Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > meteorology >

µÚ20½Ú

meteorology-µÚ20½Ú

С˵£º meteorology ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡





these¡¡matters¡¡belongs¡¡to¡¡the¡¡account¡¡of¡¡the¡¡senses£»¡¡which¡¡are¡¡the



proper¡¡subjects¡¡of¡¡such¡¡an¡¡inquiry£»¡¡we¡¡need¡¡only¡¡state¡¡about¡¡them¡¡what



is¡¡necessary¡¡for¡¡us¡£¡¡At¡¡all¡¡events£»¡¡that¡¡is¡¡the¡¡reason¡¡why¡¡distant



objects¡¡and¡¡objects¡¡seen¡¡in¡¡a¡¡mirror¡¡look¡¡darker¡¡and¡¡smaller¡¡and



smoother£»¡¡why¡¡the¡¡reflection¡¡of¡¡clouds¡¡in¡¡water¡¡is¡¡darker¡¡than¡¡the



clouds¡¡themselves¡£¡¡This¡¡latter¡¡is¡¡clearly¡¡the¡¡case£º¡¡the¡¡reflection



diminishes¡¡the¡¡sight¡¡that¡¡reaches¡¡them¡£¡¡It¡¡makes¡¡no¡¡difference¡¡whether



the¡¡change¡¡is¡¡in¡¡the¡¡object¡¡seen¡¡or¡£¡¡in¡¡the¡¡sight£»¡¡the¡¡result¡¡being¡¡in



either¡¡case¡¡the¡¡same¡£¡¡The¡¡following¡¡fact¡¡further¡¡is¡¡worth¡¡noticing¡£



When¡¡there¡¡is¡¡a¡¡cloud¡¡near¡¡the¡¡sun¡¡and¡¡we¡¡look¡¡at¡¡it¡¡does¡¡not¡¡look



coloured¡¡at¡¡all¡¡but¡¡white£»¡¡but¡¡when¡¡we¡¡look¡¡at¡¡the¡¡same¡¡cloud¡¡in¡¡water



it¡¡shows¡¡a¡¡trace¡¡of¡¡rainbow¡¡colouring¡£¡¡Clearly£»¡¡then£»¡¡when¡¡sight¡¡is



reflected¡¡it¡¡is¡¡weakened¡¡and£»¡¡as¡¡it¡¡makes¡¡dark¡¡look¡¡darker£»¡¡so¡¡it



makes¡¡white¡¡look¡¡less¡¡white£»¡¡changing¡¡it¡¡and¡¡bringing¡¡it¡¡nearer¡¡to



black¡£¡¡When¡¡the¡¡sight¡¡is¡¡relatively¡¡strong¡¡the¡¡change¡¡is¡¡to¡¡red£»¡¡the



next¡¡stage¡¡is¡¡green£»¡¡and¡¡a¡¡further¡¡degree¡¡of¡¡weakness¡¡gives¡¡violet¡£¡¡No



further¡¡change¡¡is¡¡visible£»¡¡but¡¡three¡¡completes¡¡the¡¡series¡¡of¡¡colours



£¨as¡¡we¡¡find¡¡three¡¡does¡¡in¡¡most¡¡other¡¡things£©£»¡¡and¡¡the¡¡change¡¡into



the¡¡rest¡¡is¡¡imperceptible¡¡to¡¡sense¡£¡¡Hence¡¡also¡¡the¡¡rainbow¡¡appears



with¡¡three¡¡colours£»¡¡this¡¡is¡¡true¡¡of¡¡each¡¡of¡¡the¡¡two£»¡¡but¡¡in¡¡a¡¡contrary



way¡£¡¡The¡¡outer¡¡band¡¡of¡¡the¡¡primary¡¡rainbow¡¡is¡¡red£º¡¡for¡¡the¡¡largest



band¡¡reflects¡¡most¡¡sight¡¡to¡¡the¡¡sun£»¡¡and¡¡the¡¡outer¡¡band¡¡is¡¡largest¡£



The¡¡middle¡¡band¡¡and¡¡the¡¡third¡¡go¡¡on¡¡the¡¡same¡¡principle¡£¡¡So¡¡if¡¡the



principles¡¡we¡¡laid¡¡down¡¡about¡¡the¡¡appearance¡¡of¡¡colours¡¡are¡¡true¡¡the



rainbow¡¡necessarily¡¡has¡¡three¡¡colours£»¡¡and¡¡these¡¡three¡¡and¡¡no



others¡£¡¡The¡¡appearance¡¡of¡¡yellow¡¡is¡¡due¡¡to¡¡contrast£»¡¡for¡¡the¡¡red¡¡is



whitened¡¡by¡¡its¡¡juxtaposition¡¡with¡¡green¡£¡¡We¡¡can¡¡see¡¡this¡¡from¡¡the



fact¡¡that¡¡the¡¡rainbow¡¡is¡¡purest¡¡when¡¡the¡¡cloud¡¡is¡¡blackest£»¡¡and¡¡then



the¡¡red¡¡shows¡¡most¡¡yellow¡£¡¡£¨Yellow¡¡in¡¡the¡¡rainbow¡¡comes¡¡between¡¡red



and¡¡green¡££©¡¡So¡¡the¡¡whole¡¡of¡¡the¡¡red¡¡shows¡¡white¡¡by¡¡contrast¡¡with¡¡the



blackness¡¡of¡¡the¡¡cloud¡¡around£º¡¡for¡¡it¡¡is¡¡white¡¡compared¡¡to¡¡the¡¡cloud



and¡¡the¡¡green¡£¡¡Again£»¡¡when¡¡the¡¡rainbow¡¡is¡¡fading¡¡away¡¡and¡¡the¡¡red¡¡is



dissolving£»¡¡the¡¡white¡¡cloud¡¡is¡¡brought¡¡into¡¡contact¡¡with¡¡the¡¡green¡¡and



becomes¡¡yellow¡£¡¡But¡¡the¡¡moon¡¡rainbow¡¡affords¡¡the¡¡best¡¡instance¡¡of¡¡this



colour¡¡contrast¡£¡¡It¡¡looks¡¡quite¡¡white£º¡¡this¡¡is¡¡because¡¡it¡¡appears¡¡on



the¡¡dark¡¡cloud¡¡and¡¡at¡¡night¡£¡¡So£»¡¡just¡¡as¡¡fire¡¡is¡¡intensified¡¡by



added¡¡fire£»¡¡black¡¡beside¡¡black¡¡makes¡¡that¡¡which¡¡is¡¡in¡¡some¡¡degree



white¡¡look¡¡quite¡¡white¡£¡¡Bright¡¡dyes¡¡too¡¡show¡¡the¡¡effect¡¡of¡¡contrast¡£



In¡¡woven¡¡and¡¡embroidered¡¡stuffs¡¡the¡¡appearance¡¡of¡¡colours¡¡is



profoundly¡¡affected¡¡by¡¡their¡¡juxtaposition¡¡with¡¡one¡¡another¡¡£¨purple£»



for¡¡instance£»¡¡appears¡¡different¡¡on¡¡white¡¡and¡¡on¡¡black¡¡wool£©£»¡¡and



also¡¡by¡¡differences¡¡of¡¡illumination¡£¡¡Thus¡¡embroiderers¡¡say¡¡that¡¡they



often¡¡make¡¡mistakes¡¡in¡¡their¡¡colours¡¡when¡¡they¡¡work¡¡by¡¡lamplight£»



and¡¡use¡¡the¡¡wrong¡¡ones¡£



¡¡¡¡We¡¡have¡¡now¡¡shown¡¡why¡¡the¡¡rainbow¡¡has¡¡three¡¡colours¡¡and¡¡that¡¡these



are¡¡its¡¡only¡¡colours¡£¡¡The¡¡same¡¡cause¡¡explains¡¡the¡¡double¡¡rainbow¡¡and



the¡¡faintness¡¡of¡¡the¡¡colours¡¡in¡¡the¡¡outer¡¡one¡¡and¡¡their¡¡inverted



order¡£¡¡When¡¡sight¡¡is¡¡strained¡¡to¡¡a¡¡great¡¡distance¡¡the¡¡appearance¡¡of



the¡¡distant¡¡object¡¡is¡¡affected¡¡in¡¡a¡¡certain¡¡way£º¡¡and¡¡the¡¡same¡¡thing



holds¡¡good¡¡here¡£¡¡So¡¡the¡¡reflection¡¡from¡¡the¡¡outer¡¡rainbow¡¡is¡¡weaker



because¡¡it¡¡takes¡¡place¡¡from¡¡a¡¡greater¡¡distance¡¡and¡¡less¡¡of¡¡it



reaches¡¡the¡¡sun£»¡¡and¡¡so¡¡the¡¡colours¡¡seen¡¡are¡¡fainter¡£¡¡Their¡¡order¡¡is



reversed¡¡because¡¡more¡¡reflection¡¡reaches¡¡the¡¡sun¡¡from¡¡the¡¡smaller£»



inner¡¡band¡£¡¡For¡¡that¡¡reflection¡¡is¡¡nearer¡¡to¡¡our¡¡sight¡¡which¡¡is



reflected¡¡from¡¡the¡¡band¡¡which¡¡is¡¡nearest¡¡to¡¡the¡¡primary¡¡rainbow¡£¡¡Now



the¡¡smallest¡¡band¡¡in¡¡the¡¡outer¡¡rainbow¡¡is¡¡that¡¡which¡¡is¡¡nearest£»¡¡and



so¡¡it¡¡will¡¡be¡¡red£»¡¡and¡¡the¡¡second¡¡and¡¡the¡¡third¡¡will¡¡follow¡¡the¡¡same



principle¡£¡¡Let¡¡B¡¡be¡¡the¡¡outer¡¡rainbow£»¡¡A¡¡the¡¡inner¡¡one£»¡¡let¡¡R¡¡stand



for¡¡the¡¡red¡¡colour£»¡¡G¡¡for¡¡green£»¡¡V¡¡for¡¡violet£»¡¡yellow¡¡appears¡¡at¡¡the



point¡¡Y¡£¡¡Three¡¡rainbows¡¡or¡¡more¡¡are¡¡not¡¡found¡¡because¡¡even¡¡the



second¡¡is¡¡fainter£»¡¡so¡¡that¡¡the¡¡third¡¡reflection¡¡can¡¡have¡¡no¡¡strength



whatever¡¡and¡¡cannot¡¡reach¡¡the¡¡sun¡¡at¡¡all¡£¡¡£¨See¡¡diagram¡££©







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡5







¡¡¡¡The¡¡rainbow¡¡can¡¡never¡¡be¡¡a¡¡circle¡¡nor¡¡a¡¡segment¡¡of¡¡a¡¡circle



greater¡¡than¡¡a¡¡semicircle¡£¡¡The¡¡consideration¡¡of¡¡the¡¡diagram¡¡will¡¡prove



this¡¡and¡¡the¡¡other¡¡properties¡¡of¡¡the¡¡rainbow¡£¡¡£¨See¡¡diagram¡££©



¡¡¡¡Let¡¡A¡¡be¡¡a¡¡hemisphere¡¡resting¡¡on¡¡the¡¡circle¡¡of¡¡the¡¡horizon£»¡¡let



its¡¡centre¡¡be¡¡K¡¡and¡¡let¡¡H¡¡be¡¡another¡¡point¡¡appearing¡¡on¡¡the¡¡horizon¡£



Then£»¡¡if¡¡the¡¡lines¡¡that¡¡fall¡¡in¡¡a¡¡cone¡¡from¡¡K¡¡have¡¡HK¡¡as¡¡their¡¡axis£»



and£»¡¡K¡¡and¡¡M¡¡being¡¡joined£»¡¡the¡¡lines¡¡KM¡¡are¡¡reflected¡¡from¡¡the



hemisphere¡¡to¡¡H¡¡over¡¡the¡¡greater¡¡angle£»¡¡the¡¡lines¡¡from¡¡K¡¡will¡¡fall



on¡¡the¡¡circumference¡¡of¡¡a¡¡circle¡£¡¡If¡¡the¡¡reflection¡¡takes¡¡place¡¡when



the¡¡luminous¡¡body¡¡is¡¡rising¡¡or¡¡setting¡¡the¡¡segment¡¡of¡¡the¡¡circle¡¡above



the¡¡earth¡¡which¡¡is¡¡cut¡¡off¡¡by¡¡the¡¡horizon¡¡will¡¡be¡¡a¡¡semi¡­circle£»¡¡if



the¡¡luminous¡¡body¡¡is¡¡above¡¡the¡¡horizon¡¡it¡¡will¡¡always¡¡be¡¡less¡¡than¡¡a



semicircle£»¡¡and¡¡it¡¡will¡¡be¡¡smallest¡¡when¡¡the¡¡luminous¡¡body¡¡culminates¡£



First¡¡let¡¡the¡¡luminous¡¡body¡¡be¡¡appearing¡¡on¡¡the¡¡horizon¡¡at¡¡the¡¡point



H£»¡¡and¡¡let¡¡KM¡¡be¡¡reflected¡¡to¡¡H£»¡¡and¡¡let¡¡the¡¡plane¡¡in¡¡which¡¡A¡¡is£»



determined¡¡by¡¡the¡¡triangle¡¡HKM£»¡¡be¡¡produced¡£¡¡Then¡¡the¡¡section¡¡of¡¡the



sphere¡¡will¡¡be¡¡a¡¡great¡¡circle¡£¡¡Let¡¡it¡¡be¡¡A¡¡£¨for¡¡it¡¡makes¡¡no¡¡difference



which¡¡of¡¡the¡¡planes¡¡passing¡¡through¡¡the¡¡line¡¡HK¡¡and¡¡determined¡¡by



the¡¡triangle¡¡KMH¡¡is¡¡produced£©¡£¡¡Now¡¡the¡¡lines¡¡drawn¡¡from¡¡H¡¡and¡¡K¡¡to¡¡a



point¡¡on¡¡the¡¡semicircle¡¡A¡¡are¡¡in¡¡a¡¡certain¡¡ratio¡¡to¡¡one¡¡another£»¡¡and



no¡¡lines¡¡drawn¡¡from¡¡the¡¡same¡¡points¡¡to¡¡another¡¡point¡¡on¡¡that



semicircle¡¡can¡¡have¡¡the¡¡same¡¡ratio¡£¡¡For¡¡since¡¡both¡¡the¡¡points¡¡H¡¡and



K¡¡and¡¡the¡¡line¡¡KH¡¡are¡¡given£»¡¡the¡¡line¡¡MH¡¡will¡¡be¡¡given¡¡too£»



consequently¡¡the¡¡ratio¡¡of¡¡the¡¡line¡¡MH¡¡to¡¡the¡¡line¡¡MK¡¡will¡¡be¡¡given



too¡£¡¡So¡¡M¡¡will¡¡touch¡¡a¡¡given¡¡circumference¡£¡¡Let¡¡this¡¡be¡¡NM¡£¡¡Then¡¡the



intersection¡¡of¡¡the¡¡circumferences¡¡is¡¡given£»¡¡and¡¡the¡¡same¡¡ratio¡¡cannot



hold¡¡between¡¡lines¡¡in¡¡the¡¡same¡¡plane¡¡drawn¡¡from¡¡the¡¡same¡¡points¡¡to¡¡any



other¡¡circumference¡¡but¡¡MN¡£



¡¡¡¡Draw¡¡a¡¡line¡¡DB¡¡outside¡¡of¡¡the¡¡figure¡¡and¡¡divide¡¡it¡¡so¡¡that



D£ºB=MH£ºMK¡£¡¡But¡¡MH¡¡is¡¡greater¡¡than¡¡MK¡¡since¡¡the¡¡reflection¡¡of¡¡the



cone¡¡is¡¡over¡¡the¡¡greater¡¡angle¡¡£¨for¡¡it¡¡subtends¡¡the¡¡greater¡¡angle¡¡of



the¡¡triangle¡¡KMH£©¡£¡¡Therefore¡¡D¡¡is¡¡greater¡¡than¡¡B¡£¡¡Then¡¡add¡¡to¡¡B¡¡a¡¡line



Z¡¡such¡¡that¡¡B£«Z£ºD=D£ºB¡£¡¡Then¡¡make¡¡another¡¡line¡¡having¡¡the¡¡same¡¡ratio¡¡to



B¡¡as¡¡KH¡¡has¡¡to¡¡Z£»¡¡and¡¡join¡¡MI¡£



¡¡¡¡Then¡¡I¡¡is¡¡the¡¡pole¡¡of¡¡the¡¡circle¡¡on¡¡which¡¡the¡¡lines¡¡from¡¡K¡¡fall¡£¡¡For



the¡¡ratio¡¡of¡¡D¡¡to¡¡IM¡¡is¡¡the¡¡same¡¡as¡¡that¡¡of¡¡Z¡¡to¡¡KH¡¡and¡¡of¡¡B¡¡to¡¡KI¡£¡¡If



not£»¡¡let¡¡D¡¡be¡¡in¡¡the¡¡same¡¡ratio¡¡to¡¡a¡¡line¡¡indifferently¡¡lesser¡¡or



greater¡¡than¡¡IM£»¡¡and¡¡let¡¡this¡¡line¡¡be¡¡IP¡£¡¡Then¡¡HK¡¡and¡¡KI¡¡and¡¡IP¡¡will



have¡¡the¡¡same¡¡ratios¡¡to¡¡one¡¡another¡¡as¡¡Z£»¡¡B£»¡¡and¡¡D¡£¡¡But¡¡the¡¡ratios



between¡¡Z£»¡¡B£»¡¡and¡¡D¡¡were¡¡such¡¡that¡¡Z£«B£ºD=D£º¡¡B¡£¡¡Therefore



IH£ºIP=IP£ºIK¡£¡¡Now£»¡¡if¡¡the¡¡points¡¡K£»¡¡H¡¡be¡¡joined¡¡with¡¡the¡¡point¡¡P¡¡by¡¡the



lines¡¡HP£»¡¡KP£»¡¡these¡¡lines¡¡will¡¡be¡¡to¡¡one¡¡another¡¡as¡¡IH¡¡is¡¡to¡¡IP£»¡¡for



the¡¡sides¡¡of¡¡the¡¡triangles¡¡HIP£»¡¡KPI¡¡about¡¡the¡¡angle¡¡I¡¡are



homologous¡£¡¡Therefore£»¡¡HP¡¡too¡¡will¡¡be¡¡to¡¡KP¡¡as¡¡HI¡¡is¡¡to¡¡IP¡£¡¡But¡¡this



is¡¡also¡¡the¡¡ratio¡¡of¡¡MH¡¡to¡¡MK£»¡¡for¡¡the¡¡ratio¡¡both¡¡of¡¡HI¡¡to¡¡IP¡¡and¡¡of



MH¡¡to¡¡MK¡¡is¡¡the¡¡same¡¡as¡¡that¡¡of¡¡D¡¡to¡¡B¡£¡¡Therefore£»¡¡from¡¡the¡¡points



H£»¡¡K¡¡there¡¡will¡¡have¡¡been¡¡drawn¡¡lines¡¡with¡¡the¡¡same¡¡ratio¡¡to¡¡one



another£»¡¡not¡¡only¡¡to¡¡the¡¡circumference¡¡MN¡¡but¡¡to¡¡another¡¡point¡¡as



well£»¡¡which¡¡is¡¡impossible¡£¡¡Since¡¡then¡¡D¡¡cannot¡¡bear¡¡that¡¡ratio¡¡to



any¡¡line¡¡either¡¡lesser¡¡or¡¡greater¡¡than¡¡IM¡¡£¨the¡¡proof¡¡being¡¡in¡¡either



case¡¡the¡¡same£©£»¡¡it¡¡follows¡¡that¡¡it¡¡must¡¡stand¡¡in¡¡that¡¡ratio¡¡to¡¡MI



itself¡£¡¡Therefore¡¡as¡¡MI¡¡is¡¡to¡¡IK¡¡so¡¡IH¡¡will¡¡be¡¡to¡¡MI¡¡and¡¡finally¡¡MH¡¡to



MK¡£



¡¡¡¡If£»¡¡then£»¡¡a¡¡circle¡¡be¡¡described¡¡with¡¡I¡¡as¡¡pole¡¡at¡¡the¡¡distance¡¡MI¡¡it



will¡¡touch¡¡all¡¡the¡¡angles¡¡which¡¡the¡¡lines¡¡from¡¡H¡¡and¡¡K¡¡make¡¡by¡¡their



reflection¡£¡¡If¡¡not£»¡¡it¡¡can¡¡be¡¡shown£»¡¡as¡¡before£»¡¡that¡¡lines¡¡drawn¡¡to



different¡¡points¡¡in¡¡the¡¡semicircle¡¡will¡¡have¡¡the¡¡same¡¡ratio¡¡to¡¡one



another£»¡¡which¡¡was¡¡impossible¡£¡¡If£»¡¡then£»¡¡the¡¡semicircle¡¡A¡¡be



revolved¡¡about¡¡the¡¡diameter¡¡HKI£»¡¡the¡¡lines¡¡reflected¡¡from¡¡the¡¡points



H£»¡¡K¡¡at¡¡the¡¡point¡¡M¡¡will¡¡have¡¡the¡¡same¡¡ratio£»¡¡and¡¡will¡¡make¡¡the



angle¡¡KMH¡¡equal£»¡¡in¡¡every¡¡plane¡£¡¡Further£»¡¡the¡¡angle¡¡which¡¡HM¡¡and¡¡MI



make¡¡with¡¡HI¡¡will¡¡always¡¡be¡¡the¡¡same¡£¡¡So¡¡there¡¡are¡¡a¡¡number¡¡of



triangles¡¡on¡¡HI¡¡and¡¡KI¡¡equal¡¡to¡¡the¡¡triangles¡¡HMI¡¡and¡¡KMI¡£¡¡Their



perpendiculars¡¡will¡¡fall¡¡on¡¡HI¡¡at¡¡the¡¡same¡¡point¡¡and¡¡will¡¡be¡¡equal¡£



Let¡¡O¡¡be¡¡the¡¡point¡¡on¡¡which¡¡they¡¡fall¡£¡¡Then¡¡O¡¡is¡¡the¡¡centre¡¡of¡¡the



circle£»¡¡half¡¡of¡¡which£»¡¡MN£»¡¡is¡¡cut¡¡off¡¡by¡¡the¡¡horizon¡£¡¡£¨See¡¡diagram¡££©



¡¡¡¡Next¡¡let¡¡the¡¡horizon¡¡be¡¡ABG¡¡but¡¡let¡¡H¡¡have¡¡risen¡¡above¡¡the



horizon¡£¡¡Let¡¡the¡¡axis¡¡now¡¡be¡¡HI¡£¡¡The¡¡proof¡¡will¡¡be¡¡the¡¡same¡¡for¡¡the



rest¡¡as¡¡before£»¡¡but¡¡the¡¡pole¡¡I¡¡of¡¡the¡¡circ

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ