posterior analytics-µÚ9½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
conclusion¡¡becomes¡¡its¡¡contradictory¡i¡£e¡£¡¡true¡£¡¡Similarly¡¡£¨ii£©¡¡if
the¡¡middle¡¡is¡¡taken¡¡from¡¡another¡¡series¡¡of¡¡predication£»¡¡e¡£g¡£¡¡suppose¡¡D
to¡¡be¡¡not¡¡only¡¡contained¡¡within¡¡A¡¡as¡¡a¡¡part¡¡within¡¡its¡¡whole¡¡but
also¡¡predicable¡¡of¡¡all¡¡B¡£¡¡Then¡¡the¡¡premiss¡¡D¡B¡¡must¡¡remain
unchanged£»¡¡but¡¡the¡¡quality¡¡of¡¡A¡D¡¡must¡¡be¡¡changed£»¡¡so¡¡that¡¡D¡B¡¡is
always¡¡true£»¡¡A¡D¡¡always¡¡false¡£¡¡Such¡¡error¡¡is¡¡practically¡¡identical
with¡¡that¡¡which¡¡is¡¡inferred¡¡through¡¡the¡¡'appropriate'¡¡middle¡£¡¡On¡¡the
other¡¡hand£»¡¡£¨b£©¡¡if¡¡the¡¡conclusion¡¡is¡¡not¡¡inferred¡¡through¡¡the
'appropriate'¡¡middle¡£¨i£©¡¡when¡¡the¡¡middle¡¡is¡¡subordinate¡¡to¡¡A¡¡but¡¡is
predicable¡¡of¡¡no¡¡B£»¡¡both¡¡premisses¡¡must¡¡be¡¡false£»¡¡because¡¡if¡¡there
is¡¡to¡¡be¡¡a¡¡conclusion¡¡both¡¡must¡¡be¡¡posited¡¡as¡¡asserting¡¡the¡¡contrary
of¡¡what¡¡is¡¡actually¡¡the¡¡fact£»¡¡and¡¡so¡¡posited¡¡both¡¡become¡¡false£º¡¡e¡£g¡£
suppose¡¡that¡¡actually¡¡all¡¡D¡¡is¡¡A¡¡but¡¡no¡¡B¡¡is¡¡D£»¡¡then¡¡if¡¡these
premisses¡¡are¡¡changed¡¡in¡¡quality£»¡¡a¡¡conclusion¡¡will¡¡follow¡¡and¡¡both¡¡of
the¡¡new¡¡premisses¡¡will¡¡be¡¡false¡£¡¡When£»¡¡however£»¡¡£¨ii£©¡¡the¡¡middle¡¡D¡¡is
not¡¡subordinate¡¡to¡¡A£»¡¡A¡D¡¡will¡¡be¡¡true£»¡¡D¡B¡¡false¡A¡D¡¡true¡¡because¡¡A
was¡¡not¡¡subordinate¡¡to¡¡D£»¡¡D¡B¡¡false¡¡because¡¡if¡¡it¡¡had¡¡been¡¡true£»¡¡the
conclusion¡¡too¡¡would¡¡have¡¡been¡¡true£»¡¡but¡¡it¡¡is¡¡ex¡¡hypothesi¡¡false¡£
¡¡¡¡When¡¡the¡¡erroneous¡¡inference¡¡is¡¡in¡¡the¡¡second¡¡figure£»¡¡both¡¡premisses
cannot¡¡be¡¡entirely¡¡false£»¡¡since¡¡if¡¡B¡¡is¡¡subordinate¡¡to¡¡A£»¡¡there¡¡can¡¡be
no¡¡middle¡¡predicable¡¡of¡¡all¡¡of¡¡one¡¡extreme¡¡and¡¡of¡¡none¡¡of¡¡the¡¡other£»
as¡¡was¡¡stated¡¡before¡£¡¡One¡¡premiss£»¡¡however£»¡¡may¡¡be¡¡false£»¡¡and¡¡it¡¡may
be¡¡either¡¡of¡¡them¡£¡¡Thus£»¡¡if¡¡C¡¡is¡¡actually¡¡an¡¡attribute¡¡of¡¡both¡¡A¡¡and
B£»¡¡but¡¡is¡¡assumed¡¡to¡¡be¡¡an¡¡attribute¡¡of¡¡A¡¡only¡¡and¡¡not¡¡of¡¡B£»¡¡C¡A
will¡¡be¡¡true£»¡¡C¡B¡¡false£º¡¡or¡¡again¡¡if¡¡C¡¡be¡¡assumed¡¡to¡¡be¡¡attributable
to¡¡B¡¡but¡¡to¡¡no¡¡A£»¡¡C¡B¡¡will¡¡be¡¡true£»¡¡C¡A¡¡false¡£
¡¡¡¡We¡¡have¡¡stated¡¡when¡¡and¡¡through¡¡what¡¡kinds¡¡of¡¡premisses¡¡error¡¡will
result¡¡in¡¡cases¡¡where¡¡the¡¡erroneous¡¡conclusion¡¡is¡¡negative¡£¡¡If¡¡the
conclusion¡¡is¡¡affirmative£»¡¡£¨a£©¡¡£¨i£©¡¡it¡¡may¡¡be¡¡inferred¡¡through¡¡the
'appropriate'¡¡middle¡¡term¡£¡¡In¡¡this¡¡case¡¡both¡¡premisses¡¡cannot¡¡be¡¡false
since£»¡¡as¡¡we¡¡said¡¡before£»¡¡C¡B¡¡must¡¡remain¡¡unchanged¡¡if¡¡there¡¡is¡¡to
be¡¡a¡¡conclusion£»¡¡and¡¡consequently¡¡A¡C£»¡¡the¡¡quality¡¡of¡¡which¡¡is
changed£»¡¡will¡¡always¡¡be¡¡false¡£¡¡This¡¡is¡¡equally¡¡true¡¡if¡¡£¨ii£©¡¡the¡¡middle
is¡¡taken¡¡from¡¡another¡¡series¡¡of¡¡predication£»¡¡as¡¡was¡¡stated¡¡to¡¡be¡¡the
case¡¡also¡¡with¡¡regard¡¡to¡¡negative¡¡error£»¡¡for¡¡D¡B¡¡must¡¡remain
unchanged£»¡¡while¡¡the¡¡quality¡¡of¡¡A¡D¡¡must¡¡be¡¡converted£»¡¡and¡¡the¡¡type¡¡of
error¡¡is¡¡the¡¡same¡¡as¡¡before¡£
¡¡¡¡£¨b£©¡¡The¡¡middle¡¡may¡¡be¡¡inappropriate¡£¡¡Then¡¡£¨i£©¡¡if¡¡D¡¡is¡¡subordinate¡¡to
A£»¡¡A¡D¡¡will¡¡be¡¡true£»¡¡but¡¡D¡B¡¡false£»¡¡since¡¡A¡¡may¡¡quite¡¡well¡¡be
predicable¡¡of¡¡several¡¡terms¡¡no¡¡one¡¡of¡¡which¡¡can¡¡be¡¡subordinated¡¡to
another¡£¡¡If£»¡¡however£»¡¡£¨ii£©¡¡D¡¡is¡¡not¡¡subordinate¡¡to¡¡A£»¡¡obviously¡¡A¡D£»
since¡¡it¡¡is¡¡affirmed£»¡¡will¡¡always¡¡be¡¡false£»¡¡while¡¡D¡B¡¡may¡¡be¡¡either
true¡¡or¡¡false£»¡¡for¡¡A¡¡may¡¡very¡¡well¡¡be¡¡an¡¡attribute¡¡of¡¡no¡¡D£»¡¡whereas
all¡¡B¡¡is¡¡D£»¡¡e¡£g¡£¡¡no¡¡science¡¡is¡¡animal£»¡¡all¡¡music¡¡is¡¡science¡£¡¡Equally
well¡¡A¡¡may¡¡be¡¡an¡¡attribute¡¡of¡¡no¡¡D£»¡¡and¡¡D¡¡of¡¡no¡¡B¡£¡¡It¡¡emerges£»¡¡then£»
that¡¡if¡¡the¡¡middle¡¡term¡¡is¡¡not¡¡subordinate¡¡to¡¡the¡¡major£»¡¡not¡¡only¡¡both
premisses¡¡but¡¡either¡¡singly¡¡may¡¡be¡¡false¡£
¡¡¡¡Thus¡¡we¡¡have¡¡made¡¡it¡¡clear¡¡how¡¡many¡¡varieties¡¡of¡¡erroneous¡¡inference
are¡¡liable¡¡to¡¡happen¡¡and¡¡through¡¡what¡¡kinds¡¡of¡¡premisses¡¡they¡¡occur£»
in¡¡the¡¡case¡¡both¡¡of¡¡immediate¡¡and¡¡of¡¡demonstrable¡¡truths¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡18
¡¡¡¡It¡¡is¡¡also¡¡clear¡¡that¡¡the¡¡loss¡¡of¡¡any¡¡one¡¡of¡¡the¡¡senses¡¡entails
the¡¡loss¡¡of¡¡a¡¡corresponding¡¡portion¡¡of¡¡knowledge£»¡¡and¡¡that£»¡¡since¡¡we
learn¡¡either¡¡by¡¡induction¡¡or¡¡by¡¡demonstration£»¡¡this¡¡knowledge¡¡cannot
be¡¡acquired¡£¡¡Thus¡¡demonstration¡¡develops¡¡from¡¡universals£»¡¡induction
from¡¡particulars£»¡¡but¡¡since¡¡it¡¡is¡¡possible¡¡to¡¡familiarize¡¡the¡¡pupil
with¡¡even¡¡the¡¡so¡called¡¡mathematical¡¡abstractions¡¡only¡¡through
induction¡i¡£e¡£¡¡only¡¡because¡¡each¡¡subject¡¡genus¡¡possesses£»¡¡in¡¡virtue¡¡of
a¡¡determinate¡¡mathematical¡¡character£»¡¡certain¡¡properties¡¡which¡¡can
be¡¡treated¡¡as¡¡separate¡¡even¡¡though¡¡they¡¡do¡¡not¡¡exist¡¡in¡¡isolation¡it
is¡¡consequently¡¡impossible¡¡to¡¡come¡¡to¡¡grasp¡¡universals¡¡except
through¡¡induction¡£¡¡But¡¡induction¡¡is¡¡impossible¡¡for¡¡those¡¡who¡¡have
not¡¡sense¡perception¡£¡¡For¡¡it¡¡is¡¡sense¡perception¡¡alone¡¡which¡¡is
adequate¡¡for¡¡grasping¡¡the¡¡particulars£º¡¡they¡¡cannot¡¡be¡¡objects¡¡of
scientific¡¡knowledge£»¡¡because¡¡neither¡¡can¡¡universals¡¡give¡¡us¡¡knowledge
of¡¡them¡¡without¡¡induction£»¡¡nor¡¡can¡¡we¡¡get¡¡it¡¡through¡¡induction¡¡without
sense¡perception¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡19
¡¡¡¡Every¡¡syllogism¡¡is¡¡effected¡¡by¡¡means¡¡of¡¡three¡¡terms¡£¡¡One¡¡kind¡¡of
syllogism¡¡serves¡¡to¡¡prove¡¡that¡¡A¡¡inheres¡¡in¡¡C¡¡by¡¡showing¡¡that¡¡A
inheres¡¡in¡¡B¡¡and¡¡B¡¡in¡¡C£»¡¡the¡¡other¡¡is¡¡negative¡¡and¡¡one¡¡of¡¡its
premisses¡¡asserts¡¡one¡¡term¡¡of¡¡another£»¡¡while¡¡the¡¡other¡¡denies¡¡one¡¡term
of¡¡another¡£¡¡It¡¡is¡¡clear£»¡¡then£»¡¡that¡¡these¡¡are¡¡the¡¡fundamentals¡¡and
so¡called¡¡hypotheses¡¡of¡¡syllogism¡£¡¡Assume¡¡them¡¡as¡¡they¡¡have¡¡been
stated£»¡¡and¡¡proof¡¡is¡¡bound¡¡to¡¡follow¡proof¡¡that¡¡A¡¡inheres¡¡in¡¡C¡¡through
B£»¡¡and¡¡again¡¡that¡¡A¡¡inheres¡¡in¡¡B¡¡through¡¡some¡¡other¡¡middle¡¡term£»¡¡and
similarly¡¡that¡¡B¡¡inheres¡¡in¡¡C¡£¡¡If¡¡our¡¡reasoning¡¡aims¡¡at¡¡gaining
credence¡¡and¡¡so¡¡is¡¡merely¡¡dialectical£»¡¡it¡¡is¡¡obvious¡¡that¡¡we¡¡have¡¡only
to¡¡see¡¡that¡¡our¡¡inference¡¡is¡¡based¡¡on¡¡premisses¡¡as¡¡credible¡¡as
possible£º¡¡so¡¡that¡¡if¡¡a¡¡middle¡¡term¡¡between¡¡A¡¡and¡¡B¡¡is¡¡credible
though¡¡not¡¡real£»¡¡one¡¡can¡¡reason¡¡through¡¡it¡¡and¡¡complete¡¡a
dialectical¡¡syllogism¡£¡¡If£»¡¡however£»¡¡one¡¡is¡¡aiming¡¡at¡¡truth£»¡¡one¡¡must
be¡¡guided¡¡by¡¡the¡¡real¡¡connexions¡¡of¡¡subjects¡¡and¡¡attributes¡£¡¡Thus£º
since¡¡there¡¡are¡¡attributes¡¡which¡¡are¡¡predicated¡¡of¡¡a¡¡subject
essentially¡¡or¡¡naturally¡¡and¡¡not¡¡coincidentally¡not£»¡¡that¡¡is£»¡¡in¡¡the
sense¡¡in¡¡which¡¡we¡¡say¡¡'That¡¡white¡¡£¨thing£©¡¡is¡¡a¡¡man'£»¡¡which¡¡is¡¡not
the¡¡same¡¡mode¡¡of¡¡predication¡¡as¡¡when¡¡we¡¡say¡¡'The¡¡man¡¡is¡¡white'£º¡¡the
man¡¡is¡¡white¡¡not¡¡because¡¡he¡¡is¡¡something¡¡else¡¡but¡¡because¡¡he¡¡is¡¡man£»
but¡¡the¡¡white¡¡is¡¡man¡¡because¡¡'being¡¡white'¡¡coincides¡¡with¡¡'humanity'
within¡¡one¡¡substratum¡therefore¡¡there¡¡are¡¡terms¡¡such¡¡as¡¡are
naturally¡¡subjects¡¡of¡¡predicates¡£¡¡Suppose£»¡¡then£»¡¡C¡¡such¡¡a¡¡term¡¡not
itself¡¡attributable¡¡to¡¡anything¡¡else¡¡as¡¡to¡¡a¡¡subject£»¡¡but¡¡the
proximate¡¡subject¡¡of¡¡the¡¡attribute¡¡Bi¡£e¡£¡¡so¡¡that¡¡B¡C¡¡is¡¡immediate£»
suppose¡¡further¡¡E¡¡related¡¡immediately¡¡to¡¡F£»¡¡and¡¡F¡¡to¡¡B¡£¡¡The¡¡first
question¡¡is£»¡¡must¡¡this¡¡series¡¡terminate£»¡¡or¡¡can¡¡it¡¡proceed¡¡to
infinity£¿¡¡The¡¡second¡¡question¡¡is¡¡as¡¡follows£º¡¡Suppose¡¡nothing¡¡is
essentially¡¡predicated¡¡of¡¡A£»¡¡but¡¡A¡¡is¡¡predicated¡¡primarily¡¡of¡¡H¡¡and¡¡of
no¡¡intermediate¡¡prior¡¡term£»¡¡and¡¡suppose¡¡H¡¡similarly¡¡related¡¡to¡¡G¡¡and¡¡G
to¡¡B£»¡¡then¡¡must¡¡this¡¡series¡¡also¡¡terminate£»¡¡or¡¡can¡¡it¡¡too¡¡proceed¡¡to
infinity£¿¡¡There¡¡is¡¡this¡¡much¡¡difference¡¡between¡¡the¡¡questions£º¡¡the
first¡¡is£»¡¡is¡¡it¡¡possible¡¡to¡¡start¡¡from¡¡that¡¡which¡¡is¡¡not¡¡itself
attributable¡¡to¡¡anything¡¡else¡¡but¡¡is¡¡the¡¡subject¡¡of¡¡attributes£»¡¡and
ascend¡¡to¡¡infinity£¿¡¡The¡¡second¡¡is¡¡the¡¡problem¡¡whether¡¡one¡¡can¡¡start
from¡¡that¡¡which¡¡is¡¡a¡¡predicate¡¡but¡¡not¡¡itself¡¡a¡¡subject¡¡of¡¡predicates£»
and¡¡descend¡¡to¡¡infinity£¿¡¡A¡¡third¡¡question¡¡is£»¡¡if¡¡the¡¡extreme¡¡terms¡¡are
fixed£»¡¡can¡¡there¡¡be¡¡an¡¡infinity¡¡of¡¡middles£¿¡¡I¡¡mean¡¡this£º¡¡suppose¡¡for
example¡¡that¡¡A¡¡inheres¡¡in¡¡C¡¡and¡¡B¡¡is¡¡intermediate¡¡between¡¡them£»¡¡but
between¡¡B¡¡and¡¡A¡¡there¡¡are¡¡other¡¡middles£»¡¡and¡¡between¡¡these¡¡again¡¡fresh
middles£»¡¡can¡¡these¡¡proceed¡¡to¡¡infinity¡¡or¡¡can¡¡they¡¡not£¿¡¡This¡¡is¡¡the
equivalent¡¡of¡¡inquiring£»¡¡do¡¡demonstrations¡¡proceed¡¡to¡¡infinity£»¡¡i¡£e¡£
is¡¡everything¡¡demonstrable£¿¡¡Or¡¡do¡¡ultimate¡¡subject¡¡and¡¡primary
attribute¡¡limit¡¡one¡¡another£¿
¡¡¡¡I¡¡hold¡¡that¡¡the¡¡same¡¡questions¡¡arise¡¡with¡¡regard¡¡to¡¡negative
conclusions¡¡and¡¡premisses£º¡¡viz¡£¡¡if¡¡A¡¡is¡¡attributable¡¡to¡¡no¡¡B£»¡¡then
either¡¡this¡¡predication¡¡will¡¡be¡¡primary£»¡¡or¡¡there¡¡will¡¡be¡¡an
intermediate¡¡term¡¡prior¡¡to¡¡B¡¡to¡¡which¡¡a¡¡is¡¡not¡¡attributable¡G£»¡¡let
us¡¡say£»¡¡which¡¡is¡¡attributable¡¡to¡¡all¡¡B¡and¡¡there¡¡may¡¡still¡¡be
another¡¡term¡¡H¡¡prior¡¡to¡¡G£»¡¡which¡¡is¡¡attributable¡¡to¡¡all¡¡G¡£¡¡The¡¡same
questions¡¡arise£»¡¡I¡¡say£»¡¡because¡¡in¡¡these¡¡cases¡¡too¡¡either¡¡the¡¡series
of¡¡prior¡¡terms¡¡to¡¡which¡¡a¡¡is¡¡not¡¡attributable¡¡is¡¡infinite¡¡or¡¡it
terminates¡£
¡¡¡¡One¡¡cannot¡¡ask¡¡the¡¡same¡¡questions¡¡in¡¡the¡¡case¡¡of¡¡reciprocating
terms£»¡¡since¡¡when¡¡subject¡¡and¡¡predicate¡¡are¡¡convertible¡¡there¡¡is
neither¡¡primary¡¡nor¡¡ultimate¡¡subject£»¡¡seeing¡¡that¡¡all¡¡the
reciprocals¡¡qua¡¡subjects¡¡stand¡¡in¡¡the¡¡same¡¡relation¡¡to¡¡one¡¡another£»
whether¡¡we¡¡say¡¡that¡¡the¡¡subject¡¡has¡¡an¡¡infinity¡¡of¡¡attributes¡¡or
that¡¡both¡¡subjects¡¡and¡¡attributes¡and¡¡we¡¡raised¡¡the¡¡question¡¡in¡¡both
cases¡are¡¡infinite¡¡in¡¡number¡£¡¡These¡¡questions¡¡then¡¡cannot¡¡be
asked¡unless£»¡¡indeed£»¡¡the¡¡terms¡¡can¡¡reciprocate¡¡by¡¡two¡¡different
modes£»¡¡by¡¡accidental¡¡predication¡¡i