the history and practice of the art of photography-µÚ4½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
he¡¡second¡¡and¡¡third¡¡boards£»¡¡because¡¡the¡¡same¡¡quantity¡¡of¡¡light¡¡is¡¡diffused¡¡over¡¡a¡¡space¡¡four¡¡and¡¡sixteen¡¡times¡¡greater¡£¡¡These¡¡same¡¡rays¡¡may¡¡be¡¡collected¡¡and¡¡their¡¡intensity¡¡again¡¡increased¡£
Rays¡¡of¡¡light¡¡are¡¡reflected¡¡from¡¡one¡¡surface¡¡to¡¡another£»¡¡Refracted£»¡¡or¡¡bent£»¡¡as¡¡they¡¡pass¡¡from¡¡the¡¡surface¡¡of¡¡one¡¡transparent¡¡medium¡¡to¡¡another£»¡¡and¡¡Inflected£»¡¡or¡¡turned¡¡from¡¡their¡¡course£»¡¡by¡¡the¡¡attraction¡¡of¡¡opaque¡¡bodies¡£¡¡¡¡From¡¡the¡¡first¡¡we¡¡derive¡¡the¡¡principles¡¡on¡¡which¡¡mirrors¡¡are¡¡constructed£»¡¡to¡¡the¡¡second¡¡we¡¡are¡¡indebted¡¡for¡¡the¡¡power¡¡of¡¡the¡¡lenses£»¡¡and¡¡the¡¡blessings¡¡of¡¡sight£»for¡¡the¡¡light¡¡acts¡¡upon¡¡the¡¡retina¡¡of¡¡the¡¡eye¡¡in¡¡the¡¡same¡¡manner¡¡as¡¡on¡¡the¡¡lens¡¡of¡¡a¡¡camera¡£¡¡The¡¡latter¡¡has¡¡no¡¡important¡¡bearing¡¡upon¡¡our¡¡subject¡£
When¡¡a¡¡ray¡¡of¡¡light¡¡falls¡¡perpendicularly¡¡upon¡¡an¡¡opaque¡¡body£»¡¡it¡¡is¡¡reflected¡¡bark¡¡in¡¡the¡¡same¡¡line¡¡in¡¡which¡¡it¡¡proceeds£»¡¡in¡¡this¡¡case¡¡the¡¡reflected¡¡ray¡¡returns¡¡in¡¡the¡¡same¡¡path¡¡the¡¡incident¡¡ray¡¡traversed£»¡¡but¡¡when¡¡a¡¡ray¡¡falls¡¡obliquely£»¡¡it¡¡is¡¡reflected¡¡obliquely£»¡¡that¡¡is£»¡¡it¡¡is¡¡thrown¡¡off¡¡in¡¡opposite¡¡direction£»¡¡and¡¡as¡¡far¡¡from¡¡the¡¡perpendicular¡¡as¡¡was¡¡the¡¡incident¡¡ray£»¡¡as¡¡shown¡¡at¡¡Fig¡£¡¡¡¡2£»¡¡a¡¡representing¡¡the¡¡incident¡¡ray¡¡and¡¡b¡¡the¡¡reflected¡£¡¡The¡¡point£»¡¡or¡¡angle¡¡c¡¡made¡¡by¡¡¡¡£§hipho_2¡£gif£§¡¡the¡¡incident¡¡ray£»¡¡at¡¡the¡¡surface¡¡of¡¡the¡¡reflector¡¡e¡¡f£»¡¡with¡¡a¡¡line¡¡c¡¡d£»¡¡perpendicular¡¡to¡¡that¡¡surface£»¡¡is¡¡called¡¡the¡¡angle¡¡of¡¡incidence£»¡¡while¡¡the¡¡angle¡¡formed¡¡by¡¡the¡¡reflected¡¡ray¡¡b¡¡and¡¡the¡¡perpendicular¡¡line¡¡d¡¡is¡¡called¡¡the¡¡angle¡¡of¡¡reflection£»¡¡and¡¡these¡¡angles¡¡are¡¡always¡¡equal¡£
It¡¡is¡¡by¡¡this¡¡reflection¡¡of¡¡light¡¡that¡¡objects¡¡are¡¡made¡¡visible£»¡¡but¡¡unless¡¡light¡¡falls¡¡directly¡¡upon¡¡the¡¡eye¡¡they¡¡are¡¡invisible£»¡¡and¡¡are¡¡not¡¡sensibly¡¡felt¡¡until¡¡after¡¡a¡¡certain¡¡series¡¡of¡¡operations¡¡upon¡¡the¡¡various¡¡coverings¡¡and¡¡humors¡¡of¡¡the¡¡eye¡£¡¡Smooth¡¡and¡¡polished¡¡surfaces¡¡reflect¡¡light¡¡most¡¡powerfully£»¡¡and¡¡send¡¡to¡¡the¡¡eye¡¡the¡¡images¡¡of¡¡the¡¡objects¡¡from¡¡which¡¡the¡¡light¡¡proceeded¡¡before¡¡reflection¡£¡¡¡¡Glass£»¡¡which¡¡is¡¡transparent¡¡transmitting¡¡lightwould¡¡be¡¡of¡¡no¡¡use¡¡to¡¡us¡¡as¡¡a¡¡mirror£»¡¡were¡¡it¡¡not¡¡first¡¡coated¡¡on¡¡one¡¡side¡¡with¡¡a¡¡metalic¡¡amalgam£»¡¡which¡¡interrupts¡¡the¡¡rays¡¡in¡¡their¡¡passage¡¡from¡¡the¡¡glass¡¡into¡¡the¡¡air£»¡¡and¡¡throws¡¡them¡¡either¡¡directly¡¡in¡¡the¡¡incident¡¡line£»¡¡or¡¡in¡¡an¡¡oblique¡¡direction¡£¡¡¡¡The¡¡reason¡¡why¡¡trees£»¡¡rocks¡¡and¡¡animals¡¡are¡¡not¡¡all¡¡mirrors£»¡¡reflecting¡¡other¡¡forms¡¡instead¡¡of¡¡their¡¡own£»¡¡is£»¡¡that¡¡their¡¡surfaces¡¡are¡¡uneven£»¡¡and¡¡rays¡¡of¡¡light¡¡reflected¡¡from¡¡an¡¡uneven¡¡surface¡¡are¡¡diffused¡¡in¡¡all¡¡directions¡£
Parallel¡¡rays¡¡falling¡¡obliquely¡¡upon¡¡a¡¡plane¡¡mirror¡¡are¡¡reflected¡¡parallel£»¡¡converging¡¡rays£»¡¡with¡¡the¡¡same¡¡degree¡¡of¡¡convergence£»¡¡and¡¡diverging¡¡rays¡¡equally¡¡divergent¡£
Stand¡¡before¡¡a¡¡mirror¡¡and¡¡your¡¡image¡¡is¡¡formed¡¡therein£»¡¡and¡¡appears¡¡to¡¡be¡¡as¡¡far¡¡behind¡¡the¡¡glass¡¡as¡¡you¡¡are¡¡before¡¡it£»¡¡making¡¡the¡¡angle¡¡of¡¡reflection¡¡equal¡¡to¡¡that¡¡of¡¡incidence£»¡¡as¡¡before¡¡stated¡£¡¡¡¡The¡¡incident¡¡ray¡¡and¡¡the¡¡reflected¡¡ray¡¡form£»¡¡together£»¡¡what¡¡is¡¡called¡¡the¡¡passage¡¡of¡¡reflection£»¡¡and¡¡this¡¡will¡¡therefore¡¡make¡¡the¡¡actual¡¡distance¡¡of¡¡an¡¡image¡¡to¡¡appear¡¡as¡¡far¡¡again¡¡from¡¡the¡¡eye¡¡as¡¡it¡¡really¡¡is¡£¡¡Any¡¡object¡¡which¡¡reflects¡¡light¡¡is¡¡called¡¡a¡¡radiant¡£¡¡The¡¡point¡¡behind¡¡a¡¡reflecting¡¡surface£»¡¡from¡¡which¡¡they¡¡appear¡¡to¡¡diverge£»¡¡is¡¡called¡¡the¡¡virtual¡¡focus¡£
Rays¡¡of¡¡light¡¡being¡¡reflected¡¡at¡¡the¡¡same¡¡angle¡¡at¡¡which¡¡they¡¡fall¡¡upon¡¡a¡¡mirror£»¡¡two¡¡persons¡¡can¡¡stand¡¡in¡¡such¡¡a¡¡position¡¡that¡¡each¡¡can¡¡see¡¡the¡¡image¡¡of¡¡the¡¡other¡¡without¡¡seeing¡¡his¡¡own¡£¡¡Again£»¡¡you¡¡may¡¡see¡¡your¡¡whole¡¡figure¡¡in¡¡a¡¡mirror¡¡half¡¡your¡¡length£»¡¡but¡¡if¡¡you¡¡stand¡¡before¡¡one¡¡a¡¡few¡¡inches¡¡shorter¡¡the¡¡whole¡¡cannot¡¡be¡¡reflected£»¡¡as¡¡the¡¡incident¡¡ray¡¡which¡¡passes¡¡from¡¡your¡¡feet¡¡into¡¡the¡¡mirror¡¡in¡¡the¡¡former¡¡case£»¡¡will¡¡in¡¡the¡¡latter¡¡fall¡¡under¡¡it¡£¡¡Images¡¡are¡¡always¡¡reversed¡¡in¡¡mirrors¡£
Convex¡¡mirrors¡¡reflect¡¡light¡¡from¡¡a¡¡rounded¡¡surface¡¡and¡¡disperse¡¡the¡¡rays¡¡in¡¡every¡¡direction£»¡¡causing¡¡parallel¡¡rays¡¡to¡¡diverge£»¡¡diverging¡¡rays¡¡to¡¡diverge¡¡more£»¡¡and¡¡converging¡¡rays¡¡to¡¡converge¡¡less¡¡They¡¡represent¡¡objects¡¡smaller¡¡than¡¡they¡¡really¡¡arebecause¡¡the¡¡angle¡¡formed¡¡by¡¡the¡¡reflected¡¡ray¡¡is¡¡rendered¡¡more¡¡acute¡¡by¡¡a¡¡convex¡¡than¡¡by¡¡a¡¡plane¡¡surface£»¡¡and¡¡it¡¡is¡¡the¡¡diminishing¡¡of¡¡the¡¡visual¡¡angle£»¡¡by¡¡causing¡¡rays¡¡of¡¡light¡¡to¡¡be¡¡farther¡¡extended¡¡before¡¡they¡¡meet¡¡in¡¡a¡¡point£»¡¡which¡¡produces¡¡the¡¡image¡¡of¡¡convex¡¡mirrors¡£¡¡¡¡The¡¡greater¡¡the¡¡convexity¡¡of¡¡a¡¡mirror£»¡¡the¡¡more¡¡will¡¡the¡¡images¡¡of¡¡the¡¡objects¡¡be¡¡diminished£»¡¡and¡¡the¡¡nearer¡¡will¡¡they¡¡appear¡¡to¡¡the¡¡surface¡£¡¡These¡¡mirrors¡¡furnish¡¡science¡¡with¡¡many¡¡curious¡¡and¡¡pleasing¡¡facts¡£
Concave¡¡mirrors¡¡are¡¡the¡¡reverse¡¡of¡¡convex£»¡¡the¡¡latter¡¡being¡¡rounded¡¡outwards£»¡¡the¡¡former¡¡hollowed¡¡inwardsthey¡¡render¡¡rays¡¡of¡¡light¡¡more¡¡converging¡¡collect¡¡rays¡¡instead¡¡of¡¡dispersing¡¡them£»¡¡and¡¡magnify¡¡objects¡¡while¡¡the¡¡convex¡¡diminishes¡¡them¡£
Rays¡¡of¡¡light¡¡may¡¡be¡¡collected¡¡in¡¡the¡¡focus¡¡of¡¡a¡¡mirror¡¡to¡¡such¡¡intensity¡¡as¡¡to¡¡melt¡¡metals¡£¡¡¡¡The¡¡ordinary¡¡burning¡¡glass¡¡is¡¡an¡¡illustration¡¡of¡¡this¡¡fact£»¡¡although¡¡the¡¡rays¡¡of¡¡light¡¡are¡¡refracted£»¡¡or¡¡passed¡¡through¡¡the¡¡glass¡¡and¡¡concentrated¡¡into¡¡a¡¡focus¡¡beneath¡£
When¡¡incident¡¡rays¡¡are¡¡parallel£»¡¡the¡¡reflected¡¡rays¡¡converge¡¡to¡¡a¡¡focus£»¡¡but¡¡when¡¡the¡¡incident¡¡rays¡¡proceed¡¡from¡¡a¡¡focus£»¡¡or¡¡are¡¡divergent£»¡¡they¡¡are¡¡reflected¡¡parallel¡£¡¡¡¡It¡¡is¡¡only¡¡when¡¡an¡¡object¡¡is¡¡nearer¡¡to¡¡a¡¡concave¡¡mirror¡¡than¡¡its¡¡centre¡¡of¡¡concavity£»¡¡that¡¡its¡¡image¡¡is¡¡magnified£»¡¡for¡¡when¡¡the¡¡object¡¡is¡¡farther¡¡from¡¡the¡¡mirror£»¡¡this¡¡centre¡¡will¡¡appear¡¡less¡¡than¡¡the¡¡object£»¡¡and¡¡in¡¡an¡¡inverted¡¡position¡£
The¡¡centre¡¡of¡¡concavity¡¡in¡¡a¡¡concave¡¡mirror£»¡¡is¡¡an¡¡imaginary¡¡point¡¡placed¡¡in¡¡the¡¡centre¡¡of¡¡a¡¡circle¡¡formed¡¡by¡¡continuing¡¡the¡¡boundary¡¡of¡¡the¡¡concavity¡¡of¡¡the¡¡mirror¡¡from¡¡any¡¡one¡¡point¡¡of¡¡the¡¡edge¡¡to¡¡another¡¡parallel¡¡to¡¡and¡¡beneath¡¡it¡£
REFRACTION¡¡OF¡¡LIGHT£ºI¡¡now¡¡pass¡¡to¡¡the¡¡consideration¡¡of¡¡the¡¡passage¡¡of¡¡light¡¡through¡¡bodies¡£
A¡¡ray¡¡of¡¡light¡¡failing¡¡perpendicularly¡¡through¡¡the¡¡air¡¡upon¡¡a¡¡surface¡¡of¡¡glass¡¡or¡¡water¡¡passes¡¡on¡¡in¡¡a¡¡straight¡¡line¡¡through¡¡the¡¡body£»¡¡but¡¡if¡¡it£»¡¡in¡¡passing¡¡from¡¡one¡¡medium¡¡to¡¡another¡¡of¡¡different¡¡density£»¡¡fall¡¡obliquely£»¡¡it¡¡is¡¡bent¡¡from¡¡its¡¡direct¡¡course¡¡and¡¡recedes¡¡from¡¡it£»¡¡either¡¡towards¡¡the¡¡right¡¡or¡¡left£»¡¡and¡¡this¡¡bending¡¡is¡¡called¡¡refraction£»¡¡£¨see¡¡fig¡£¡¡¡¡3£»¡¡b¡££©¡¡If¡¡a¡¡ray¡¡of¡¡light¡¡passes¡¡from¡¡a¡¡rarer¡¡into¡¡a¡¡denser¡¡medium¡¡it¡¡is¡¡refracted¡¡towards¡¡a¡¡perpendicular¡¡in¡¡that¡¡medium£»¡¡but¡¡if¡¡it¡¡passes¡¡from¡¡a¡¡denser¡¡into¡¡rarer¡¡it¡¡is¡¡bent¡¡further¡¡from¡¡a¡¡perpendicular¡¡in¡¡that¡¡medium¡£¡¡Owing¡¡to¡¡this¡¡bending¡¡of¡¡the¡¡rays¡¡of¡¡light¡¡the¡¡angles¡¡of¡¡refraction¡¡and¡¡incidence¡¡are¡¡never¡¡equal¡£
Transparent¡¡bodies¡¡differ¡¡in¡¡their¡¡power¡¡of¡¡bending¡¡light¡¡as¡¡a¡¡general¡¡rule£»¡¡the¡¡refractive¡¡power¡¡is¡¡proportioned¡¡to¡¡the¡¡densitybut¡¡the¡¡chemical¡¡constitution¡¡of¡¡bodies¡¡as¡¡well¡¡as¡¡their¡¡density£»¡¡is¡¡found¡¡to¡¡effect¡¡their¡¡refracting¡¡power¡£¡¡Inflamable¡¡bodies¡¡possess¡¡this¡¡power¡¡to¡¡a¡¡great¡¡degree¡£
The¡¡sines¡¡of¡¡the¡¡angle¡¡of¡¡incidence¡¡and¡¡refraction¡¡£¨that¡¡is£»¡¡the¡¡perpendicular¡¡drawn¡¡from¡¡the¡¡extremity¡¡of¡¡an¡¡arc¡¡to¡¡the¡¡diameter¡¡of¡¡a¡¡circle£»£©¡¡are¡¡always¡¡in¡¡the¡¡same¡¡ratio£»¡¡viz£º¡¡¡¡from¡¡air¡¡into¡¡water£»¡¡the¡¡sine¡¡of¡¡the¡¡angle¡¡of¡¡refraction¡¡is¡¡nearly¡¡as¡¡four¡¡to¡¡three£»¡¡whatever¡¡be¡¡the¡¡position¡¡of¡¡the¡¡ray¡¡with¡¡respect¡¡to¡¡the¡¡refracting¡¡surface¡£¡¡From¡¡air¡¡into¡¡sulphur£»¡¡the¡¡sine¡¡of¡¡the¡¡angle¡¡of¡¡refraction¡¡is¡¡as¡¡two¡¡to¡¡one¡¡therefore¡¡the¡¡rays¡¡of¡¡light¡¡cannot¡¡be¡¡refracted¡¡whenever¡¡the¡¡sine¡¡of¡¡the¡¡angle¡¡of¡¡refraction¡¡becomes¡¡equal¡¡to¡¡the¡¡radius*¡¡of¡¡a¡¡circle£»¡¡and¡¡light¡¡falling¡¡very¡¡obliquely¡¡upon¡¡a¡¡transparent¡¡medium¡¡ceases¡¡to¡¡be¡¡refracted£»¡¡this¡¡is¡¡termed¡¡total¡¡reflection¡£
*¡¡The¡¡RADIUS¡¡of¡¡a¡¡circle¡¡is¡¡a¡¡straight¡¡line¡¡passing¡¡from¡¡the¡¡centre¡¡to¡¡the¡¡circumference¡£
Since¡¡the¡¡brightness¡¡of¡¡a¡¡reflected¡¡image¡¡depends¡¡upon¡¡the¡¡quantity¡¡of¡¡light£»¡¡it¡¡is¡¡quite¡¡evident¡¡that¡¡those¡¡images¡¡which¡¡arise¡¡from¡¡total¡¡reflection¡¡are¡¡by¡¡far¡¡the¡¡most¡¡vivid£»¡¡as¡¡in¡¡ordinary¡¡cases¡¡of¡¡reflection¡¡a¡¡portion¡¡of¡¡light¡¡is¡¡absorbed¡£
I¡¡should¡¡be¡¡pleased¡¡to¡¡enter¡¡more¡¡fully¡¡into¡¡this¡¡branch¡¡of¡¡the¡¡science¡¡of¡¡optics£»¡¡but¡¡the¡¡bounds¡¡to¡¡which¡¡I¡¡am¡¡necessarily¡¡limited¡¡in¡¡a¡¡work¡¡of¡¡this¡¡kind¡¡will¡¡not¡¡admit¡¡of¡¡it¡£¡¡In¡¡the¡¡next¡¡chapter£»¡¡however£»¡¡I¡¡shall¡¡give¡¡a¡¡synopsis¡¡of¡¡Mr¡£¡¡Hunt's¡¡treatise¡¡on¡¡the¡¡¡¨Influence¡¡of¡¡the¡¡Solar¡¡Rays¡¡on¡¡Compound¡¡Bodies£»¡¡with¡¡especial¡¡reference¡¡to¡¡their¡¡Photographic¡¡application¡¨¡¡A¡¡work¡¡which¡¡should¡¡be¡¡in¡¡the¡¡hands¡¡of¡¡every¡¡Daguerreotypist£»¡¡and¡¡which¡¡I¡¡hope¡¡soon¡¡to¡¡see¡¡republished¡¡in¡¡this¡¡country¡£¡¡I¡¡will¡¡conclude¡¡this¡¡chapter¡¡with¡¡a¡¡brief¡¡statement¡¡of¡¡the¡¡principles¡¡upon¡¡which¡¡the¡¡Photographic¡¡art¡¡is¡¡founded¡£
SOLAR¡¡and¡¡Steller¡¡light¡¡contains¡¡three¡¡kinds¡¡of¡¡rays£»¡¡viz£º
1¡£¡¡¡¡Colorific£»¡¡or¡¡rays¡¡of¡¡color¡£
2¡£¡¡¡¡Calorific£»¡¡or¡¡rays¡¡of¡¡heat¡£
3¡£¡¡¡¡Chemical¡¡rays£»¡¡or¡¡those¡¡which¡¡produce¡¡chemical¡¡effects¡£
On¡¡the¡¡first¡¡and¡¡third¡¡the¡¡Photographic¡¡principle¡¡depends¡£¡¡In¡¡explaining¡¡this¡¡principle¡¡the¡¡accompanying¡¡wood¡¡cuts£»¡¡£¨figs¡£¡¡3¡¡and¡¡4£©¡¡will¡¡render¡¡it¡¡more¡¡intelligible¡£
If¡¡a¡¡pencil¡¡of¡¡the¡¡sun's¡¡rays¡¡fall¡¡upon¡¡a¡¡prism£»¡¡it¡¡is¡¡bent¡¡in¡¡passing¡¡through¡¡the¡¡transparent¡¡medium£»¡¡and¡¡some¡¡rays¡¡being¡¡more¡¡refracted¡¡than¡¡others£»¡¡we¡¡procure¡¡an¡¡elongated¡¡image¡¡of¡¡the¡¡luminous¡¡beam£»¡¡exhibiting¡¡three¡¡distinct¡¡colors£»¡¡red£»¡¡yellow¡¡and¡¡blue£»¡¡which¡¡are¡¡to¡¡be¡¡regarded¡¡as¡¡primitivesand¡¡from¡¡their¡¡interblending£»¡¡seven£»¡¡as¡¡recorded¡¡by¡¡Newton£»¡¡and¡¡shown¡¡in¡¡the¡¡accompanying¡¡wood¡¡cut¡£¡¡These¡¡rays¡¡being¡¡absorbed£»¡¡or¡¡reflected¡¡differently¡¡by¡¡various¡¡bodies£»¡¡give¡¡to¡¡nature¡¡the¡¡charm¡¡of¡¡color¡£¡¡¡¡Thus¡¡to¡¡the¡¡eve¡¡is¡¡given¡¡the¡¡pleasure¡¡we¡¡derive¡¡in¡¡looking¡¡upon¡¡the¡¡green¡¡fields¡¡and¡¡forests£»¡¡the¡¡enumerable¡¡varieties¡¡of¡¡flowers£»¡¡the¡¡glowing¡¡ruby£»¡¡jasper£»¡¡topaz£»¡¡amethist£»¡¡and¡¡emerald