posterior analytics-µÚ7½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
arguments¡¡formally¡¡illogical¡¡do¡¡sometimes¡¡occur¡¡through¡¡taking¡¡as
middles¡¡mere¡¡attributes¡¡of¡¡the¡¡major¡¡and¡¡minor¡¡terms¡£¡¡An¡¡instance¡¡of
this¡¡is¡¡Caeneus'¡¡proof¡¡that¡¡fire¡¡increases¡¡in¡¡geometrical
proportion£º¡¡'Fire'£»¡¡he¡¡argues£»¡¡'increases¡¡rapidly£»¡¡and¡¡so¡¡does
geometrical¡¡proportion'¡£¡¡There¡¡is¡¡no¡¡syllogism¡¡so£»¡¡but¡¡there¡¡is¡¡a
syllogism¡¡if¡¡the¡¡most¡¡rapidly¡¡increasing¡¡proportion¡¡is¡¡geometrical¡¡and
the¡¡most¡¡rapidly¡¡increasing¡¡proportion¡¡is¡¡attributable¡¡to¡¡fire¡¡in
its¡¡motion¡£¡¡Sometimes£»¡¡no¡¡doubt£»¡¡it¡¡is¡¡impossible¡¡to¡¡reason¡¡from
premisses¡¡predicating¡¡mere¡¡attributes£º¡¡but¡¡sometimes¡¡it¡¡is¡¡possible£»
though¡¡the¡¡possibility¡¡is¡¡overlooked¡£¡¡If¡¡false¡¡premisses¡¡could¡¡never
give¡¡true¡¡conclusions¡¡'resolution'¡¡would¡¡be¡¡easy£»¡¡for¡¡premisses¡¡and
conclusion¡¡would¡¡in¡¡that¡¡case¡¡inevitably¡¡reciprocate¡£¡¡I¡¡might¡¡then
argue¡¡thus£º¡¡let¡¡A¡¡be¡¡an¡¡existing¡¡fact£»¡¡let¡¡the¡¡existence¡¡of¡¡A¡¡imply
such¡¡and¡¡such¡¡facts¡¡actually¡¡known¡¡to¡¡me¡¡to¡¡exist£»¡¡which¡¡we¡¡may¡¡call
B¡£¡¡I¡¡can¡¡now£»¡¡since¡¡they¡¡reciprocate£»¡¡infer¡¡A¡¡from¡¡B¡£
¡¡¡¡Reciprocation¡¡of¡¡premisses¡¡and¡¡conclusion¡¡is¡¡more¡¡frequent¡¡in
mathematics£»¡¡because¡¡mathematics¡¡takes¡¡definitions£»¡¡but¡¡never¡¡an
accident£»¡¡for¡¡its¡¡premisses¡a¡¡second¡¡characteristic¡¡distinguishing
mathematical¡¡reasoning¡¡from¡¡dialectical¡¡disputations¡£
¡¡¡¡A¡¡science¡¡expands¡¡not¡¡by¡¡the¡¡interposition¡¡of¡¡fresh¡¡middle¡¡terms£»
but¡¡by¡¡the¡¡apposition¡¡of¡¡fresh¡¡extreme¡¡terms¡£¡¡E¡£g¡£¡¡A¡¡is¡¡predicated
of¡¡B£»¡¡B¡¡of¡¡C£»¡¡C¡¡of¡¡D£»¡¡and¡¡so¡¡indefinitely¡£¡¡Or¡¡the¡¡expansion¡¡may¡¡be
lateral£º¡¡e¡£g¡£¡¡one¡¡major¡¡A£»¡¡may¡¡be¡¡proved¡¡of¡¡two¡¡minors£»¡¡C¡¡and¡¡E¡£
Thus¡¡let¡¡A¡¡represent¡¡number¡a¡¡number¡¡or¡¡number¡¡taken
indeterminately£»¡¡B¡¡determinate¡¡odd¡¡number£»¡¡C¡¡any¡¡particular¡¡odd
number¡£¡¡We¡¡can¡¡then¡¡predicate¡¡A¡¡of¡¡C¡£¡¡Next¡¡let¡¡D¡¡represent¡¡determinate
even¡¡number£»¡¡and¡¡E¡¡even¡¡number¡£¡¡Then¡¡A¡¡is¡¡predicable¡¡of¡¡E¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡13
¡¡¡¡Knowledge¡¡of¡¡the¡¡fact¡¡differs¡¡from¡¡knowledge¡¡of¡¡the¡¡reasoned¡¡fact¡£
To¡¡begin¡¡with£»¡¡they¡¡differ¡¡within¡¡the¡¡same¡¡science¡¡and¡¡in¡¡two¡¡ways£º
£¨1£©¡¡when¡¡the¡¡premisses¡¡of¡¡the¡¡syllogism¡¡are¡¡not¡¡immediate¡¡£¨for¡¡then
the¡¡proximate¡¡cause¡¡is¡¡not¡¡contained¡¡in¡¡them¡a¡¡necessary¡¡condition
of¡¡knowledge¡¡of¡¡the¡¡reasoned¡¡fact£©£º¡¡£¨2£©¡¡when¡¡the¡¡premisses¡¡are
immediate£»¡¡but¡¡instead¡¡of¡¡the¡¡cause¡¡the¡¡better¡¡known¡¡of¡¡the¡¡two
reciprocals¡¡is¡¡taken¡¡as¡¡the¡¡middle£»¡¡for¡¡of¡¡two¡¡reciprocally¡¡predicable
terms¡¡the¡¡one¡¡which¡¡is¡¡not¡¡the¡¡cause¡¡may¡¡quite¡¡easily¡¡be¡¡the¡¡better
known¡¡and¡¡so¡¡become¡¡the¡¡middle¡¡term¡¡of¡¡the¡¡demonstration¡£¡¡Thus¡¡£¨2£©¡¡£¨a£©
you¡¡might¡¡prove¡¡as¡¡follows¡¡that¡¡the¡¡planets¡¡are¡¡near¡¡because¡¡they¡¡do
not¡¡twinkle£º¡¡let¡¡C¡¡be¡¡the¡¡planets£»¡¡B¡¡not¡¡twinkling£»¡¡A¡¡proximity¡£
Then¡¡B¡¡is¡¡predicable¡¡of¡¡C£»¡¡for¡¡the¡¡planets¡¡do¡¡not¡¡twinkle¡£¡¡But¡¡A¡¡is
also¡¡predicable¡¡of¡¡B£»¡¡since¡¡that¡¡which¡¡does¡¡not¡¡twinkle¡¡is¡¡nearwe
must¡¡take¡¡this¡¡truth¡¡as¡¡having¡¡been¡¡reached¡¡by¡¡induction¡¡or
sense¡perception¡£¡¡Therefore¡¡A¡¡is¡¡a¡¡necessary¡¡predicate¡¡of¡¡C£»¡¡so¡¡that
we¡¡have¡¡demonstrated¡¡that¡¡the¡¡planets¡¡are¡¡near¡£¡¡This¡¡syllogism£»
then£»¡¡proves¡¡not¡¡the¡¡reasoned¡¡fact¡¡but¡¡only¡¡the¡¡fact£»¡¡since¡¡they¡¡are
not¡¡near¡¡because¡¡they¡¡do¡¡not¡¡twinkle£»¡¡but£»¡¡because¡¡they¡¡are¡¡near£»¡¡do
not¡¡twinkle¡£¡¡The¡¡major¡¡and¡¡middle¡¡of¡¡the¡¡proof£»¡¡however£»¡¡may¡¡be
reversed£»¡¡and¡¡then¡¡the¡¡demonstration¡¡will¡¡be¡¡of¡¡the¡¡reasoned¡¡fact¡£
Thus£º¡¡let¡¡C¡¡be¡¡the¡¡planets£»¡¡B¡¡proximity£»¡¡A¡¡not¡¡twinkling¡£¡¡Then¡¡B¡¡is¡¡an
attribute¡¡of¡¡C£»¡¡and¡¡A¡not¡¡twinkling¡of¡¡B¡£¡¡Consequently¡¡A¡¡is¡¡predicable
of¡¡C£»¡¡and¡¡the¡¡syllogism¡¡proves¡¡the¡¡reasoned¡¡fact£»¡¡since¡¡its¡¡middle
term¡¡is¡¡the¡¡proximate¡¡cause¡£¡¡Another¡¡example¡¡is¡¡the¡¡inference¡¡that¡¡the
moon¡¡is¡¡spherical¡¡from¡¡its¡¡manner¡¡of¡¡waxing¡£¡¡Thus£º¡¡since¡¡that¡¡which¡¡so
waxes¡¡is¡¡spherical£»¡¡and¡¡since¡¡the¡¡moon¡¡so¡¡waxes£»¡¡clearly¡¡the¡¡moon¡¡is
spherical¡£¡¡Put¡¡in¡¡this¡¡form£»¡¡the¡¡syllogism¡¡turns¡¡out¡¡to¡¡be¡¡proof¡¡of
the¡¡fact£»¡¡but¡¡if¡¡the¡¡middle¡¡and¡¡major¡¡be¡¡reversed¡¡it¡¡is¡¡proof¡¡of¡¡the
reasoned¡¡fact£»¡¡since¡¡the¡¡moon¡¡is¡¡not¡¡spherical¡¡because¡¡it¡¡waxes¡¡in¡¡a
certain¡¡manner£»¡¡but¡¡waxes¡¡in¡¡such¡¡a¡¡manner¡¡because¡¡it¡¡is¡¡spherical¡£
£¨Let¡¡C¡¡be¡¡the¡¡moon£»¡¡B¡¡spherical£»¡¡and¡¡A¡¡waxing¡££©¡¡Again¡¡£¨b£©£»¡¡in¡¡cases
where¡¡the¡¡cause¡¡and¡¡the¡¡effect¡¡are¡¡not¡¡reciprocal¡¡and¡¡the¡¡effect¡¡is
the¡¡better¡¡known£»¡¡the¡¡fact¡¡is¡¡demonstrated¡¡but¡¡not¡¡the¡¡reasoned
fact¡£¡¡This¡¡also¡¡occurs¡¡£¨1£©¡¡when¡¡the¡¡middle¡¡falls¡¡outside¡¡the¡¡major¡¡and
minor£»¡¡for¡¡here¡¡too¡¡the¡¡strict¡¡cause¡¡is¡¡not¡¡given£»¡¡and¡¡so¡¡the
demonstration¡¡is¡¡of¡¡the¡¡fact£»¡¡not¡¡of¡¡the¡¡reasoned¡¡fact¡£¡¡For¡¡example£»
the¡¡question¡¡'Why¡¡does¡¡not¡¡a¡¡wall¡¡breathe£¿'¡¡might¡¡be¡¡answered£»
'Because¡¡it¡¡is¡¡not¡¡an¡¡animal'£»¡¡but¡¡that¡¡answer¡¡would¡¡not¡¡give¡¡the
strict¡¡cause£»¡¡because¡¡if¡¡not¡¡being¡¡an¡¡animal¡¡causes¡¡the¡¡absence¡¡of
respiration£»¡¡then¡¡being¡¡an¡¡animal¡¡should¡¡be¡¡the¡¡cause¡¡of
respiration£»¡¡according¡¡to¡¡the¡¡rule¡¡that¡¡if¡¡the¡¡negation¡¡of¡¡causes
the¡¡non¡inherence¡¡of¡¡y£»¡¡the¡¡affirmation¡¡of¡¡x¡¡causes¡¡the¡¡inherence¡¡of
y£»¡¡e¡£g¡£¡¡if¡¡the¡¡disproportion¡¡of¡¡the¡¡hot¡¡and¡¡cold¡¡elements¡¡is¡¡the¡¡cause
of¡¡ill¡¡health£»¡¡their¡¡proportion¡¡is¡¡the¡¡cause¡¡of¡¡health£»¡¡and
conversely£»¡¡if¡¡the¡¡assertion¡¡of¡¡x¡¡causes¡¡the¡¡inherence¡¡of¡¡y£»¡¡the
negation¡¡of¡¡x¡¡must¡¡cause¡¡y's¡¡non¡inherence¡£¡¡But¡¡in¡¡the¡¡case¡¡given¡¡this
consequence¡¡does¡¡not¡¡result£»¡¡for¡¡not¡¡every¡¡animal¡¡breathes¡£¡¡A
syllogism¡¡with¡¡this¡¡kind¡¡of¡¡cause¡¡takes¡¡place¡¡in¡¡the¡¡second¡¡figure¡£
Thus£º¡¡let¡¡A¡¡be¡¡animal£»¡¡B¡¡respiration£»¡¡C¡¡wall¡£¡¡Then¡¡A¡¡is¡¡predicable
of¡¡all¡¡B¡¡£¨for¡¡all¡¡that¡¡breathes¡¡is¡¡animal£©£»¡¡but¡¡of¡¡no¡¡C£»¡¡and
consequently¡¡B¡¡is¡¡predicable¡¡of¡¡no¡¡C£»¡¡that¡¡is£»¡¡the¡¡wall¡¡does¡¡not
breathe¡£¡¡Such¡¡causes¡¡are¡¡like¡¡far¡fetched¡¡explanations£»¡¡which
precisely¡¡consist¡¡in¡¡making¡¡the¡¡cause¡¡too¡¡remote£»¡¡as¡¡in¡¡Anacharsis'
account¡¡of¡¡why¡¡the¡¡Scythians¡¡have¡¡no¡¡flute¡players£»¡¡namely¡¡because
they¡¡have¡¡no¡¡vines¡£
¡¡¡¡Thus£»¡¡then£»¡¡do¡¡the¡¡syllogism¡¡of¡¡the¡¡fact¡¡and¡¡the¡¡syllogism¡¡of¡¡the
reasoned¡¡fact¡¡differ¡¡within¡¡one¡¡science¡¡and¡¡according¡¡to¡¡the
position¡¡of¡¡the¡¡middle¡¡terms¡£¡¡But¡¡there¡¡is¡¡another¡¡way¡¡too¡¡in¡¡which
the¡¡fact¡¡and¡¡the¡¡reasoned¡¡fact¡¡differ£»¡¡and¡¡that¡¡is¡¡when¡¡they¡¡are
investigated¡¡respectively¡¡by¡¡different¡¡sciences¡£¡¡This¡¡occurs¡¡in¡¡the
case¡¡of¡¡problems¡¡related¡¡to¡¡one¡¡another¡¡as¡¡subordinate¡¡and¡¡superior£»
as¡¡when¡¡optical¡¡problems¡¡are¡¡subordinated¡¡to¡¡geometry£»¡¡mechanical
problems¡¡to¡¡stereometry£»¡¡harmonic¡¡problems¡¡to¡¡arithmetic£»¡¡the¡¡data
of¡¡observation¡¡to¡¡astronomy¡£¡¡£¨Some¡¡of¡¡these¡¡sciences¡¡bear¡¡almost¡¡the
same¡¡name£»¡¡e¡£g¡£¡¡mathematical¡¡and¡¡nautical¡¡astronomy£»¡¡mathematical
and¡¡acoustical¡¡harmonics¡££©¡¡Here¡¡it¡¡is¡¡the¡¡business¡¡of¡¡the¡¡empirical
observers¡¡to¡¡know¡¡the¡¡fact£»¡¡of¡¡the¡¡mathematicians¡¡to¡¡know¡¡the¡¡reasoned
fact£»¡¡for¡¡the¡¡latter¡¡are¡¡in¡¡possession¡¡of¡¡the¡¡demonstrations¡¡giving
the¡¡causes£»¡¡and¡¡are¡¡often¡¡ignorant¡¡of¡¡the¡¡fact£º¡¡just¡¡as¡¡we¡¡have
often¡¡a¡¡clear¡¡insight¡¡into¡¡a¡¡universal£»¡¡but¡¡through¡¡lack¡¡of
observation¡¡are¡¡ignorant¡¡of¡¡some¡¡of¡¡its¡¡particular¡¡instances¡£¡¡These
connexions¡¡have¡¡a¡¡perceptible¡¡existence¡¡though¡¡they¡¡are¡¡manifestations
of¡¡forms¡£¡¡For¡¡the¡¡mathematical¡¡sciences¡¡concern¡¡forms£º¡¡they¡¡do¡¡not
demonstrate¡¡properties¡¡of¡¡a¡¡substratum£»¡¡since£»¡¡even¡¡though¡¡the
geometrical¡¡subjects¡¡are¡¡predicable¡¡as¡¡properties¡¡of¡¡a¡¡perceptible
substratum£»¡¡it¡¡is¡¡not¡¡as¡¡thus¡¡predicable¡¡that¡¡the¡¡mathematician
demonstrates¡¡properties¡¡of¡¡them¡£¡¡As¡¡optics¡¡is¡¡related¡¡to¡¡geometry£»
so¡¡another¡¡science¡¡is¡¡related¡¡to¡¡optics£»¡¡namely¡¡the¡¡theory¡¡of¡¡the
rainbow¡£¡¡Here¡¡knowledge¡¡of¡¡the¡¡fact¡¡is¡¡within¡¡the¡¡province¡¡of¡¡the
natural¡¡philosopher£»¡¡knowledge¡¡of¡¡the¡¡reasoned¡¡fact¡¡within¡¡that¡¡of¡¡the
optician£»¡¡either¡¡qua¡¡optician¡¡or¡¡qua¡¡mathematical¡¡optician¡£¡¡Many
sciences¡¡not¡¡standing¡¡in¡¡this¡¡mutual¡¡relation¡¡enter¡¡into¡¡it¡¡at¡¡points£»
e¡£g¡£¡¡medicine¡¡and¡¡geometry£º¡¡it¡¡is¡¡the¡¡physician's¡¡business¡¡to¡¡know
that¡¡circular¡¡wounds¡¡heal¡¡more¡¡slowly£»¡¡the¡¡geometer's¡¡to¡¡know¡¡the
reason¡¡why¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡14
¡¡¡¡Of¡¡all¡¡the¡¡figures¡¡the¡¡most¡¡scientific¡¡is¡¡the¡¡first¡£¡¡Thus£»¡¡it¡¡is¡¡the
vehicle¡¡of¡¡the¡¡demonstrations¡¡of¡¡all¡¡the¡¡mathematical¡¡sciences£»¡¡such
as¡¡arithmetic£»¡¡geometry£»¡¡and¡¡optics£»¡¡and¡¡practically¡¡all¡¡of¡¡all
sciences¡¡that¡¡investigate¡¡causes£º¡¡for¡¡the¡¡syllogism¡¡of¡¡the¡¡reasoned
fact¡¡is¡¡either¡¡exclusively¡¡or¡¡generally¡¡speaking¡¡and¡¡in¡¡most¡¡cases
in¡¡this¡¡figure¡a¡¡second¡¡proof¡¡that¡¡this¡¡figure¡¡is¡¡the¡¡most¡¡scientific£»
for¡¡grasp¡¡of¡¡a¡¡reasoned¡¡conclusion¡¡is¡¡the¡¡primary¡¡condition¡¡of
knowledge¡£¡¡Thirdly£»¡¡the¡¡first¡¡is¡¡the¡¡only¡¡figure¡¡which¡¡enables¡¡us¡¡to
pursue¡¡knowledge¡¡of¡¡the¡¡essence¡¡of¡¡a¡¡thing¡£¡¡In¡¡the¡¡second¡¡figure¡¡no
affirmative¡¡conclusion¡¡is¡¡possible£»¡¡and¡¡knowledge¡¡of¡¡a¡¡thing's¡¡essence
must¡¡be¡¡affirmative£»¡¡while¡¡in¡¡the¡¡third¡¡figure¡¡the¡¡conclusion¡¡can¡¡be
affirmative£»¡¡but¡¡cannot¡¡be¡¡universal£»¡¡and¡¡essence¡¡must¡¡have¡¡a
universal¡¡character£º¡¡e¡£g¡£¡¡man¡¡is¡¡not¡¡two¡footed¡¡animal¡¡in¡¡any
qualified¡¡sense£»¡¡but¡¡universally¡£¡¡Finally£»¡¡the¡¡first¡¡figure¡¡has¡¡no
need¡¡of¡¡the¡¡others£»¡¡while¡¡it¡¡is¡¡by¡¡means