡mode¡¡of¡¡existence¡¡of¡¡the¡¡substance¡¡itself¡£¡¡The

conception¡¡of¡¡the¡¡substantial¡¡might¡¡nevertheless¡¡seem¡¡to¡¡be¡¡an¡¡idea¡¡of

the¡¡transcendental¡¡reason¡£¡¡But£»¡¡as¡¡this¡¡signifies¡¡nothing¡¡more¡¡than

the¡¡conception¡¡of¡¡an¡¡object¡¡in¡¡general£»¡¡which¡¡subsists¡¡in¡¡so¡¡far¡¡as¡¡we

cogitate¡¡in¡¡it¡¡merely¡¡a¡¡transcendental¡¡subject¡¡without¡¡any¡¡predicates£»

and¡¡as¡¡the¡¡question¡¡here¡¡is¡¡of¡¡an¡¡unconditioned¡¡in¡¡the¡¡series¡¡of

phenomena¡­¡¡it¡¡is¡¡clear¡¡that¡¡the¡¡substantial¡¡can¡¡form¡¡no¡¡member

thereof¡£¡¡The¡¡same¡¡holds¡¡good¡¡of¡¡substances¡¡in¡¡community£»¡¡which¡¡are

mere¡¡aggregates¡¡and¡¡do¡¡not¡¡form¡¡a¡¡series¡£¡¡For¡¡they¡¡are¡¡not

subordinated¡¡to¡¡each¡¡other¡¡as¡¡conditions¡¡of¡¡the¡¡possibility¡¡of¡¡each

other£»¡¡which£»¡¡however£»¡¡may¡¡be¡¡affirmed¡¡of¡¡spaces£»¡¡the¡¡limits¡¡of

which¡¡are¡¡never¡¡determined¡¡in¡¡themselves£»¡¡but¡¡always¡¡by¡¡some¡¡other

space¡£¡¡It¡¡is£»¡¡therefore£»¡¡only¡¡in¡¡the¡¡category¡¡of¡¡causality¡¡that¡¡we¡¡can

find¡¡a¡¡series¡¡of¡¡causes¡¡to¡¡a¡¡given¡¡effect£»¡¡and¡¡in¡¡which¡¡we¡¡ascend¡¡from

the¡¡latter£»¡¡as¡¡the¡¡conditioned£»¡¡to¡¡the¡¡former¡¡as¡¡the¡¡conditions£»¡¡and

thus¡¡answer¡¡the¡¡question¡¡of¡¡reason¡£

¡¡¡¡Fourthly£»¡¡the¡¡conceptions¡¡of¡¡the¡¡possible£»¡¡the¡¡actual£»¡¡and¡¡the

necessary¡¡do¡¡not¡¡conduct¡¡us¡¡to¡¡any¡¡series¡­¡¡excepting¡¡only¡¡in¡¡so¡¡far¡¡as

the¡¡contingent¡¡in¡¡existence¡¡must¡¡always¡¡be¡¡regarded¡¡as¡¡conditioned£»

and¡¡as¡¡indicating£»¡¡according¡¡to¡¡a¡¡law¡¡of¡¡the¡¡understanding£»¡¡a

condition£»¡¡under¡¡which¡¡it¡¡is¡¡necessary¡¡to¡¡rise¡¡to¡¡a¡¡higher£»¡¡till¡¡in

the¡¡totality¡¡of¡¡the¡¡series£»¡¡reason¡¡arrives¡¡at¡¡unconditioned¡¡necessity¡£

¡¡¡¡There¡¡are£»¡¡accordingly£»¡¡only¡¡four¡¡cosmological¡¡ideas£»

corresponding¡¡with¡¡the¡¡four¡¡titles¡¡of¡¡the¡¡categories¡£¡¡For¡¡we¡¡can

select¡¡only¡¡such¡¡as¡¡necessarily¡¡furnish¡¡us¡¡with¡¡a¡¡series¡¡in¡¡the

synthesis¡¡of¡¡the¡¡manifold¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡Completeness

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡COMPOSITION

¡¡¡¡¡¡¡¡¡¡of¡¡the¡¡given¡¡totality¡¡of¡¡all¡¡phenomena¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡Completeness

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡DIVISION

¡¡¡¡¡¡¡¡¡¡of¡¡given¡¡totality¡¡in¡¡a¡¡phenomenon¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡Completeness

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ORIGINATION

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡a¡¡phenomenon¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡The¡¡absolute¡¡Completeness

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡the¡¡DEPENDENCE¡¡of¡¡the¡¡EXISTENCE

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡of¡¡what¡¡is¡¡changeable¡¡in¡¡a¡¡phenomenon¡£



¡¡¡¡We¡¡must¡¡here¡¡remark£»¡¡in¡¡the¡¡first¡¡place£»¡¡that¡¡the¡¡idea¡¡of¡¡absolute

totality¡¡relates¡¡to¡¡nothing¡¡but¡¡the¡¡exposition¡¡of¡¡phenomena£»¡¡and

therefore¡¡not¡¡to¡¡the¡¡pure¡¡conception¡¡of¡¡a¡¡totality¡¡of¡¡things¡£

Phenomena¡¡are¡¡here£»¡¡therefore£»¡¡regarded¡¡as¡¡given£»¡¡and¡¡reason

requires¡¡the¡¡absolute¡¡completeness¡¡of¡¡the¡¡conditions¡¡of¡¡their

possibility£»¡¡in¡¡so¡¡far¡¡as¡¡these¡¡conditions¡¡constitute¡¡a¡¡series¡­

consequently¡¡an¡¡absolutely¡¡£¨that¡¡is£»¡¡in¡¡every¡¡respect£©¡¡complete

synthesis£»¡¡whereby¡¡a¡¡phenomenon¡¡can¡¡be¡¡explained¡¡according¡¡to¡¡the¡¡laws

of¡¡the¡¡understanding¡£

¡¡¡¡Secondly£»¡¡it¡¡is¡¡properly¡¡the¡¡unconditioned¡¡alone¡¡that¡¡reason¡¡seeks

in¡¡this¡¡serially¡¡and¡¡regressively¡¡conducted¡¡synthesis¡¡of¡¡conditions¡£

It¡¡wishes£»¡¡to¡¡speak¡¡in¡¡another¡¡way£»¡¡to¡¡attain¡¡to¡¡completeness¡¡in¡¡the

series¡¡of¡¡premisses£»¡¡so¡¡as¡¡to¡¡render¡¡it¡¡unnecessary¡¡to¡¡presuppose

others¡£¡¡This¡¡unconditioned¡¡is¡¡always¡¡contained¡¡in¡¡the¡¡absolute

totality¡¡of¡¡the¡¡series£»¡¡when¡¡we¡¡endeavour¡¡to¡¡form¡¡a¡¡representation

of¡¡it¡¡in¡¡thought¡£¡¡But¡¡this¡¡absolutely¡¡complete¡¡synthesis¡¡is¡¡itself¡¡but

an¡¡idea£»¡¡for¡¡it¡¡is¡¡impossible£»¡¡at¡¡least¡¡before¡¡hand£»¡¡to¡¡know¡¡whether

any¡¡such¡¡synthesis¡¡is¡¡possible¡¡in¡¡the¡¡case¡¡of¡¡phenomena¡£¡¡When¡¡we

represent¡¡all¡¡existence¡¡in¡¡thought¡¡by¡¡means¡¡of¡¡pure¡¡conceptions¡¡of¡¡the

understanding£»¡¡without¡¡any¡¡conditions¡¡of¡¡sensuous¡¡intuition£»

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨1£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ