Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ7½Ú

posterior analytics-µÚ7½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






arguments¡¡formally¡¡illogical¡¡do¡¡sometimes¡¡occur¡¡through¡¡taking¡¡as



middles¡¡mere¡¡attributes¡¡of¡¡the¡¡major¡¡and¡¡minor¡¡terms¡£¡¡An¡¡instance¡¡of



this¡¡is¡¡Caeneus'¡¡proof¡¡that¡¡fire¡¡increases¡¡in¡¡geometrical



proportion£º¡¡'Fire'£»¡¡he¡¡argues£»¡¡'increases¡¡rapidly£»¡¡and¡¡so¡¡does



geometrical¡¡proportion'¡£¡¡There¡¡is¡¡no¡¡syllogism¡¡so£»¡¡but¡¡there¡¡is¡¡a



syllogism¡¡if¡¡the¡¡most¡¡rapidly¡¡increasing¡¡proportion¡¡is¡¡geometrical¡¡and



the¡¡most¡¡rapidly¡¡increasing¡¡proportion¡¡is¡¡attributable¡¡to¡¡fire¡¡in



its¡¡motion¡£¡¡Sometimes£»¡¡no¡¡doubt£»¡¡it¡¡is¡¡impossible¡¡to¡¡reason¡¡from



premisses¡¡predicating¡¡mere¡¡attributes£º¡¡but¡¡sometimes¡¡it¡¡is¡¡possible£»



though¡¡the¡¡possibility¡¡is¡¡overlooked¡£¡¡If¡¡false¡¡premisses¡¡could¡¡never



give¡¡true¡¡conclusions¡¡'resolution'¡¡would¡¡be¡¡easy£»¡¡for¡¡premisses¡¡and



conclusion¡¡would¡¡in¡¡that¡¡case¡¡inevitably¡¡reciprocate¡£¡¡I¡¡might¡¡then



argue¡¡thus£º¡¡let¡¡A¡¡be¡¡an¡¡existing¡¡fact£»¡¡let¡¡the¡¡existence¡¡of¡¡A¡¡imply



such¡¡and¡¡such¡¡facts¡¡actually¡¡known¡¡to¡¡me¡¡to¡¡exist£»¡¡which¡¡we¡¡may¡¡call



B¡£¡¡I¡¡can¡¡now£»¡¡since¡¡they¡¡reciprocate£»¡¡infer¡¡A¡¡from¡¡B¡£



¡¡¡¡Reciprocation¡¡of¡¡premisses¡¡and¡¡conclusion¡¡is¡¡more¡¡frequent¡¡in



mathematics£»¡¡because¡¡mathematics¡¡takes¡¡definitions£»¡¡but¡¡never¡¡an



accident£»¡¡for¡¡its¡¡premisses¡­a¡¡second¡¡characteristic¡¡distinguishing



mathematical¡¡reasoning¡¡from¡¡dialectical¡¡disputations¡£



¡¡¡¡A¡¡science¡¡expands¡¡not¡¡by¡¡the¡¡interposition¡¡of¡¡fresh¡¡middle¡¡terms£»



but¡¡by¡¡the¡¡apposition¡¡of¡¡fresh¡¡extreme¡¡terms¡£¡¡E¡£g¡£¡¡A¡¡is¡¡predicated



of¡¡B£»¡¡B¡¡of¡¡C£»¡¡C¡¡of¡¡D£»¡¡and¡¡so¡¡indefinitely¡£¡¡Or¡¡the¡¡expansion¡¡may¡¡be



lateral£º¡¡e¡£g¡£¡¡one¡¡major¡¡A£»¡¡may¡¡be¡¡proved¡¡of¡¡two¡¡minors£»¡¡C¡¡and¡¡E¡£



Thus¡¡let¡¡A¡¡represent¡¡number¡­a¡¡number¡¡or¡¡number¡¡taken



indeterminately£»¡¡B¡¡determinate¡¡odd¡¡number£»¡¡C¡¡any¡¡particular¡¡odd



number¡£¡¡We¡¡can¡¡then¡¡predicate¡¡A¡¡of¡¡C¡£¡¡Next¡¡let¡¡D¡¡represent¡¡determinate



even¡¡number£»¡¡and¡¡E¡¡even¡¡number¡£¡¡Then¡¡A¡¡is¡¡predicable¡¡of¡¡E¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡13







¡¡¡¡Knowledge¡¡of¡¡the¡¡fact¡¡differs¡¡from¡¡knowledge¡¡of¡¡the¡¡reasoned¡¡fact¡£



To¡¡begin¡¡with£»¡¡they¡¡differ¡¡within¡¡the¡¡same¡¡science¡¡and¡¡in¡¡two¡¡ways£º



£¨1£©¡¡when¡¡the¡¡premisses¡¡of¡¡the¡¡syllogism¡¡are¡¡not¡¡immediate¡¡£¨for¡¡then



the¡¡proximate¡¡cause¡¡is¡¡not¡¡contained¡¡in¡¡them¡­a¡¡necessary¡¡condition



of¡¡knowledge¡¡of¡¡the¡¡reasoned¡¡fact£©£º¡¡£¨2£©¡¡when¡¡the¡¡premisses¡¡are



immediate£»¡¡but¡¡instead¡¡of¡¡the¡¡cause¡¡the¡¡better¡¡known¡¡of¡¡the¡¡two



reciprocals¡¡is¡¡taken¡¡as¡¡the¡¡middle£»¡¡for¡¡of¡¡two¡¡reciprocally¡¡predicable



terms¡¡the¡¡one¡¡which¡¡is¡¡not¡¡the¡¡cause¡¡may¡¡quite¡¡easily¡¡be¡¡the¡¡better



known¡¡and¡¡so¡¡become¡¡the¡¡middle¡¡term¡¡of¡¡the¡¡demonstration¡£¡¡Thus¡¡£¨2£©¡¡£¨a£©



you¡¡might¡¡prove¡¡as¡¡follows¡¡that¡¡the¡¡planets¡¡are¡¡near¡¡because¡¡they¡¡do



not¡¡twinkle£º¡¡let¡¡C¡¡be¡¡the¡¡planets£»¡¡B¡¡not¡¡twinkling£»¡¡A¡¡proximity¡£



Then¡¡B¡¡is¡¡predicable¡¡of¡¡C£»¡¡for¡¡the¡¡planets¡¡do¡¡not¡¡twinkle¡£¡¡But¡¡A¡¡is



also¡¡predicable¡¡of¡¡B£»¡¡since¡¡that¡¡which¡¡does¡¡not¡¡twinkle¡¡is¡¡nearwe



must¡¡take¡¡this¡¡truth¡¡as¡¡having¡¡been¡¡reached¡¡by¡¡induction¡¡or



sense¡­perception¡£¡¡Therefore¡¡A¡¡is¡¡a¡¡necessary¡¡predicate¡¡of¡¡C£»¡¡so¡¡that



we¡¡have¡¡demonstrated¡¡that¡¡the¡¡planets¡¡are¡¡near¡£¡¡This¡¡syllogism£»



then£»¡¡proves¡¡not¡¡the¡¡reasoned¡¡fact¡¡but¡¡only¡¡the¡¡fact£»¡¡since¡¡they¡¡are



not¡¡near¡¡because¡¡they¡¡do¡¡not¡¡twinkle£»¡¡but£»¡¡because¡¡they¡¡are¡¡near£»¡¡do



not¡¡twinkle¡£¡¡The¡¡major¡¡and¡¡middle¡¡of¡¡the¡¡proof£»¡¡however£»¡¡may¡¡be



reversed£»¡¡and¡¡then¡¡the¡¡demonstration¡¡will¡¡be¡¡of¡¡the¡¡reasoned¡¡fact¡£



Thus£º¡¡let¡¡C¡¡be¡¡the¡¡planets£»¡¡B¡¡proximity£»¡¡A¡¡not¡¡twinkling¡£¡¡Then¡¡B¡¡is¡¡an



attribute¡¡of¡¡C£»¡¡and¡¡A¡­not¡¡twinkling¡­of¡¡B¡£¡¡Consequently¡¡A¡¡is¡¡predicable



of¡¡C£»¡¡and¡¡the¡¡syllogism¡¡proves¡¡the¡¡reasoned¡¡fact£»¡¡since¡¡its¡¡middle



term¡¡is¡¡the¡¡proximate¡¡cause¡£¡¡Another¡¡example¡¡is¡¡the¡¡inference¡¡that¡¡the



moon¡¡is¡¡spherical¡¡from¡¡its¡¡manner¡¡of¡¡waxing¡£¡¡Thus£º¡¡since¡¡that¡¡which¡¡so



waxes¡¡is¡¡spherical£»¡¡and¡¡since¡¡the¡¡moon¡¡so¡¡waxes£»¡¡clearly¡¡the¡¡moon¡¡is



spherical¡£¡¡Put¡¡in¡¡this¡¡form£»¡¡the¡¡syllogism¡¡turns¡¡out¡¡to¡¡be¡¡proof¡¡of



the¡¡fact£»¡¡but¡¡if¡¡the¡¡middle¡¡and¡¡major¡¡be¡¡reversed¡¡it¡¡is¡¡proof¡¡of¡¡the



reasoned¡¡fact£»¡¡since¡¡the¡¡moon¡¡is¡¡not¡¡spherical¡¡because¡¡it¡¡waxes¡¡in¡¡a



certain¡¡manner£»¡¡but¡¡waxes¡¡in¡¡such¡¡a¡¡manner¡¡because¡¡it¡¡is¡¡spherical¡£



£¨Let¡¡C¡¡be¡¡the¡¡moon£»¡¡B¡¡spherical£»¡¡and¡¡A¡¡waxing¡££©¡¡Again¡¡£¨b£©£»¡¡in¡¡cases



where¡¡the¡¡cause¡¡and¡¡the¡¡effect¡¡are¡¡not¡¡reciprocal¡¡and¡¡the¡¡effect¡¡is



the¡¡better¡¡known£»¡¡the¡¡fact¡¡is¡¡demonstrated¡¡but¡¡not¡¡the¡¡reasoned



fact¡£¡¡This¡¡also¡¡occurs¡¡£¨1£©¡¡when¡¡the¡¡middle¡¡falls¡¡outside¡¡the¡¡major¡¡and



minor£»¡¡for¡¡here¡¡too¡¡the¡¡strict¡¡cause¡¡is¡¡not¡¡given£»¡¡and¡¡so¡¡the



demonstration¡¡is¡¡of¡¡the¡¡fact£»¡¡not¡¡of¡¡the¡¡reasoned¡¡fact¡£¡¡For¡¡example£»



the¡¡question¡¡'Why¡¡does¡¡not¡¡a¡¡wall¡¡breathe£¿'¡¡might¡¡be¡¡answered£»



'Because¡¡it¡¡is¡¡not¡¡an¡¡animal'£»¡¡but¡¡that¡¡answer¡¡would¡¡not¡¡give¡¡the



strict¡¡cause£»¡¡because¡¡if¡¡not¡¡being¡¡an¡¡animal¡¡causes¡¡the¡¡absence¡¡of



respiration£»¡¡then¡¡being¡¡an¡¡animal¡¡should¡¡be¡¡the¡¡cause¡¡of



respiration£»¡¡according¡¡to¡¡the¡¡rule¡¡that¡¡if¡¡the¡¡negation¡¡of¡¡causes



the¡¡non¡­inherence¡¡of¡¡y£»¡¡the¡¡affirmation¡¡of¡¡x¡¡causes¡¡the¡¡inherence¡¡of



y£»¡¡e¡£g¡£¡¡if¡¡the¡¡disproportion¡¡of¡¡the¡¡hot¡¡and¡¡cold¡¡elements¡¡is¡¡the¡¡cause



of¡¡ill¡¡health£»¡¡their¡¡proportion¡¡is¡¡the¡¡cause¡¡of¡¡health£»¡¡and



conversely£»¡¡if¡¡the¡¡assertion¡¡of¡¡x¡¡causes¡¡the¡¡inherence¡¡of¡¡y£»¡¡the



negation¡¡of¡¡x¡¡must¡¡cause¡¡y's¡¡non¡­inherence¡£¡¡But¡¡in¡¡the¡¡case¡¡given¡¡this



consequence¡¡does¡¡not¡¡result£»¡¡for¡¡not¡¡every¡¡animal¡¡breathes¡£¡¡A



syllogism¡¡with¡¡this¡¡kind¡¡of¡¡cause¡¡takes¡¡place¡¡in¡¡the¡¡second¡¡figure¡£



Thus£º¡¡let¡¡A¡¡be¡¡animal£»¡¡B¡¡respiration£»¡¡C¡¡wall¡£¡¡Then¡¡A¡¡is¡¡predicable



of¡¡all¡¡B¡¡£¨for¡¡all¡¡that¡¡breathes¡¡is¡¡animal£©£»¡¡but¡¡of¡¡no¡¡C£»¡¡and



consequently¡¡B¡¡is¡¡predicable¡¡of¡¡no¡¡C£»¡¡that¡¡is£»¡¡the¡¡wall¡¡does¡¡not



breathe¡£¡¡Such¡¡causes¡¡are¡¡like¡¡far¡­fetched¡¡explanations£»¡¡which



precisely¡¡consist¡¡in¡¡making¡¡the¡¡cause¡¡too¡¡remote£»¡¡as¡¡in¡¡Anacharsis'



account¡¡of¡¡why¡¡the¡¡Scythians¡¡have¡¡no¡¡flute¡­players£»¡¡namely¡¡because



they¡¡have¡¡no¡¡vines¡£



¡¡¡¡Thus£»¡¡then£»¡¡do¡¡the¡¡syllogism¡¡of¡¡the¡¡fact¡¡and¡¡the¡¡syllogism¡¡of¡¡the



reasoned¡¡fact¡¡differ¡¡within¡¡one¡¡science¡¡and¡¡according¡¡to¡¡the



position¡¡of¡¡the¡¡middle¡¡terms¡£¡¡But¡¡there¡¡is¡¡another¡¡way¡¡too¡¡in¡¡which



the¡¡fact¡¡and¡¡the¡¡reasoned¡¡fact¡¡differ£»¡¡and¡¡that¡¡is¡¡when¡¡they¡¡are



investigated¡¡respectively¡¡by¡¡different¡¡sciences¡£¡¡This¡¡occurs¡¡in¡¡the



case¡¡of¡¡problems¡¡related¡¡to¡¡one¡¡another¡¡as¡¡subordinate¡¡and¡¡superior£»



as¡¡when¡¡optical¡¡problems¡¡are¡¡subordinated¡¡to¡¡geometry£»¡¡mechanical



problems¡¡to¡¡stereometry£»¡¡harmonic¡¡problems¡¡to¡¡arithmetic£»¡¡the¡¡data



of¡¡observation¡¡to¡¡astronomy¡£¡¡£¨Some¡¡of¡¡these¡¡sciences¡¡bear¡¡almost¡¡the



same¡¡name£»¡¡e¡£g¡£¡¡mathematical¡¡and¡¡nautical¡¡astronomy£»¡¡mathematical



and¡¡acoustical¡¡harmonics¡££©¡¡Here¡¡it¡¡is¡¡the¡¡business¡¡of¡¡the¡¡empirical



observers¡¡to¡¡know¡¡the¡¡fact£»¡¡of¡¡the¡¡mathematicians¡¡to¡¡know¡¡the¡¡reasoned



fact£»¡¡for¡¡the¡¡latter¡¡are¡¡in¡¡possession¡¡of¡¡the¡¡demonstrations¡¡giving



the¡¡causes£»¡¡and¡¡are¡¡often¡¡ignorant¡¡of¡¡the¡¡fact£º¡¡just¡¡as¡¡we¡¡have



often¡¡a¡¡clear¡¡insight¡¡into¡¡a¡¡universal£»¡¡but¡¡through¡¡lack¡¡of



observation¡¡are¡¡ignorant¡¡of¡¡some¡¡of¡¡its¡¡particular¡¡instances¡£¡¡These



connexions¡¡have¡¡a¡¡perceptible¡¡existence¡¡though¡¡they¡¡are¡¡manifestations



of¡¡forms¡£¡¡For¡¡the¡¡mathematical¡¡sciences¡¡concern¡¡forms£º¡¡they¡¡do¡¡not



demonstrate¡¡properties¡¡of¡¡a¡¡substratum£»¡¡since£»¡¡even¡¡though¡¡the



geometrical¡¡subjects¡¡are¡¡predicable¡¡as¡¡properties¡¡of¡¡a¡¡perceptible



substratum£»¡¡it¡¡is¡¡not¡¡as¡¡thus¡¡predicable¡¡that¡¡the¡¡mathematician



demonstrates¡¡properties¡¡of¡¡them¡£¡¡As¡¡optics¡¡is¡¡related¡¡to¡¡geometry£»



so¡¡another¡¡science¡¡is¡¡related¡¡to¡¡optics£»¡¡namely¡¡the¡¡theory¡¡of¡¡the



rainbow¡£¡¡Here¡¡knowledge¡¡of¡¡the¡¡fact¡¡is¡¡within¡¡the¡¡province¡¡of¡¡the



natural¡¡philosopher£»¡¡knowledge¡¡of¡¡the¡¡reasoned¡¡fact¡¡within¡¡that¡¡of¡¡the



optician£»¡¡either¡¡qua¡¡optician¡¡or¡¡qua¡¡mathematical¡¡optician¡£¡¡Many



sciences¡¡not¡¡standing¡¡in¡¡this¡¡mutual¡¡relation¡¡enter¡¡into¡¡it¡¡at¡¡points£»



e¡£g¡£¡¡medicine¡¡and¡¡geometry£º¡¡it¡¡is¡¡the¡¡physician's¡¡business¡¡to¡¡know



that¡¡circular¡¡wounds¡¡heal¡¡more¡¡slowly£»¡¡the¡¡geometer's¡¡to¡¡know¡¡the



reason¡¡why¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡14







¡¡¡¡Of¡¡all¡¡the¡¡figures¡¡the¡¡most¡¡scientific¡¡is¡¡the¡¡first¡£¡¡Thus£»¡¡it¡¡is¡¡the



vehicle¡¡of¡¡the¡¡demonstrations¡¡of¡¡all¡¡the¡¡mathematical¡¡sciences£»¡¡such



as¡¡arithmetic£»¡¡geometry£»¡¡and¡¡optics£»¡¡and¡¡practically¡¡all¡¡of¡¡all



sciences¡¡that¡¡investigate¡¡causes£º¡¡for¡¡the¡¡syllogism¡¡of¡¡the¡¡reasoned



fact¡¡is¡¡either¡¡exclusively¡¡or¡¡generally¡¡speaking¡¡and¡¡in¡¡most¡¡cases



in¡¡this¡¡figure¡­a¡¡second¡¡proof¡¡that¡¡this¡¡figure¡¡is¡¡the¡¡most¡¡scientific£»



for¡¡grasp¡¡of¡¡a¡¡reasoned¡¡conclusion¡¡is¡¡the¡¡primary¡¡condition¡¡of



knowledge¡£¡¡Thirdly£»¡¡the¡¡first¡¡is¡¡the¡¡only¡¡figure¡¡which¡¡enables¡¡us¡¡to



pursue¡¡knowledge¡¡of¡¡the¡¡essence¡¡of¡¡a¡¡thing¡£¡¡In¡¡the¡¡second¡¡figure¡¡no



affirmative¡¡conclusion¡¡is¡¡possible£»¡¡and¡¡knowledge¡¡of¡¡a¡¡thing's¡¡essence



must¡¡be¡¡affirmative£»¡¡while¡¡in¡¡the¡¡third¡¡figure¡¡the¡¡conclusion¡¡can¡¡be



affirmative£»¡¡but¡¡cannot¡¡be¡¡universal£»¡¡and¡¡essence¡¡must¡¡have¡¡a



universal¡¡character£º¡¡e¡£g¡£¡¡man¡¡is¡¡not¡¡two¡­footed¡¡animal¡¡in¡¡any



qualified¡¡sense£»¡¡but¡¡universally¡£¡¡Finally£»¡¡the¡¡first¡¡figure¡¡has¡¡no



need¡¡of¡¡the¡¡others£»¡¡while¡¡it¡¡is¡¡by¡¡means

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ