posterior analytics-µÚ6½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
syllogism£»¡¡and¡¡therefore¡¡a¡¡fortiori¡¡demonstration£»¡¡is¡¡addressed¡¡not¡¡to
the¡¡spoken¡¡word£»¡¡but¡¡to¡¡the¡¡discourse¡¡within¡¡the¡¡soul£»¡¡and¡¡though¡¡we
can¡¡always¡¡raise¡¡objections¡¡to¡¡the¡¡spoken¡¡word£»¡¡to¡¡the¡¡inward
discourse¡¡we¡¡cannot¡¡always¡¡object¡£¡¡That¡¡which¡¡is¡¡capable¡¡of¡¡proof
but¡¡assumed¡¡by¡¡the¡¡teacher¡¡without¡¡proof¡¡is£»¡¡if¡¡the¡¡pupil¡¡believes¡¡and
accepts¡¡it£»¡¡hypothesis£»¡¡though¡¡only¡¡in¡¡a¡¡limited¡¡sense¡¡hypothesis¡that
is£»¡¡relatively¡¡to¡¡the¡¡pupil£»¡¡if¡¡the¡¡pupil¡¡has¡¡no¡¡opinion¡¡or¡¡a¡¡contrary
opinion¡¡on¡¡the¡¡matter£»¡¡the¡¡same¡¡assumption¡¡is¡¡an¡¡illegitimate
postulate¡£¡¡Therein¡¡lies¡¡the¡¡distinction¡¡between¡¡hypothesis¡¡and
illegitimate¡¡postulate£º¡¡the¡¡latter¡¡is¡¡the¡¡contrary¡¡of¡¡the¡¡pupil's
opinion£»¡¡demonstrable£»¡¡but¡¡assumed¡¡and¡¡used¡¡without¡¡demonstration¡£
¡¡¡¡The¡¡definition¡viz¡£¡¡those¡¡which¡¡are¡¡not¡¡expressed¡¡as¡¡statements¡¡that
anything¡¡is¡¡or¡¡is¡¡not¡are¡¡not¡¡hypotheses£º¡¡but¡¡it¡¡is¡¡in¡¡the¡¡premisses
of¡¡a¡¡science¡¡that¡¡its¡¡hypotheses¡¡are¡¡contained¡£¡¡Definitions¡¡require
only¡¡to¡¡be¡¡understood£»¡¡and¡¡this¡¡is¡¡not¡¡hypothesis¡unless¡¡it¡¡be
contended¡¡that¡¡the¡¡pupil's¡¡hearing¡¡is¡¡also¡¡an¡¡hypothesis¡¡required¡¡by
the¡¡teacher¡£¡¡Hypotheses£»¡¡on¡¡the¡¡contrary£»¡¡postulate¡¡facts¡¡on¡¡the¡¡being
of¡¡which¡¡depends¡¡the¡¡being¡¡of¡¡the¡¡fact¡¡inferred¡£¡¡Nor¡¡are¡¡the
geometer's¡¡hypotheses¡¡false£»¡¡as¡¡some¡¡have¡¡held£»¡¡urging¡¡that¡¡one¡¡must
not¡¡employ¡¡falsehood¡¡and¡¡that¡¡the¡¡geometer¡¡is¡¡uttering¡¡falsehood¡¡in
stating¡¡that¡¡the¡¡line¡¡which¡¡he¡¡draws¡¡is¡¡a¡¡foot¡¡long¡¡or¡¡straight£»
when¡¡it¡¡is¡¡actually¡¡neither¡£¡¡The¡¡truth¡¡is¡¡that¡¡the¡¡geometer¡¡does¡¡not
draw¡¡any¡¡conclusion¡¡from¡¡the¡¡being¡¡of¡¡the¡¡particular¡¡line¡¡of¡¡which
he¡¡speaks£»¡¡but¡¡from¡¡what¡¡his¡¡diagrams¡¡symbolize¡£¡¡A¡¡further¡¡distinction
is¡¡that¡¡all¡¡hypotheses¡¡and¡¡illegitimate¡¡postulates¡¡are¡¡either
universal¡¡or¡¡particular£»¡¡whereas¡¡a¡¡definition¡¡is¡¡neither¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡11
¡¡¡¡So¡¡demonstration¡¡does¡¡not¡¡necessarily¡¡imply¡¡the¡¡being¡¡of¡¡Forms¡¡nor¡¡a
One¡¡beside¡¡a¡¡Many£»¡¡but¡¡it¡¡does¡¡necessarily¡¡imply¡¡the¡¡possibility¡¡of
truly¡¡predicating¡¡one¡¡of¡¡many£»¡¡since¡¡without¡¡this¡¡possibility¡¡we
cannot¡¡save¡¡the¡¡universal£»¡¡and¡¡if¡¡the¡¡universal¡¡goes£»¡¡the¡¡middle
term¡¡goes¡¡witb¡£¡¡it£»¡¡and¡¡so¡¡demonstration¡¡becomes¡¡impossible¡£¡¡We
conclude£»¡¡then£»¡¡that¡¡there¡¡must¡¡be¡¡a¡¡single¡¡identical¡¡term
unequivocally¡¡predicable¡¡of¡¡a¡¡number¡¡of¡¡individuals¡£
¡¡¡¡The¡¡law¡¡that¡¡it¡¡is¡¡impossible¡¡to¡¡affirm¡¡and¡¡deny¡¡simultaneously
the¡¡same¡¡predicate¡¡of¡¡the¡¡same¡¡subject¡¡is¡¡not¡¡expressly¡¡posited¡¡by¡¡any
demonstration¡¡except¡¡when¡¡the¡¡conclusion¡¡also¡¡has¡¡to¡¡be¡¡expressed¡¡in
that¡¡form£»¡¡in¡¡which¡¡case¡¡the¡¡proof¡¡lays¡¡down¡¡as¡¡its¡¡major¡¡premiss¡¡that
the¡¡major¡¡is¡¡truly¡¡affirmed¡¡of¡¡the¡¡middle¡¡but¡¡falsely¡¡denied¡£¡¡It¡¡makes
no¡¡difference£»¡¡however£»¡¡if¡¡we¡¡add¡¡to¡¡the¡¡middle£»¡¡or¡¡again¡¡to¡¡the¡¡minor
term£»¡¡the¡¡corresponding¡¡negative¡£¡¡For¡¡grant¡¡a¡¡minor¡¡term¡¡of¡¡which¡¡it
is¡¡true¡¡to¡¡predicate¡¡man¡even¡¡if¡¡it¡¡be¡¡also¡¡true¡¡to¡¡predicate
not¡man¡¡of¡¡itstill¡¡grant¡¡simply¡¡that¡¡man¡¡is¡¡animal¡¡and¡¡not
not¡animal£»¡¡and¡¡the¡¡conclusion¡¡follows£º¡¡for¡¡it¡¡will¡¡still¡¡be¡¡true¡¡to
say¡¡that¡¡Calliaseven¡¡if¡¡it¡¡be¡¡also¡¡true¡¡to¡¡say¡¡that
not¡Calliasis¡¡animal¡¡and¡¡not¡¡not¡animal¡£¡¡The¡¡reason¡¡is¡¡that¡¡the
major¡¡term¡¡is¡¡predicable¡¡not¡¡only¡¡of¡¡the¡¡middle£»¡¡but¡¡of¡¡something
other¡¡than¡¡the¡¡middle¡¡as¡¡well£»¡¡being¡¡of¡¡wider¡¡application£»¡¡so¡¡that¡¡the
conclusion¡¡is¡¡not¡¡affected¡¡even¡¡if¡¡the¡¡middle¡¡is¡¡extended¡¡to¡¡cover¡¡the
original¡¡middle¡¡term¡¡and¡¡also¡¡what¡¡is¡¡not¡¡the¡¡original¡¡middle¡¡term¡£
¡¡¡¡The¡¡law¡¡that¡¡every¡¡predicate¡¡can¡¡be¡¡either¡¡truly¡¡affirmed¡¡or¡¡truly
denied¡¡of¡¡every¡¡subject¡¡is¡¡posited¡¡by¡¡such¡¡demonstration¡¡as¡¡uses
reductio¡¡ad¡¡impossibile£»¡¡and¡¡then¡¡not¡¡always¡¡universally£»¡¡but¡¡so¡¡far
as¡¡it¡¡is¡¡requisite£»¡¡within¡¡the¡¡limits£»¡¡that¡¡is£»¡¡of¡¡the¡¡genus¡the
genus£»¡¡I¡¡mean¡¡£¨as¡¡I¡¡have¡¡already¡¡explained£©£»¡¡to¡¡which¡¡the¡¡man¡¡of
science¡¡applies¡¡his¡¡demonstrations¡£¡¡In¡¡virtue¡¡of¡¡the¡¡common¡¡elements
of¡¡demonstration¡I¡¡mean¡¡the¡¡common¡¡axioms¡¡which¡¡are¡¡used¡¡as
premisses¡¡of¡¡demonstration£»¡¡not¡¡the¡¡subjects¡¡nor¡¡the¡¡attributes
demonstrated¡¡as¡¡belonging¡¡to¡¡them¡all¡¡the¡¡sciences¡¡have¡¡communion¡¡with
one¡¡another£»¡¡and¡¡in¡¡communion¡¡with¡¡them¡¡all¡¡is¡¡dialectic¡¡and¡¡any
science¡¡which¡¡might¡¡attempt¡¡a¡¡universal¡¡proof¡¡of¡¡axioms¡¡such¡¡as¡¡the
law¡¡of¡¡excluded¡¡middle£»¡¡the¡¡law¡¡that¡¡the¡¡subtraction¡¡of¡¡equals¡¡from
equals¡¡leaves¡¡equal¡¡remainders£»¡¡or¡¡other¡¡axioms¡¡of¡¡the¡¡same¡¡kind¡£
Dialectic¡¡has¡¡no¡¡definite¡¡sphere¡¡of¡¡this¡¡kind£»¡¡not¡¡being¡¡confined¡¡to¡¡a
single¡¡genus¡£¡¡Otherwise¡¡its¡¡method¡¡would¡¡not¡¡be¡¡interrogative£»¡¡for¡¡the
interrogative¡¡method¡¡is¡¡barred¡¡to¡¡the¡¡demonstrator£»¡¡who¡¡cannot¡¡use¡¡the
opposite¡¡facts¡¡to¡¡prove¡¡the¡¡same¡¡nexus¡£¡¡This¡¡was¡¡shown¡¡in¡¡my¡¡work¡¡on
the¡¡syllogism¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡12
¡¡¡¡If¡¡a¡¡syllogistic¡¡question¡¡is¡¡equivalent¡¡to¡¡a¡¡proposition¡¡embodying
one¡¡of¡¡the¡¡two¡¡sides¡¡of¡¡a¡¡contradiction£»¡¡and¡¡if¡¡each¡¡science¡¡has¡¡its
peculiar¡¡propositions¡¡from¡¡which¡¡its¡¡peculiar¡¡conclusion¡¡is¡¡developed£»
then¡¡there¡¡is¡¡such¡¡a¡¡thing¡¡as¡¡a¡¡distinctively¡¡scientific¡¡question£»¡¡and
it¡¡is¡¡the¡¡interrogative¡¡form¡¡of¡¡the¡¡premisses¡¡from¡¡which¡¡the
'appropriate'¡¡conclusion¡¡of¡¡each¡¡science¡¡is¡¡developed¡£¡¡Hence¡¡it¡¡is
clear¡¡that¡¡not¡¡every¡¡question¡¡will¡¡be¡¡relevant¡¡to¡¡geometry£»¡¡nor¡¡to
medicine£»¡¡nor¡¡to¡¡any¡¡other¡¡science£º¡¡only¡¡those¡¡questions¡¡will¡¡be
geometrical¡¡which¡¡form¡¡premisses¡¡for¡¡the¡¡proof¡¡of¡¡the¡¡theorems¡¡of
geometry¡¡or¡¡of¡¡any¡¡other¡¡science£»¡¡such¡¡as¡¡optics£»¡¡which¡¡uses¡¡the
same¡¡basic¡¡truths¡¡as¡¡geometry¡£¡¡Of¡¡the¡¡other¡¡sciences¡¡the¡¡like¡¡is¡¡true¡£
Of¡¡these¡¡questions¡¡the¡¡geometer¡¡is¡¡bound¡¡to¡¡give¡¡his¡¡account£»¡¡using
the¡¡basic¡¡truths¡¡of¡¡geometry¡¡in¡¡conjunction¡¡with¡¡his¡¡previous
conclusions£»¡¡of¡¡the¡¡basic¡¡truths¡¡the¡¡geometer£»¡¡as¡¡such£»¡¡is¡¡not¡¡bound
to¡¡give¡¡any¡¡account¡£¡¡The¡¡like¡¡is¡¡true¡¡of¡¡the¡¡other¡¡sciences¡£¡¡There
is¡¡a¡¡limit£»¡¡then£»¡¡to¡¡the¡¡questions¡¡which¡¡we¡¡may¡¡put¡¡to¡¡each¡¡man¡¡of
science£»¡¡nor¡¡is¡¡each¡¡man¡¡of¡¡science¡¡bound¡¡to¡¡answer¡¡all¡¡inquiries¡¡on
each¡¡several¡¡subject£»¡¡but¡¡only¡¡such¡¡as¡¡fall¡¡within¡¡the¡¡defined¡¡field
of¡¡his¡¡own¡¡science¡£¡¡If£»¡¡then£»¡¡in¡¡controversy¡¡with¡¡a¡¡geometer¡¡qua
geometer¡¡the¡¡disputant¡¡confines¡¡himself¡¡to¡¡geometry¡¡and¡¡proves
anything¡¡from¡¡geometrical¡¡premisses£»¡¡he¡¡is¡¡clearly¡¡to¡¡be¡¡applauded£»¡¡if
he¡¡goes¡¡outside¡¡these¡¡he¡¡will¡¡be¡¡at¡¡fault£»¡¡and¡¡obviously¡¡cannot¡¡even
refute¡¡the¡¡geometer¡¡except¡¡accidentally¡£¡¡One¡¡should¡¡therefore¡¡not
discuss¡¡geometry¡¡among¡¡those¡¡who¡¡are¡¡not¡¡geometers£»¡¡for¡¡in¡¡such¡¡a
company¡¡an¡¡unsound¡¡argument¡¡will¡¡pass¡¡unnoticed¡£¡¡This¡¡is
correspondingly¡¡true¡¡in¡¡the¡¡other¡¡sciences¡£
¡¡¡¡Since¡¡there¡¡are¡¡'geometrical'¡¡questions£»¡¡does¡¡it¡¡follow¡¡that¡¡there
are¡¡also¡¡distinctively¡¡'ungeometrical'¡¡questions£¿¡¡Further£»¡¡in¡¡each
special¡¡science¡geometry¡¡for¡¡instance¡what¡¡kind¡¡of¡¡error¡¡is¡¡it¡¡that
may¡¡vitiate¡¡questions£»¡¡and¡¡yet¡¡not¡¡exclude¡¡them¡¡from¡¡that¡¡science£¿
Again£»¡¡is¡¡the¡¡erroneous¡¡conclusion¡¡one¡¡constructed¡¡from¡¡premisses
opposite¡¡to¡¡the¡¡true¡¡premisses£»¡¡or¡¡is¡¡it¡¡formal¡¡fallacy¡¡though¡¡drawn
from¡¡geometrical¡¡premisses£¿¡¡Or£»¡¡perhaps£»¡¡the¡¡erroneous¡¡conclusion¡¡is
due¡¡to¡¡the¡¡drawing¡¡of¡¡premisses¡¡from¡¡another¡¡science£»¡¡e¡£g¡£¡¡in¡¡a
geometrical¡¡controversy¡¡a¡¡musical¡¡question¡¡is¡¡distinctively
ungeometrical£»¡¡whereas¡¡the¡¡notion¡¡that¡¡parallels¡¡meet¡¡is¡¡in¡¡one
sense¡¡geometrical£»¡¡being¡¡ungeometrical¡¡in¡¡a¡¡different¡¡fashion£º¡¡the
reason¡¡being¡¡that¡¡'ungeometrical'£»¡¡like¡¡'unrhythmical'£»¡¡is
equivocal£»¡¡meaning¡¡in¡¡the¡¡one¡¡case¡¡not¡¡geometry¡¡at¡¡all£»¡¡in¡¡the¡¡other
bad¡¡geometry£¿¡¡It¡¡is¡¡this¡¡error£»¡¡i¡£e¡£¡¡error¡¡based¡¡on¡¡premisses¡¡of
this¡¡kind¡'of'¡¡the¡¡science¡¡but¡¡false¡that¡¡is¡¡the¡¡contrary¡¡of
science¡£¡¡In¡¡mathematics¡¡the¡¡formal¡¡fallacy¡¡is¡¡not¡¡so¡¡common£»¡¡because
it¡¡is¡¡the¡¡middle¡¡term¡¡in¡¡which¡¡the¡¡ambiguity¡¡lies£»¡¡since¡¡the¡¡major
is¡¡predicated¡¡of¡¡the¡¡whole¡¡of¡¡the¡¡middle¡¡and¡¡the¡¡middle¡¡of¡¡the¡¡whole
of¡¡the¡¡minor¡¡£¨the¡¡predicate¡¡of¡¡course¡¡never¡¡has¡¡the¡¡prefix¡¡'all'£©£»¡¡and
in¡¡mathematics¡¡one¡¡can£»¡¡so¡¡to¡¡speak£»¡¡see¡¡these¡¡middle¡¡terms¡¡with¡¡an
intellectual¡¡vision£»¡¡while¡¡in¡¡dialectic¡¡the¡¡ambiguity¡¡may¡¡escape
detection¡£¡¡E¡£g¡£¡¡'Is¡¡every¡¡circle¡¡a¡¡figure£¿'¡¡A¡¡diagram¡¡shows¡¡that
this¡¡is¡¡so£»¡¡but¡¡the¡¡minor¡¡premiss¡¡'Are¡¡epics¡¡circles£¿'¡¡is¡¡shown¡¡by¡¡the
diagram¡¡to¡¡be¡¡false¡£
¡¡¡¡If¡¡a¡¡proof¡¡has¡¡an¡¡inductive¡¡minor¡¡premiss£»¡¡one¡¡should¡¡not¡¡bring¡¡an
'objection'¡¡against¡¡it¡£¡¡For¡¡since¡¡every¡¡premiss¡¡must¡¡be¡¡applicable
to¡¡a¡¡number¡¡of¡¡cases¡¡£¨otherwise¡¡it¡¡will¡¡not¡¡be¡¡true¡¡in¡¡every¡¡instance£»
which£»¡¡since¡¡the¡¡syllogism¡¡proceeds¡¡from¡¡universals£»¡¡it¡¡must¡¡be£©£»¡¡then
assuredly¡¡the¡¡same¡¡is¡¡true¡¡of¡¡an¡¡'objection'£»¡¡since¡¡premisses¡¡and
'objections'¡¡are¡¡so¡¡far¡¡the¡¡same¡¡that¡¡anything¡¡which¡¡can¡¡be¡¡validly
advanced¡¡as¡¡an¡¡'objection'¡¡must¡¡be¡¡such¡¡that¡¡it¡¡could¡¡take¡¡the¡¡form¡¡of
a¡¡premiss£»¡¡either¡¡demonstrative¡¡or¡¡dialectical¡£¡¡On¡¡the¡¡other¡¡hand£»
arguments¡¡formally¡¡illogical¡¡do¡¡sometimes¡¡occur¡¡through¡¡taking¡¡as
middles¡¡mere