Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ9½Ú

posterior analytics-µÚ9½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






conclusion¡¡becomes¡¡its¡¡contradictory¡­i¡£e¡£¡¡true¡£¡¡Similarly¡¡£¨ii£©¡¡if



the¡¡middle¡¡is¡¡taken¡¡from¡¡another¡¡series¡¡of¡¡predication£»¡¡e¡£g¡£¡¡suppose¡¡D



to¡¡be¡¡not¡¡only¡¡contained¡¡within¡¡A¡¡as¡¡a¡¡part¡¡within¡¡its¡¡whole¡¡but



also¡¡predicable¡¡of¡¡all¡¡B¡£¡¡Then¡¡the¡¡premiss¡¡D¡­B¡¡must¡¡remain



unchanged£»¡¡but¡¡the¡¡quality¡¡of¡¡A¡­D¡¡must¡¡be¡¡changed£»¡¡so¡¡that¡¡D¡­B¡¡is



always¡¡true£»¡¡A¡­D¡¡always¡¡false¡£¡¡Such¡¡error¡¡is¡¡practically¡¡identical



with¡¡that¡¡which¡¡is¡¡inferred¡¡through¡¡the¡¡'appropriate'¡¡middle¡£¡¡On¡¡the



other¡¡hand£»¡¡£¨b£©¡¡if¡¡the¡¡conclusion¡¡is¡¡not¡¡inferred¡¡through¡¡the



'appropriate'¡¡middle¡­£¨i£©¡¡when¡¡the¡¡middle¡¡is¡¡subordinate¡¡to¡¡A¡¡but¡¡is



predicable¡¡of¡¡no¡¡B£»¡¡both¡¡premisses¡¡must¡¡be¡¡false£»¡¡because¡¡if¡¡there



is¡¡to¡¡be¡¡a¡¡conclusion¡¡both¡¡must¡¡be¡¡posited¡¡as¡¡asserting¡¡the¡¡contrary



of¡¡what¡¡is¡¡actually¡¡the¡¡fact£»¡¡and¡¡so¡¡posited¡¡both¡¡become¡¡false£º¡¡e¡£g¡£



suppose¡¡that¡¡actually¡¡all¡¡D¡¡is¡¡A¡¡but¡¡no¡¡B¡¡is¡¡D£»¡¡then¡¡if¡¡these



premisses¡¡are¡¡changed¡¡in¡¡quality£»¡¡a¡¡conclusion¡¡will¡¡follow¡¡and¡¡both¡¡of



the¡¡new¡¡premisses¡¡will¡¡be¡¡false¡£¡¡When£»¡¡however£»¡¡£¨ii£©¡¡the¡¡middle¡¡D¡¡is



not¡¡subordinate¡¡to¡¡A£»¡¡A¡­D¡¡will¡¡be¡¡true£»¡¡D¡­B¡¡false¡­A¡­D¡¡true¡¡because¡¡A



was¡¡not¡¡subordinate¡¡to¡¡D£»¡¡D¡­B¡¡false¡¡because¡¡if¡¡it¡¡had¡¡been¡¡true£»¡¡the



conclusion¡¡too¡¡would¡¡have¡¡been¡¡true£»¡¡but¡¡it¡¡is¡¡ex¡¡hypothesi¡¡false¡£



¡¡¡¡When¡¡the¡¡erroneous¡¡inference¡¡is¡¡in¡¡the¡¡second¡¡figure£»¡¡both¡¡premisses



cannot¡¡be¡¡entirely¡¡false£»¡¡since¡¡if¡¡B¡¡is¡¡subordinate¡¡to¡¡A£»¡¡there¡¡can¡¡be



no¡¡middle¡¡predicable¡¡of¡¡all¡¡of¡¡one¡¡extreme¡¡and¡¡of¡¡none¡¡of¡¡the¡¡other£»



as¡¡was¡¡stated¡¡before¡£¡¡One¡¡premiss£»¡¡however£»¡¡may¡¡be¡¡false£»¡¡and¡¡it¡¡may



be¡¡either¡¡of¡¡them¡£¡¡Thus£»¡¡if¡¡C¡¡is¡¡actually¡¡an¡¡attribute¡¡of¡¡both¡¡A¡¡and



B£»¡¡but¡¡is¡¡assumed¡¡to¡¡be¡¡an¡¡attribute¡¡of¡¡A¡¡only¡¡and¡¡not¡¡of¡¡B£»¡¡C¡­A



will¡¡be¡¡true£»¡¡C¡­B¡¡false£º¡¡or¡¡again¡¡if¡¡C¡¡be¡¡assumed¡¡to¡¡be¡¡attributable



to¡¡B¡¡but¡¡to¡¡no¡¡A£»¡¡C¡­B¡¡will¡¡be¡¡true£»¡¡C¡­A¡¡false¡£



¡¡¡¡We¡¡have¡¡stated¡¡when¡¡and¡¡through¡¡what¡¡kinds¡¡of¡¡premisses¡¡error¡¡will



result¡¡in¡¡cases¡¡where¡¡the¡¡erroneous¡¡conclusion¡¡is¡¡negative¡£¡¡If¡¡the



conclusion¡¡is¡¡affirmative£»¡¡£¨a£©¡¡£¨i£©¡¡it¡¡may¡¡be¡¡inferred¡¡through¡¡the



'appropriate'¡¡middle¡¡term¡£¡¡In¡¡this¡¡case¡¡both¡¡premisses¡¡cannot¡¡be¡¡false



since£»¡¡as¡¡we¡¡said¡¡before£»¡¡C¡­B¡¡must¡¡remain¡¡unchanged¡¡if¡¡there¡¡is¡¡to



be¡¡a¡¡conclusion£»¡¡and¡¡consequently¡¡A¡­C£»¡¡the¡¡quality¡¡of¡¡which¡¡is



changed£»¡¡will¡¡always¡¡be¡¡false¡£¡¡This¡¡is¡¡equally¡¡true¡¡if¡¡£¨ii£©¡¡the¡¡middle



is¡¡taken¡¡from¡¡another¡¡series¡¡of¡¡predication£»¡¡as¡¡was¡¡stated¡¡to¡¡be¡¡the



case¡¡also¡¡with¡¡regard¡¡to¡¡negative¡¡error£»¡¡for¡¡D¡­B¡¡must¡¡remain



unchanged£»¡¡while¡¡the¡¡quality¡¡of¡¡A¡­D¡¡must¡¡be¡¡converted£»¡¡and¡¡the¡¡type¡¡of



error¡¡is¡¡the¡¡same¡¡as¡¡before¡£



¡¡¡¡£¨b£©¡¡The¡¡middle¡¡may¡¡be¡¡inappropriate¡£¡¡Then¡¡£¨i£©¡¡if¡¡D¡¡is¡¡subordinate¡¡to



A£»¡¡A¡­D¡¡will¡¡be¡¡true£»¡¡but¡¡D¡­B¡¡false£»¡¡since¡¡A¡¡may¡¡quite¡¡well¡¡be



predicable¡¡of¡¡several¡¡terms¡¡no¡¡one¡¡of¡¡which¡¡can¡¡be¡¡subordinated¡¡to



another¡£¡¡If£»¡¡however£»¡¡£¨ii£©¡¡D¡¡is¡¡not¡¡subordinate¡¡to¡¡A£»¡¡obviously¡¡A¡­D£»



since¡¡it¡¡is¡¡affirmed£»¡¡will¡¡always¡¡be¡¡false£»¡¡while¡¡D¡­B¡¡may¡¡be¡¡either



true¡¡or¡¡false£»¡¡for¡¡A¡¡may¡¡very¡¡well¡¡be¡¡an¡¡attribute¡¡of¡¡no¡¡D£»¡¡whereas



all¡¡B¡¡is¡¡D£»¡¡e¡£g¡£¡¡no¡¡science¡¡is¡¡animal£»¡¡all¡¡music¡¡is¡¡science¡£¡¡Equally



well¡¡A¡¡may¡¡be¡¡an¡¡attribute¡¡of¡¡no¡¡D£»¡¡and¡¡D¡¡of¡¡no¡¡B¡£¡¡It¡¡emerges£»¡¡then£»



that¡¡if¡¡the¡¡middle¡¡term¡¡is¡¡not¡¡subordinate¡¡to¡¡the¡¡major£»¡¡not¡¡only¡¡both



premisses¡¡but¡¡either¡¡singly¡¡may¡¡be¡¡false¡£



¡¡¡¡Thus¡¡we¡¡have¡¡made¡¡it¡¡clear¡¡how¡¡many¡¡varieties¡¡of¡¡erroneous¡¡inference



are¡¡liable¡¡to¡¡happen¡¡and¡¡through¡¡what¡¡kinds¡¡of¡¡premisses¡¡they¡¡occur£»



in¡¡the¡¡case¡¡both¡¡of¡¡immediate¡¡and¡¡of¡¡demonstrable¡¡truths¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡18







¡¡¡¡It¡¡is¡¡also¡¡clear¡¡that¡¡the¡¡loss¡¡of¡¡any¡¡one¡¡of¡¡the¡¡senses¡¡entails



the¡¡loss¡¡of¡¡a¡¡corresponding¡¡portion¡¡of¡¡knowledge£»¡¡and¡¡that£»¡¡since¡¡we



learn¡¡either¡¡by¡¡induction¡¡or¡¡by¡¡demonstration£»¡¡this¡¡knowledge¡¡cannot



be¡¡acquired¡£¡¡Thus¡¡demonstration¡¡develops¡¡from¡¡universals£»¡¡induction



from¡¡particulars£»¡¡but¡¡since¡¡it¡¡is¡¡possible¡¡to¡¡familiarize¡¡the¡¡pupil



with¡¡even¡¡the¡¡so¡­called¡¡mathematical¡¡abstractions¡¡only¡¡through



induction¡­i¡£e¡£¡¡only¡¡because¡¡each¡¡subject¡¡genus¡¡possesses£»¡¡in¡¡virtue¡¡of



a¡¡determinate¡¡mathematical¡¡character£»¡¡certain¡¡properties¡¡which¡¡can



be¡¡treated¡¡as¡¡separate¡¡even¡¡though¡¡they¡¡do¡¡not¡¡exist¡¡in¡¡isolation¡­it



is¡¡consequently¡¡impossible¡¡to¡¡come¡¡to¡¡grasp¡¡universals¡¡except



through¡¡induction¡£¡¡But¡¡induction¡¡is¡¡impossible¡¡for¡¡those¡¡who¡¡have



not¡¡sense¡­perception¡£¡¡For¡¡it¡¡is¡¡sense¡­perception¡¡alone¡¡which¡¡is



adequate¡¡for¡¡grasping¡¡the¡¡particulars£º¡¡they¡¡cannot¡¡be¡¡objects¡¡of



scientific¡¡knowledge£»¡¡because¡¡neither¡¡can¡¡universals¡¡give¡¡us¡¡knowledge



of¡¡them¡¡without¡¡induction£»¡¡nor¡¡can¡¡we¡¡get¡¡it¡¡through¡¡induction¡¡without



sense¡­perception¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡19







¡¡¡¡Every¡¡syllogism¡¡is¡¡effected¡¡by¡¡means¡¡of¡¡three¡¡terms¡£¡¡One¡¡kind¡¡of



syllogism¡¡serves¡¡to¡¡prove¡¡that¡¡A¡¡inheres¡¡in¡¡C¡¡by¡¡showing¡¡that¡¡A



inheres¡¡in¡¡B¡¡and¡¡B¡¡in¡¡C£»¡¡the¡¡other¡¡is¡¡negative¡¡and¡¡one¡¡of¡¡its



premisses¡¡asserts¡¡one¡¡term¡¡of¡¡another£»¡¡while¡¡the¡¡other¡¡denies¡¡one¡¡term



of¡¡another¡£¡¡It¡¡is¡¡clear£»¡¡then£»¡¡that¡¡these¡¡are¡¡the¡¡fundamentals¡¡and



so¡­called¡¡hypotheses¡¡of¡¡syllogism¡£¡¡Assume¡¡them¡¡as¡¡they¡¡have¡¡been



stated£»¡¡and¡¡proof¡¡is¡¡bound¡¡to¡¡follow¡­proof¡¡that¡¡A¡¡inheres¡¡in¡¡C¡¡through



B£»¡¡and¡¡again¡¡that¡¡A¡¡inheres¡¡in¡¡B¡¡through¡¡some¡¡other¡¡middle¡¡term£»¡¡and



similarly¡¡that¡¡B¡¡inheres¡¡in¡¡C¡£¡¡If¡¡our¡¡reasoning¡¡aims¡¡at¡¡gaining



credence¡¡and¡¡so¡¡is¡¡merely¡¡dialectical£»¡¡it¡¡is¡¡obvious¡¡that¡¡we¡¡have¡¡only



to¡¡see¡¡that¡¡our¡¡inference¡¡is¡¡based¡¡on¡¡premisses¡¡as¡¡credible¡¡as



possible£º¡¡so¡¡that¡¡if¡¡a¡¡middle¡¡term¡¡between¡¡A¡¡and¡¡B¡¡is¡¡credible



though¡¡not¡¡real£»¡¡one¡¡can¡¡reason¡¡through¡¡it¡¡and¡¡complete¡¡a



dialectical¡¡syllogism¡£¡¡If£»¡¡however£»¡¡one¡¡is¡¡aiming¡¡at¡¡truth£»¡¡one¡¡must



be¡¡guided¡¡by¡¡the¡¡real¡¡connexions¡¡of¡¡subjects¡¡and¡¡attributes¡£¡¡Thus£º



since¡¡there¡¡are¡¡attributes¡¡which¡¡are¡¡predicated¡¡of¡¡a¡¡subject



essentially¡¡or¡¡naturally¡¡and¡¡not¡¡coincidentally¡­not£»¡¡that¡¡is£»¡¡in¡¡the



sense¡¡in¡¡which¡¡we¡¡say¡¡'That¡¡white¡¡£¨thing£©¡¡is¡¡a¡¡man'£»¡¡which¡¡is¡¡not



the¡¡same¡¡mode¡¡of¡¡predication¡¡as¡¡when¡¡we¡¡say¡¡'The¡¡man¡¡is¡¡white'£º¡¡the



man¡¡is¡¡white¡¡not¡¡because¡¡he¡¡is¡¡something¡¡else¡¡but¡¡because¡¡he¡¡is¡¡man£»



but¡¡the¡¡white¡¡is¡¡man¡¡because¡¡'being¡¡white'¡¡coincides¡¡with¡¡'humanity'



within¡¡one¡¡substratum¡­therefore¡¡there¡¡are¡¡terms¡¡such¡¡as¡¡are



naturally¡¡subjects¡¡of¡¡predicates¡£¡¡Suppose£»¡¡then£»¡¡C¡¡such¡¡a¡¡term¡¡not



itself¡¡attributable¡¡to¡¡anything¡¡else¡¡as¡¡to¡¡a¡¡subject£»¡¡but¡¡the



proximate¡¡subject¡¡of¡¡the¡¡attribute¡¡Bi¡£e¡£¡¡so¡¡that¡¡B¡­C¡¡is¡¡immediate£»



suppose¡¡further¡¡E¡¡related¡¡immediately¡¡to¡¡F£»¡¡and¡¡F¡¡to¡¡B¡£¡¡The¡¡first



question¡¡is£»¡¡must¡¡this¡¡series¡¡terminate£»¡¡or¡¡can¡¡it¡¡proceed¡¡to



infinity£¿¡¡The¡¡second¡¡question¡¡is¡¡as¡¡follows£º¡¡Suppose¡¡nothing¡¡is



essentially¡¡predicated¡¡of¡¡A£»¡¡but¡¡A¡¡is¡¡predicated¡¡primarily¡¡of¡¡H¡¡and¡¡of



no¡¡intermediate¡¡prior¡¡term£»¡¡and¡¡suppose¡¡H¡¡similarly¡¡related¡¡to¡¡G¡¡and¡¡G



to¡¡B£»¡¡then¡¡must¡¡this¡¡series¡¡also¡¡terminate£»¡¡or¡¡can¡¡it¡¡too¡¡proceed¡¡to



infinity£¿¡¡There¡¡is¡¡this¡¡much¡¡difference¡¡between¡¡the¡¡questions£º¡¡the



first¡¡is£»¡¡is¡¡it¡¡possible¡¡to¡¡start¡¡from¡¡that¡¡which¡¡is¡¡not¡¡itself



attributable¡¡to¡¡anything¡¡else¡¡but¡¡is¡¡the¡¡subject¡¡of¡¡attributes£»¡¡and



ascend¡¡to¡¡infinity£¿¡¡The¡¡second¡¡is¡¡the¡¡problem¡¡whether¡¡one¡¡can¡¡start



from¡¡that¡¡which¡¡is¡¡a¡¡predicate¡¡but¡¡not¡¡itself¡¡a¡¡subject¡¡of¡¡predicates£»



and¡¡descend¡¡to¡¡infinity£¿¡¡A¡¡third¡¡question¡¡is£»¡¡if¡¡the¡¡extreme¡¡terms¡¡are



fixed£»¡¡can¡¡there¡¡be¡¡an¡¡infinity¡¡of¡¡middles£¿¡¡I¡¡mean¡¡this£º¡¡suppose¡¡for



example¡¡that¡¡A¡¡inheres¡¡in¡¡C¡¡and¡¡B¡¡is¡¡intermediate¡¡between¡¡them£»¡¡but



between¡¡B¡¡and¡¡A¡¡there¡¡are¡¡other¡¡middles£»¡¡and¡¡between¡¡these¡¡again¡¡fresh



middles£»¡¡can¡¡these¡¡proceed¡¡to¡¡infinity¡¡or¡¡can¡¡they¡¡not£¿¡¡This¡¡is¡¡the



equivalent¡¡of¡¡inquiring£»¡¡do¡¡demonstrations¡¡proceed¡¡to¡¡infinity£»¡¡i¡£e¡£



is¡¡everything¡¡demonstrable£¿¡¡Or¡¡do¡¡ultimate¡¡subject¡¡and¡¡primary



attribute¡¡limit¡¡one¡¡another£¿



¡¡¡¡I¡¡hold¡¡that¡¡the¡¡same¡¡questions¡¡arise¡¡with¡¡regard¡¡to¡¡negative



conclusions¡¡and¡¡premisses£º¡¡viz¡£¡¡if¡¡A¡¡is¡¡attributable¡¡to¡¡no¡¡B£»¡¡then



either¡¡this¡¡predication¡¡will¡¡be¡¡primary£»¡¡or¡¡there¡¡will¡¡be¡¡an



intermediate¡¡term¡¡prior¡¡to¡¡B¡¡to¡¡which¡¡a¡¡is¡¡not¡¡attributable¡­G£»¡¡let



us¡¡say£»¡¡which¡¡is¡¡attributable¡¡to¡¡all¡¡B¡­and¡¡there¡¡may¡¡still¡¡be



another¡¡term¡¡H¡¡prior¡¡to¡¡G£»¡¡which¡¡is¡¡attributable¡¡to¡¡all¡¡G¡£¡¡The¡¡same



questions¡¡arise£»¡¡I¡¡say£»¡¡because¡¡in¡¡these¡¡cases¡¡too¡¡either¡¡the¡¡series



of¡¡prior¡¡terms¡¡to¡¡which¡¡a¡¡is¡¡not¡¡attributable¡¡is¡¡infinite¡¡or¡¡it



terminates¡£



¡¡¡¡One¡¡cannot¡¡ask¡¡the¡¡same¡¡questions¡¡in¡¡the¡¡case¡¡of¡¡reciprocating



terms£»¡¡since¡¡when¡¡subject¡¡and¡¡predicate¡¡are¡¡convertible¡¡there¡¡is





neither¡¡primary¡¡nor¡¡ultimate¡¡subject£»¡¡seeing¡¡that¡¡all¡¡the



reciprocals¡¡qua¡¡subjects¡¡stand¡¡in¡¡the¡¡same¡¡relation¡¡to¡¡one¡¡another£»



whether¡¡we¡¡say¡¡that¡¡the¡¡subject¡¡has¡¡an¡¡infinity¡¡of¡¡attributes¡¡or



that¡¡both¡¡subjects¡¡and¡¡attributes¡­and¡¡we¡¡raised¡¡the¡¡question¡¡in¡¡both



cases¡­are¡¡infinite¡¡in¡¡number¡£¡¡These¡¡questions¡¡then¡¡cannot¡¡be



asked¡­unless£»¡¡indeed£»¡¡the¡¡terms¡¡can¡¡reciprocate¡¡by¡¡two¡¡different



modes£»¡¡by¡¡accidental¡¡predication¡¡i

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ