Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > the critique of pure reason >

µÚ62½Ú

the critique of pure reason-µÚ62½Ú

С˵£º the critique of pure reason ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡




call¡¡this¡¡object¡¡a¡¡noumenon£»¡¡because¡¡the¡¡representation¡¡of¡¡it¡¡is

non¡­sensuous£»¡¡we¡¡are¡¡at¡¡liberty¡¡to¡¡do¡¡so¡£¡¡But¡¡as¡¡we¡¡can¡¡apply¡¡to¡¡it

none¡¡of¡¡the¡¡conceptions¡¡of¡¡our¡¡understanding£»¡¡the¡¡representation¡¡is

for¡¡us¡¡quite¡¡void£»¡¡and¡¡is¡¡available¡¡only¡¡for¡¡the¡¡indication¡¡of¡¡the

limits¡¡of¡¡our¡¡sensuous¡¡intuition£»¡¡thereby¡¡leaving¡¡at¡¡the¡¡same¡¡time

an¡¡empty¡¡space£»¡¡which¡¡we¡¡are¡¡competent¡¡to¡¡fill¡¡by¡¡the¡¡aid¡¡neither¡¡of

possible¡¡experience£»¡¡nor¡¡of¡¡the¡¡pure¡¡understanding¡£

¡¡¡¡The¡¡critique¡¡of¡¡the¡¡pure¡¡understanding£»¡¡accordingly£»¡¡does¡¡not¡¡permit

us¡¡to¡¡create¡¡for¡¡ourselves¡¡a¡¡new¡¡field¡¡of¡¡objects¡¡beyond¡¡those¡¡which

are¡¡presented¡¡to¡¡us¡¡as¡¡phenomena£»¡¡and¡¡to¡¡stray¡¡into¡¡intelligible

worlds£»¡¡nay£»¡¡it¡¡does¡¡not¡¡even¡¡allow¡¡us¡¡to¡¡endeavour¡¡to¡¡form¡¡so¡¡much¡¡as

a¡¡conception¡¡of¡¡them¡£¡¡The¡¡specious¡¡error¡¡which¡¡leads¡¡to¡¡this¡­¡¡and

which¡¡is¡¡a¡¡perfectly¡¡excusable¡¡one¡­¡¡lies¡¡in¡¡the¡¡fact¡¡that¡¡the

employment¡¡of¡¡the¡¡understanding£»¡¡contrary¡¡to¡¡its¡¡proper¡¡purpose¡¡and

destination£»¡¡is¡¡made¡¡transcendental£»¡¡and¡¡objects£»¡¡that¡¡is£»¡¡possible

intuitions£»¡¡are¡¡made¡¡to¡¡regulate¡¡themselves¡¡according¡¡to

conceptions£»¡¡instead¡¡of¡¡the¡¡conceptions¡¡arranging¡¡themselves¡¡according

to¡¡the¡¡intuitions£»¡¡on¡¡which¡¡alone¡¡their¡¡own¡¡objective¡¡validity

rests¡£¡¡Now¡¡the¡¡reason¡¡of¡¡this¡¡again¡¡is¡¡that¡¡apperception£»¡¡and¡¡with

it¡¡thought£»¡¡antecedes¡¡all¡¡possible¡¡determinate¡¡arrangement¡¡of

representations¡£¡¡Accordingly¡¡we¡¡think¡¡something¡¡in¡¡general¡¡and

determine¡¡it¡¡on¡¡the¡¡one¡¡hand¡¡sensuously£»¡¡but£»¡¡on¡¡the¡¡other£»

distinguish¡¡the¡¡general¡¡and¡¡in¡¡abstracto¡¡represented¡¡object¡¡from

this¡¡particular¡¡mode¡¡of¡¡intuiting¡¡it¡£¡¡In¡¡this¡¡case¡¡there¡¡remains¡¡a

mode¡¡of¡¡determining¡¡the¡¡object¡¡by¡¡mere¡¡thought£»¡¡which¡¡is¡¡really¡¡but

a¡¡logical¡¡form¡¡without¡¡content£»¡¡which£»¡¡however£»¡¡seems¡¡to¡¡us¡¡to¡¡be¡¡a

mode¡¡of¡¡the¡¡existence¡¡of¡¡the¡¡object¡¡in¡¡itself¡¡£¨noumenon£©£»¡¡without

regard¡¡to¡¡intuition¡¡which¡¡is¡¡limited¡¡to¡¡our¡¡senses¡£



¡¡¡¡Before¡¡ending¡¡this¡¡transcendental¡¡analytic£»¡¡we¡¡must¡¡make¡¡an

addition£»¡¡which£»¡¡although¡¡in¡¡itself¡¡of¡¡no¡¡particular¡¡importance£»¡¡seems

to¡¡be¡¡necessary¡¡to¡¡the¡¡completeness¡¡of¡¡the¡¡system¡£¡¡The¡¡highest

conception£»¡¡with¡¡which¡¡a¡¡transcendental¡¡philosophy¡¡commonly¡¡begins£»¡¡is

the¡¡division¡¡into¡¡possible¡¡and¡¡impossible¡£¡¡But¡¡as¡¡all¡¡division

presupposes¡¡a¡¡divided¡¡conception£»¡¡a¡¡still¡¡higher¡¡one¡¡must¡¡exist£»¡¡and

this¡¡is¡¡the¡¡conception¡¡of¡¡an¡¡object¡¡in¡¡general¡­¡¡problematically

understood¡¡and¡¡without¡¡its¡¡being¡¡decided¡¡whether¡¡it¡¡is¡¡something¡¡or

nothing¡£¡¡As¡¡the¡¡categories¡¡are¡¡the¡¡only¡¡conceptions¡¡which¡¡apply¡¡to

objects¡¡in¡¡general£»¡¡the¡¡distinguishing¡¡of¡¡an¡¡object£»¡¡whether¡¡it¡¡is

something¡¡or¡¡nothing£»¡¡must¡¡proceed¡¡according¡¡to¡¡the¡¡order¡¡and

direction¡¡of¡¡the¡¡categories¡£

¡¡¡¡1¡£¡¡To¡¡the¡¡categories¡¡of¡¡quantity£»¡¡that¡¡is£»¡¡the¡¡conceptions¡¡of¡¡all£»

many£»¡¡and¡¡one£»¡¡the¡¡conception¡¡which¡¡annihilates¡¡all£»¡¡that¡¡is£»¡¡the

conception¡¡of¡¡none£»¡¡is¡¡opposed¡£¡¡And¡¡thus¡¡the¡¡object¡¡of¡¡a¡¡conception£»

to¡¡which¡¡no¡¡intuition¡¡can¡¡be¡¡found¡¡to¡¡correspond£»¡¡is¡¡=¡¡nothing¡£¡¡That

is£»¡¡it¡¡is¡¡a¡¡conception¡¡without¡¡an¡¡object¡¡£¨ens¡¡rationis£©£»¡¡like¡¡noumena£»

which¡¡cannot¡¡be¡¡considered¡¡possible¡¡in¡¡the¡¡sphere¡¡of¡¡reality£»¡¡though

they¡¡must¡¡not¡¡therefore¡¡be¡¡held¡¡to¡¡be¡¡impossible¡­¡¡or¡¡like¡¡certain

new¡¡fundamental¡¡forces¡¡in¡¡matter£»¡¡the¡¡existence¡¡of¡¡which¡¡is

cogitable¡¡without¡¡contradiction£»¡¡though£»¡¡as¡¡examples¡¡from¡¡experience

are¡¡not¡¡forthcoming£»¡¡they¡¡must¡¡not¡¡be¡¡regarded¡¡as¡¡possible¡£

¡¡¡¡2¡£¡¡Reality¡¡is¡¡something£»¡¡negation¡¡is¡¡nothing£»¡¡that¡¡is£»¡¡a

conception¡¡of¡¡the¡¡absence¡¡of¡¡an¡¡object£»¡¡as¡¡cold£»¡¡a¡¡shadow¡¡£¨nihil

privativum£©¡£

¡¡¡¡3¡£¡¡The¡¡mere¡¡form¡¡of¡¡intuition£»¡¡without¡¡substance£»¡¡is¡¡in¡¡itself¡¡no

object£»¡¡but¡¡the¡¡merely¡¡formal¡¡condition¡¡of¡¡an¡¡object¡¡£¨as

phenomenon£©£»¡¡as¡¡pure¡¡space¡¡and¡¡pure¡¡time¡£¡¡These¡¡are¡¡certainly

something£»¡¡as¡¡forms¡¡of¡¡intuition£»¡¡but¡¡are¡¡not¡¡themselves¡¡objects¡¡which

are¡¡intuited¡¡£¨ens¡¡imaginarium£©¡£

¡¡¡¡4¡£¡¡The¡¡object¡¡of¡¡a¡¡conception¡¡which¡¡is¡¡self¡­contradictory£»¡¡is

nothing£»¡¡because¡¡the¡¡conception¡¡is¡¡nothing¡­¡¡is¡¡impossible£»¡¡as¡¡a¡¡figure

composed¡¡of¡¡two¡¡straight¡¡lines¡¡£¨nihil¡¡negativum£©¡£

¡¡¡¡The¡¡table¡¡of¡¡this¡¡division¡¡of¡¡the¡¡conception¡¡of¡¡nothing¡¡£¨the

corresponding¡¡division¡¡of¡¡the¡¡conception¡¡of¡¡something¡¡does¡¡not¡¡require

special¡¡description£©¡¡must¡¡therefore¡¡be¡¡arranged¡¡as¡¡follows£º



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡NOTHING

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡AS



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡As¡¡Empty¡¡Conception

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡without¡¡object£»

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ens¡¡rationis

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3

¡¡¡¡¡¡¡¡¡¡Empty¡¡object¡¡of¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Empty¡¡intuition

¡¡¡¡¡¡¡¡¡¡¡¡a¡¡conception£»¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡without¡¡object£»

¡¡¡¡¡¡¡¡¡¡nihil¡¡privativum¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡ens¡¡imaginarium

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Empty¡¡object

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡without¡¡conception£»

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡nihil¡¡negativum



¡¡¡¡We¡¡see¡¡that¡¡the¡¡ens¡¡rationis¡¡is¡¡distinguished¡¡from¡¡the¡¡nihil

negativum¡¡or¡¡pure¡¡nothing¡¡by¡¡the¡¡consideration¡¡that¡¡the¡¡former¡¡must

not¡¡be¡¡reckoned¡¡among¡¡possibilities£»¡¡because¡¡it¡¡is¡¡a¡¡mere¡¡fiction¡­

though¡¡not¡¡self¡­contradictory£»¡¡while¡¡the¡¡latter¡¡is¡¡completely

opposed¡¡to¡¡all¡¡possibility£»¡¡inasmuch¡¡as¡¡the¡¡conception¡¡annihilates

itself¡£¡¡Both£»¡¡however£»¡¡are¡¡empty¡¡conceptions¡£¡¡¡¡On¡¡the¡¡other¡¡hand£»

the¡¡nihil¡¡privativum¡¡and¡¡ens¡¡imaginarium¡¡are¡¡empty¡¡data¡¡for

conceptions¡£¡¡If¡¡light¡¡be¡¡not¡¡given¡¡to¡¡the¡¡senses£»¡¡we¡¡cannot

represent¡¡to¡¡ourselves¡¡darkness£»¡¡and¡¡if¡¡extended¡¡objects¡¡are¡¡not

perceived£»¡¡we¡¡cannot¡¡represent¡¡space¡£¡¡Neither¡¡the¡¡negation£»¡¡nor¡¡the

mere¡¡form¡¡of¡¡intuition¡¡can£»¡¡without¡¡something¡¡real£»¡¡be¡¡an¡¡object¡£

INTRO

¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡TRANSCENDENTAL¡¡LOGIC¡£¡¡SECOND¡¡DIVISION¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡TRANSCENDENTAL¡¡DIALECTIC¡£¡¡INTRODUCTION¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡I¡£¡¡Of¡¡Transcendental¡¡Illusory¡¡Appearance¡£



¡¡¡¡We¡¡termed¡¡dialectic¡¡in¡¡general¡¡a¡¡logic¡¡of¡¡appearance¡£¡¡This¡¡does

not¡¡signify¡¡a¡¡doctrine¡¡of¡¡probability£»¡¡for¡¡probability¡¡is¡¡truth£»

only¡¡cognized¡¡upon¡¡insufficient¡¡grounds£»¡¡and¡¡though¡¡the¡¡information¡¡it

gives¡¡us¡¡is¡¡imperfect£»¡¡it¡¡is¡¡not¡¡therefore¡¡deceitful¡£¡¡Hence¡¡it¡¡must

not¡¡be¡¡separated¡¡from¡¡the¡¡analytical¡¡part¡¡of¡¡logic¡£¡¡Still¡¡less¡¡must

phenomenon¡¡and¡¡appearance¡¡be¡¡held¡¡to¡¡be¡¡identical¡£¡¡For¡¡truth¡¡or

illusory¡¡appearance¡¡does¡¡not¡¡reside¡¡in¡¡the¡¡object£»¡¡in¡¡so¡¡far¡¡as¡¡it

is¡¡intuited£»¡¡but¡¡in¡¡the¡¡judgement¡¡upon¡¡the¡¡object£»¡¡in¡¡so¡¡far¡¡as¡¡it

is¡¡thought¡£¡¡It¡¡is£»¡¡therefore£»¡¡quite¡¡correct¡¡to¡¡say¡¡that¡¡the¡¡senses

do¡¡not¡¡err£»¡¡not¡¡because¡¡they¡¡always¡¡judge¡¡correctly£»¡¡but¡¡because

they¡¡do¡¡not¡¡judge¡¡at¡¡all¡£¡¡Hence¡¡truth¡¡and¡¡error£»¡¡consequently¡¡also£»

illusory¡¡appearance¡¡as¡¡the¡¡cause¡¡of¡¡error£»¡¡are¡¡only¡¡to¡¡be¡¡found¡¡in¡¡a

judgement£»¡¡that¡¡is£»¡¡in¡¡the¡¡relation¡¡of¡¡an¡¡object¡¡to¡¡our¡¡understanding¡£

In¡¡a¡¡cognition¡¡which¡¡completely¡¡harmonizes¡¡with¡¡the¡¡laws¡¡of¡¡the

understanding£»¡¡no¡¡error¡¡can¡¡exist¡£¡¡In¡¡a¡¡representation¡¡of¡¡the

senses¡­¡¡as¡¡not¡¡containing¡¡any¡¡judgement¡­¡¡there¡¡is¡¡also¡¡no¡¡error¡£¡¡But

no¡¡power¡¡of¡¡nature¡¡can¡¡of¡¡itself¡¡deviate¡¡from¡¡its¡¡own¡¡laws¡£¡¡Hence

neither¡¡the¡¡understanding¡¡per¡¡se¡¡£¨without¡¡the¡¡influence¡¡of¡¡another

cause£©£»¡¡nor¡¡the¡¡senses¡¡per¡¡se£»¡¡would¡¡fall¡¡into¡¡error£»¡¡the¡¡former¡¡could

not£»¡¡because£»¡¡if¡¡it¡¡acts¡¡only¡¡according¡¡to¡¡its¡¡own¡¡laws£»¡¡the¡¡effect

£¨the¡¡judgement£©¡¡must¡¡necessarily¡¡accord¡¡with¡¡these¡¡laws¡£¡¡But¡¡in

accordance¡¡with¡¡the¡¡laws¡¡of¡¡the¡¡understanding¡¡consists¡¡the¡¡formal

element¡¡in¡¡all¡¡truth¡£¡¡In¡¡the¡¡senses¡¡there¡¡is¡¡no¡¡judgement¡­¡¡neither¡¡a

true¡¡nor¡¡a¡¡false¡¡one¡£¡¡But£»¡¡as¡¡we¡¡have¡¡no¡¡source¡¡of¡¡cognition¡¡besides

these¡¡two£»¡¡it¡¡follows¡¡that¡¡error¡¡is¡¡caused¡¡solely¡¡by¡¡the¡¡unobserved

influence¡¡of¡¡the¡¡sensibility¡¡upon¡¡the¡¡understanding¡£¡¡And¡¡thus¡¡it

happens¡¡that¡¡the¡¡subjective¡¡grounds¡¡of¡¡a¡¡judgement¡¡and¡¡are

confounded¡¡with¡¡the¡¡objective£»¡¡and¡¡cause¡¡them¡¡to¡¡deviate¡¡from¡¡their

proper¡¡determination£»*¡¡just¡¡as¡¡a¡¡body¡¡in¡¡motion¡¡would¡¡always¡¡of¡¡itself

proceed¡¡in¡¡a¡¡straight¡¡line£»¡¡but¡¡if¡¡another¡¡impetus¡¡gives¡¡to¡¡it¡¡a

different¡¡direction£»¡¡it¡¡will¡¡then¡¡start¡¡off¡¡into¡¡a¡¡curvilinear¡¡line¡¡of

motion¡£¡¡To¡¡distinguish¡¡the¡¡peculiar¡¡action¡¡of¡¡the¡¡understanding¡¡from

the¡¡power¡¡which¡¡mingles¡¡with¡¡it£»¡¡it¡¡is¡¡necessary¡¡to¡¡consider¡¡an

erroneous¡¡judgement¡¡as¡¡the¡¡diagonal¡¡between¡¡two¡¡forces£»¡¡that¡¡determine

the¡¡judgement¡¡in¡¡two¡¡different¡¡directions£»¡¡which£»¡¡as¡¡it¡¡were£»¡¡form

an¡¡angle£»¡¡and¡¡to¡¡resolve¡¡this¡¡composite¡¡operation¡¡into¡¡the¡¡simple¡¡ones

of¡¡the¡¡understanding¡¡and¡¡the¡¡sensibility¡£¡¡In¡¡pure¡¡a¡¡priori

judgements¡¡this¡¡must¡¡be¡¡done¡¡by¡¡means¡¡of¡¡transcendental¡¡reflection£»

whereby£»¡¡as¡¡has¡¡been¡¡already¡¡shown£»¡¡each¡¡representation¡¡has¡¡its

place¡¡appointed¡¡in¡¡the¡¡corresponding¡¡faculty¡¡of¡¡cognition£»¡¡and

consequently¡¡the¡¡influence¡¡of¡¡the¡¡one¡¡faculty¡¡upon¡¡the¡¡other¡¡is¡¡made

apparent¡£



¡¡¡¡*Sensibility£»¡¡subjected¡¡to¡¡the¡¡understanding£»¡¡as¡¡the¡¡object¡¡upon

which¡¡the¡¡understanding¡¡employs¡¡its¡¡functions£»¡¡is¡¡the¡¡source¡¡of¡¡real

cognitions¡£¡¡But£»¡¡in¡¡so¡¡far¡¡as¡¡it¡¡exercises¡¡an¡¡influence¡¡upon¡¡the

action¡¡of¡¡the¡¡understanding¡¡and¡¡determines¡¡it¡¡to¡¡judgement£»

sensibility¡¡is¡¡itself¡¡the¡¡cause¡¡of¡¡error¡£



¡¡¡¡It¡¡is¡¡not¡¡at¡¡present¡¡our¡¡business¡¡to¡¡treat¡¡of¡¡empirical¡¡illusory

appearance¡¡£¨for¡¡example£»¡¡optical¡¡illusion£©£»¡¡which¡¡occurs¡¡in¡¡the

empirical¡¡application¡¡of¡¡otherwise¡¡correct¡¡rules¡¡of¡¡the¡¡understanding£»

and¡¡in¡¡which¡¡the¡¡judgement¡¡is¡¡misled¡¡by¡¡the¡¡influence¡¡of

imagination¡£¡¡Our¡¡purpose¡¡is¡¡to¡¡speak¡¡of¡¡transcendental¡¡illusory

appearance£»¡¡which¡¡influences¡¡

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨1£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ