Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ6½Ú

posterior analytics-µÚ6½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






syllogism£»¡¡and¡¡therefore¡¡a¡¡fortiori¡¡demonstration£»¡¡is¡¡addressed¡¡not¡¡to



the¡¡spoken¡¡word£»¡¡but¡¡to¡¡the¡¡discourse¡¡within¡¡the¡¡soul£»¡¡and¡¡though¡¡we



can¡¡always¡¡raise¡¡objections¡¡to¡¡the¡¡spoken¡¡word£»¡¡to¡¡the¡¡inward



discourse¡¡we¡¡cannot¡¡always¡¡object¡£¡¡That¡¡which¡¡is¡¡capable¡¡of¡¡proof



but¡¡assumed¡¡by¡¡the¡¡teacher¡¡without¡¡proof¡¡is£»¡¡if¡¡the¡¡pupil¡¡believes¡¡and



accepts¡¡it£»¡¡hypothesis£»¡¡though¡¡only¡¡in¡¡a¡¡limited¡¡sense¡¡hypothesis¡­that



is£»¡¡relatively¡¡to¡¡the¡¡pupil£»¡¡if¡¡the¡¡pupil¡¡has¡¡no¡¡opinion¡¡or¡¡a¡¡contrary



opinion¡¡on¡¡the¡¡matter£»¡¡the¡¡same¡¡assumption¡¡is¡¡an¡¡illegitimate



postulate¡£¡¡Therein¡¡lies¡¡the¡¡distinction¡¡between¡¡hypothesis¡¡and



illegitimate¡¡postulate£º¡¡the¡¡latter¡¡is¡¡the¡¡contrary¡¡of¡¡the¡¡pupil's



opinion£»¡¡demonstrable£»¡¡but¡¡assumed¡¡and¡¡used¡¡without¡¡demonstration¡£



¡¡¡¡The¡¡definition¡­viz¡£¡¡those¡¡which¡¡are¡¡not¡¡expressed¡¡as¡¡statements¡¡that



anything¡¡is¡¡or¡¡is¡¡not¡­are¡¡not¡¡hypotheses£º¡¡but¡¡it¡¡is¡¡in¡¡the¡¡premisses



of¡¡a¡¡science¡¡that¡¡its¡¡hypotheses¡¡are¡¡contained¡£¡¡Definitions¡¡require



only¡¡to¡¡be¡¡understood£»¡¡and¡¡this¡¡is¡¡not¡¡hypothesis¡­unless¡¡it¡¡be



contended¡¡that¡¡the¡¡pupil's¡¡hearing¡¡is¡¡also¡¡an¡¡hypothesis¡¡required¡¡by



the¡¡teacher¡£¡¡Hypotheses£»¡¡on¡¡the¡¡contrary£»¡¡postulate¡¡facts¡¡on¡¡the¡¡being



of¡¡which¡¡depends¡¡the¡¡being¡¡of¡¡the¡¡fact¡¡inferred¡£¡¡Nor¡¡are¡¡the



geometer's¡¡hypotheses¡¡false£»¡¡as¡¡some¡¡have¡¡held£»¡¡urging¡¡that¡¡one¡¡must



not¡¡employ¡¡falsehood¡¡and¡¡that¡¡the¡¡geometer¡¡is¡¡uttering¡¡falsehood¡¡in



stating¡¡that¡¡the¡¡line¡¡which¡¡he¡¡draws¡¡is¡¡a¡¡foot¡¡long¡¡or¡¡straight£»



when¡¡it¡¡is¡¡actually¡¡neither¡£¡¡The¡¡truth¡¡is¡¡that¡¡the¡¡geometer¡¡does¡¡not



draw¡¡any¡¡conclusion¡¡from¡¡the¡¡being¡¡of¡¡the¡¡particular¡¡line¡¡of¡¡which



he¡¡speaks£»¡¡but¡¡from¡¡what¡¡his¡¡diagrams¡¡symbolize¡£¡¡A¡¡further¡¡distinction



is¡¡that¡¡all¡¡hypotheses¡¡and¡¡illegitimate¡¡postulates¡¡are¡¡either



universal¡¡or¡¡particular£»¡¡whereas¡¡a¡¡definition¡¡is¡¡neither¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡11







¡¡¡¡So¡¡demonstration¡¡does¡¡not¡¡necessarily¡¡imply¡¡the¡¡being¡¡of¡¡Forms¡¡nor¡¡a



One¡¡beside¡¡a¡¡Many£»¡¡but¡¡it¡¡does¡¡necessarily¡¡imply¡¡the¡¡possibility¡¡of



truly¡¡predicating¡¡one¡¡of¡¡many£»¡¡since¡¡without¡¡this¡¡possibility¡¡we



cannot¡¡save¡¡the¡¡universal£»¡¡and¡¡if¡¡the¡¡universal¡¡goes£»¡¡the¡¡middle



term¡¡goes¡¡witb¡£¡¡it£»¡¡and¡¡so¡¡demonstration¡¡becomes¡¡impossible¡£¡¡We



conclude£»¡¡then£»¡¡that¡¡there¡¡must¡¡be¡¡a¡¡single¡¡identical¡¡term



unequivocally¡¡predicable¡¡of¡¡a¡¡number¡¡of¡¡individuals¡£



¡¡¡¡The¡¡law¡¡that¡¡it¡¡is¡¡impossible¡¡to¡¡affirm¡¡and¡¡deny¡¡simultaneously



the¡¡same¡¡predicate¡¡of¡¡the¡¡same¡¡subject¡¡is¡¡not¡¡expressly¡¡posited¡¡by¡¡any



demonstration¡¡except¡¡when¡¡the¡¡conclusion¡¡also¡¡has¡¡to¡¡be¡¡expressed¡¡in



that¡¡form£»¡¡in¡¡which¡¡case¡¡the¡¡proof¡¡lays¡¡down¡¡as¡¡its¡¡major¡¡premiss¡¡that



the¡¡major¡¡is¡¡truly¡¡affirmed¡¡of¡¡the¡¡middle¡¡but¡¡falsely¡¡denied¡£¡¡It¡¡makes



no¡¡difference£»¡¡however£»¡¡if¡¡we¡¡add¡¡to¡¡the¡¡middle£»¡¡or¡¡again¡¡to¡¡the¡¡minor



term£»¡¡the¡¡corresponding¡¡negative¡£¡¡For¡¡grant¡¡a¡¡minor¡¡term¡¡of¡¡which¡¡it



is¡¡true¡¡to¡¡predicate¡¡man¡­even¡¡if¡¡it¡¡be¡¡also¡¡true¡¡to¡¡predicate



not¡­man¡¡of¡¡itstill¡¡grant¡¡simply¡¡that¡¡man¡¡is¡¡animal¡¡and¡¡not



not¡­animal£»¡¡and¡¡the¡¡conclusion¡¡follows£º¡¡for¡¡it¡¡will¡¡still¡¡be¡¡true¡¡to



say¡¡that¡¡Calliaseven¡¡if¡¡it¡¡be¡¡also¡¡true¡¡to¡¡say¡¡that



not¡­Calliasis¡¡animal¡¡and¡¡not¡¡not¡­animal¡£¡¡The¡¡reason¡¡is¡¡that¡¡the



major¡¡term¡¡is¡¡predicable¡¡not¡¡only¡¡of¡¡the¡¡middle£»¡¡but¡¡of¡¡something



other¡¡than¡¡the¡¡middle¡¡as¡¡well£»¡¡being¡¡of¡¡wider¡¡application£»¡¡so¡¡that¡¡the



conclusion¡¡is¡¡not¡¡affected¡¡even¡¡if¡¡the¡¡middle¡¡is¡¡extended¡¡to¡¡cover¡¡the



original¡¡middle¡¡term¡¡and¡¡also¡¡what¡¡is¡¡not¡¡the¡¡original¡¡middle¡¡term¡£



¡¡¡¡The¡¡law¡¡that¡¡every¡¡predicate¡¡can¡¡be¡¡either¡¡truly¡¡affirmed¡¡or¡¡truly



denied¡¡of¡¡every¡¡subject¡¡is¡¡posited¡¡by¡¡such¡¡demonstration¡¡as¡¡uses



reductio¡¡ad¡¡impossibile£»¡¡and¡¡then¡¡not¡¡always¡¡universally£»¡¡but¡¡so¡¡far



as¡¡it¡¡is¡¡requisite£»¡¡within¡¡the¡¡limits£»¡¡that¡¡is£»¡¡of¡¡the¡¡genus¡­the



genus£»¡¡I¡¡mean¡¡£¨as¡¡I¡¡have¡¡already¡¡explained£©£»¡¡to¡¡which¡¡the¡¡man¡¡of



science¡¡applies¡¡his¡¡demonstrations¡£¡¡In¡¡virtue¡¡of¡¡the¡¡common¡¡elements



of¡¡demonstration¡­I¡¡mean¡¡the¡¡common¡¡axioms¡¡which¡¡are¡¡used¡¡as



premisses¡¡of¡¡demonstration£»¡¡not¡¡the¡¡subjects¡¡nor¡¡the¡¡attributes



demonstrated¡¡as¡¡belonging¡¡to¡¡them¡­all¡¡the¡¡sciences¡¡have¡¡communion¡¡with



one¡¡another£»¡¡and¡¡in¡¡communion¡¡with¡¡them¡¡all¡¡is¡¡dialectic¡¡and¡¡any



science¡¡which¡¡might¡¡attempt¡¡a¡¡universal¡¡proof¡¡of¡¡axioms¡¡such¡¡as¡¡the



law¡¡of¡¡excluded¡¡middle£»¡¡the¡¡law¡¡that¡¡the¡¡subtraction¡¡of¡¡equals¡¡from



equals¡¡leaves¡¡equal¡¡remainders£»¡¡or¡¡other¡¡axioms¡¡of¡¡the¡¡same¡¡kind¡£



Dialectic¡¡has¡¡no¡¡definite¡¡sphere¡¡of¡¡this¡¡kind£»¡¡not¡¡being¡¡confined¡¡to¡¡a



single¡¡genus¡£¡¡Otherwise¡¡its¡¡method¡¡would¡¡not¡¡be¡¡interrogative£»¡¡for¡¡the



interrogative¡¡method¡¡is¡¡barred¡¡to¡¡the¡¡demonstrator£»¡¡who¡¡cannot¡¡use¡¡the



opposite¡¡facts¡¡to¡¡prove¡¡the¡¡same¡¡nexus¡£¡¡This¡¡was¡¡shown¡¡in¡¡my¡¡work¡¡on



the¡¡syllogism¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡12







¡¡¡¡If¡¡a¡¡syllogistic¡¡question¡¡is¡¡equivalent¡¡to¡¡a¡¡proposition¡¡embodying



one¡¡of¡¡the¡¡two¡¡sides¡¡of¡¡a¡¡contradiction£»¡¡and¡¡if¡¡each¡¡science¡¡has¡¡its



peculiar¡¡propositions¡¡from¡¡which¡¡its¡¡peculiar¡¡conclusion¡¡is¡¡developed£»



then¡¡there¡¡is¡¡such¡¡a¡¡thing¡¡as¡¡a¡¡distinctively¡¡scientific¡¡question£»¡¡and



it¡¡is¡¡the¡¡interrogative¡¡form¡¡of¡¡the¡¡premisses¡¡from¡¡which¡¡the



'appropriate'¡¡conclusion¡¡of¡¡each¡¡science¡¡is¡¡developed¡£¡¡Hence¡¡it¡¡is



clear¡¡that¡¡not¡¡every¡¡question¡¡will¡¡be¡¡relevant¡¡to¡¡geometry£»¡¡nor¡¡to



medicine£»¡¡nor¡¡to¡¡any¡¡other¡¡science£º¡¡only¡¡those¡¡questions¡¡will¡¡be



geometrical¡¡which¡¡form¡¡premisses¡¡for¡¡the¡¡proof¡¡of¡¡the¡¡theorems¡¡of



geometry¡¡or¡¡of¡¡any¡¡other¡¡science£»¡¡such¡¡as¡¡optics£»¡¡which¡¡uses¡¡the



same¡¡basic¡¡truths¡¡as¡¡geometry¡£¡¡Of¡¡the¡¡other¡¡sciences¡¡the¡¡like¡¡is¡¡true¡£



Of¡¡these¡¡questions¡¡the¡¡geometer¡¡is¡¡bound¡¡to¡¡give¡¡his¡¡account£»¡¡using



the¡¡basic¡¡truths¡¡of¡¡geometry¡¡in¡¡conjunction¡¡with¡¡his¡¡previous



conclusions£»¡¡of¡¡the¡¡basic¡¡truths¡¡the¡¡geometer£»¡¡as¡¡such£»¡¡is¡¡not¡¡bound





to¡¡give¡¡any¡¡account¡£¡¡The¡¡like¡¡is¡¡true¡¡of¡¡the¡¡other¡¡sciences¡£¡¡There



is¡¡a¡¡limit£»¡¡then£»¡¡to¡¡the¡¡questions¡¡which¡¡we¡¡may¡¡put¡¡to¡¡each¡¡man¡¡of



science£»¡¡nor¡¡is¡¡each¡¡man¡¡of¡¡science¡¡bound¡¡to¡¡answer¡¡all¡¡inquiries¡¡on



each¡¡several¡¡subject£»¡¡but¡¡only¡¡such¡¡as¡¡fall¡¡within¡¡the¡¡defined¡¡field



of¡¡his¡¡own¡¡science¡£¡¡If£»¡¡then£»¡¡in¡¡controversy¡¡with¡¡a¡¡geometer¡¡qua



geometer¡¡the¡¡disputant¡¡confines¡¡himself¡¡to¡¡geometry¡¡and¡¡proves



anything¡¡from¡¡geometrical¡¡premisses£»¡¡he¡¡is¡¡clearly¡¡to¡¡be¡¡applauded£»¡¡if



he¡¡goes¡¡outside¡¡these¡¡he¡¡will¡¡be¡¡at¡¡fault£»¡¡and¡¡obviously¡¡cannot¡¡even



refute¡¡the¡¡geometer¡¡except¡¡accidentally¡£¡¡One¡¡should¡¡therefore¡¡not



discuss¡¡geometry¡¡among¡¡those¡¡who¡¡are¡¡not¡¡geometers£»¡¡for¡¡in¡¡such¡¡a



company¡¡an¡¡unsound¡¡argument¡¡will¡¡pass¡¡unnoticed¡£¡¡This¡¡is



correspondingly¡¡true¡¡in¡¡the¡¡other¡¡sciences¡£



¡¡¡¡Since¡¡there¡¡are¡¡'geometrical'¡¡questions£»¡¡does¡¡it¡¡follow¡¡that¡¡there



are¡¡also¡¡distinctively¡¡'ungeometrical'¡¡questions£¿¡¡Further£»¡¡in¡¡each



special¡¡science¡­geometry¡¡for¡¡instance¡­what¡¡kind¡¡of¡¡error¡¡is¡¡it¡¡that



may¡¡vitiate¡¡questions£»¡¡and¡¡yet¡¡not¡¡exclude¡¡them¡¡from¡¡that¡¡science£¿



Again£»¡¡is¡¡the¡¡erroneous¡¡conclusion¡¡one¡¡constructed¡¡from¡¡premisses



opposite¡¡to¡¡the¡¡true¡¡premisses£»¡¡or¡¡is¡¡it¡¡formal¡¡fallacy¡¡though¡¡drawn



from¡¡geometrical¡¡premisses£¿¡¡Or£»¡¡perhaps£»¡¡the¡¡erroneous¡¡conclusion¡¡is



due¡¡to¡¡the¡¡drawing¡¡of¡¡premisses¡¡from¡¡another¡¡science£»¡¡e¡£g¡£¡¡in¡¡a



geometrical¡¡controversy¡¡a¡¡musical¡¡question¡¡is¡¡distinctively



ungeometrical£»¡¡whereas¡¡the¡¡notion¡¡that¡¡parallels¡¡meet¡¡is¡¡in¡¡one



sense¡¡geometrical£»¡¡being¡¡ungeometrical¡¡in¡¡a¡¡different¡¡fashion£º¡¡the



reason¡¡being¡¡that¡¡'ungeometrical'£»¡¡like¡¡'unrhythmical'£»¡¡is



equivocal£»¡¡meaning¡¡in¡¡the¡¡one¡¡case¡¡not¡¡geometry¡¡at¡¡all£»¡¡in¡¡the¡¡other



bad¡¡geometry£¿¡¡It¡¡is¡¡this¡¡error£»¡¡i¡£e¡£¡¡error¡¡based¡¡on¡¡premisses¡¡of



this¡¡kind¡­'of'¡¡the¡¡science¡¡but¡¡false¡­that¡¡is¡¡the¡¡contrary¡¡of



science¡£¡¡In¡¡mathematics¡¡the¡¡formal¡¡fallacy¡¡is¡¡not¡¡so¡¡common£»¡¡because



it¡¡is¡¡the¡¡middle¡¡term¡¡in¡¡which¡¡the¡¡ambiguity¡¡lies£»¡¡since¡¡the¡¡major



is¡¡predicated¡¡of¡¡the¡¡whole¡¡of¡¡the¡¡middle¡¡and¡¡the¡¡middle¡¡of¡¡the¡¡whole



of¡¡the¡¡minor¡¡£¨the¡¡predicate¡¡of¡¡course¡¡never¡¡has¡¡the¡¡prefix¡¡'all'£©£»¡¡and



in¡¡mathematics¡¡one¡¡can£»¡¡so¡¡to¡¡speak£»¡¡see¡¡these¡¡middle¡¡terms¡¡with¡¡an



intellectual¡¡vision£»¡¡while¡¡in¡¡dialectic¡¡the¡¡ambiguity¡¡may¡¡escape



detection¡£¡¡E¡£g¡£¡¡'Is¡¡every¡¡circle¡¡a¡¡figure£¿'¡¡A¡¡diagram¡¡shows¡¡that



this¡¡is¡¡so£»¡¡but¡¡the¡¡minor¡¡premiss¡¡'Are¡¡epics¡¡circles£¿'¡¡is¡¡shown¡¡by¡¡the



diagram¡¡to¡¡be¡¡false¡£



¡¡¡¡If¡¡a¡¡proof¡¡has¡¡an¡¡inductive¡¡minor¡¡premiss£»¡¡one¡¡should¡¡not¡¡bring¡¡an



'objection'¡¡against¡¡it¡£¡¡For¡¡since¡¡every¡¡premiss¡¡must¡¡be¡¡applicable



to¡¡a¡¡number¡¡of¡¡cases¡¡£¨otherwise¡¡it¡¡will¡¡not¡¡be¡¡true¡¡in¡¡every¡¡instance£»



which£»¡¡since¡¡the¡¡syllogism¡¡proceeds¡¡from¡¡universals£»¡¡it¡¡must¡¡be£©£»¡¡then



assuredly¡¡the¡¡same¡¡is¡¡true¡¡of¡¡an¡¡'objection'£»¡¡since¡¡premisses¡¡and



'objections'¡¡are¡¡so¡¡far¡¡the¡¡same¡¡that¡¡anything¡¡which¡¡can¡¡be¡¡validly



advanced¡¡as¡¡an¡¡'objection'¡¡must¡¡be¡¡such¡¡that¡¡it¡¡could¡¡take¡¡the¡¡form¡¡of



a¡¡premiss£»¡¡either¡¡demonstrative¡¡or¡¡dialectical¡£¡¡On¡¡the¡¡other¡¡hand£»



arguments¡¡formally¡¡illogical¡¡do¡¡sometimes¡¡occur¡¡through¡¡taking¡¡as



middles¡¡mere

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ