Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ5½Ú

posterior analytics-µÚ5½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






it¡¡cannot¡¡be¡¡proved¡¡by¡¡geometry¡¡that¡¡opposites¡¡fall¡¡under¡¡one¡¡science£»



nor¡¡even¡¡that¡¡the¡¡product¡¡of¡¡two¡¡cubes¡¡is¡¡a¡¡cube¡£¡¡Nor¡¡can¡¡the



theorem¡¡of¡¡any¡¡one¡¡science¡¡be¡¡demonstrated¡¡by¡¡means¡¡of¡¡another



science£»¡¡unless¡¡these¡¡theorems¡¡are¡¡related¡¡as¡¡subordinate¡¡to



superior¡¡£¨e¡£g¡£¡¡as¡¡optical¡¡theorems¡¡to¡¡geometry¡¡or¡¡harmonic¡¡theorems¡¡to



arithmetic£©¡£¡¡Geometry¡¡again¡¡cannot¡¡prove¡¡of¡¡lines¡¡any¡¡property¡¡which



they¡¡do¡¡not¡¡possess¡¡qua¡¡lines£»¡¡i¡£e¡£¡¡in¡¡virtue¡¡of¡¡the¡¡fundamental



truths¡¡of¡¡their¡¡peculiar¡¡genus£º¡¡it¡¡cannot¡¡show£»¡¡for¡¡example£»¡¡that



the¡¡straight¡¡line¡¡is¡¡the¡¡most¡¡beautiful¡¡of¡¡lines¡¡or¡¡the¡¡contrary¡¡of



the¡¡circle£»¡¡for¡¡these¡¡qualities¡¡do¡¡not¡¡belong¡¡to¡¡lines¡¡in¡¡virtue¡¡of



their¡¡peculiar¡¡genus£»¡¡but¡¡through¡¡some¡¡property¡¡which¡¡it¡¡shares¡¡with



other¡¡genera¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡8







¡¡¡¡It¡¡is¡¡also¡¡clear¡¡that¡¡if¡¡the¡¡premisses¡¡from¡¡which¡¡the¡¡syllogism



proceeds¡¡are¡¡commensurately¡¡universal£»¡¡the¡¡conclusion¡¡of¡¡such¡¡i¡£e¡£



in¡¡the¡¡unqualified¡¡sense¡­must¡¡also¡¡be¡¡eternal¡£¡¡Therefore¡¡no



attribute¡¡can¡¡be¡¡demonstrated¡¡nor¡¡known¡¡by¡¡strictly¡¡scientific



knowledge¡¡to¡¡inhere¡¡in¡¡perishable¡¡things¡£¡¡The¡¡proof¡¡can¡¡only¡¡be



accidental£»¡¡because¡¡the¡¡attribute's¡¡connexion¡¡with¡¡its¡¡perishable



subject¡¡is¡¡not¡¡commensurately¡¡universal¡¡but¡¡temporary¡¡and¡¡special¡£



If¡¡such¡¡a¡¡demonstration¡¡is¡¡made£»¡¡one¡¡premiss¡¡must¡¡be¡¡perishable¡¡and



not¡¡commensurately¡¡universal¡¡£¨perishable¡¡because¡¡only¡¡if¡¡it¡¡is



perishable¡¡will¡¡the¡¡conclusion¡¡be¡¡perishable£»¡¡not¡¡commensurately



universal£»¡¡because¡¡the¡¡predicate¡¡will¡¡be¡¡predicable¡¡of¡¡some



instances¡¡of¡¡the¡¡subject¡¡and¡¡not¡¡of¡¡others£©£»¡¡so¡¡that¡¡the¡¡conclusion



can¡¡only¡¡be¡¡that¡¡a¡¡fact¡¡is¡¡true¡¡at¡¡the¡¡moment¡­not¡¡commensurately¡¡and



universally¡£¡¡The¡¡same¡¡is¡¡true¡¡of¡¡definitions£»¡¡since¡¡a¡¡definition¡¡is



either¡¡a¡¡primary¡¡premiss¡¡or¡¡a¡¡conclusion¡¡of¡¡a¡¡demonstration£»¡¡or¡¡else



only¡¡differs¡¡from¡¡a¡¡demonstration¡¡in¡¡the¡¡order¡¡of¡¡its¡¡terms¡£



Demonstration¡¡and¡¡science¡¡of¡¡merely¡¡frequent¡¡occurrences¡­e¡£g¡£¡¡of



eclipse¡¡as¡¡happening¡¡to¡¡the¡¡moon¡­are£»¡¡as¡¡such£»¡¡clearly¡¡eternal£º



whereas¡¡so¡¡far¡¡as¡¡they¡¡are¡¡not¡¡eternal¡¡they¡¡are¡¡not¡¡fully



commensurate¡£¡¡Other¡¡subjects¡¡too¡¡have¡¡properties¡¡attaching¡¡to¡¡them



in¡¡the¡¡same¡¡way¡¡as¡¡eclipse¡¡attaches¡¡to¡¡the¡¡moon¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡9







¡¡¡¡It¡¡is¡¡clear¡¡that¡¡if¡¡the¡¡conclusion¡¡is¡¡to¡¡show¡¡an¡¡attribute



inhering¡¡as¡¡such£»¡¡nothing¡¡can¡¡be¡¡demonstrated¡¡except¡¡from¡¡its



'appropriate'¡¡basic¡¡truths¡£¡¡Consequently¡¡a¡¡proof¡¡even¡¡from¡¡true£»



indemonstrable£»¡¡and¡¡immediate¡¡premisses¡¡does¡¡not¡¡constitute¡¡knowledge¡£



Such¡¡proofs¡¡are¡¡like¡¡Bryson's¡¡method¡¡of¡¡squaring¡¡the¡¡circle£»¡¡for



they¡¡operate¡¡by¡¡taking¡¡as¡¡their¡¡middle¡¡a¡¡common¡¡character¡­a¡¡character£»



therefore£»¡¡which¡¡the¡¡subject¡¡may¡¡share¡¡with¡¡another¡­and¡¡consequently



they¡¡apply¡¡equally¡¡to¡¡subjects¡¡different¡¡in¡¡kind¡£¡¡They¡¡therefore



afford¡¡knowledge¡¡of¡¡an¡¡attribute¡¡only¡¡as¡¡inhering¡¡accidentally£»¡¡not¡¡as



belonging¡¡to¡¡its¡¡subject¡¡as¡¡such£º¡¡otherwise¡¡they¡¡would¡¡not¡¡have¡¡been



applicable¡¡to¡¡another¡¡genus¡£



¡¡¡¡Our¡¡knowledge¡¡of¡¡any¡¡attribute's¡¡connexion¡¡with¡¡a¡¡subject¡¡is



accidental¡¡unless¡¡we¡¡know¡¡that¡¡connexion¡¡through¡¡the¡¡middle¡¡term¡¡in



virtue¡¡of¡¡which¡¡it¡¡inheres£»¡¡and¡¡as¡¡an¡¡inference¡¡from¡¡basic¡¡premisses



essential¡¡and¡¡'appropriate'¡¡to¡¡the¡¡subject¡­unless¡¡we¡¡know£»¡¡e¡£g¡£¡¡the



property¡¡of¡¡possessing¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles¡¡as¡¡belonging



to¡¡that¡¡subject¡¡in¡¡which¡¡it¡¡inheres¡¡essentially£»¡¡and¡¡as¡¡inferred



from¡¡basic¡¡premisses¡¡essential¡¡and¡¡'appropriate'¡¡to¡¡that¡¡subject£º¡¡so



that¡¡if¡¡that¡¡middle¡¡term¡¡also¡¡belongs¡¡essentially¡¡to¡¡the¡¡minor£»¡¡the



middle¡¡must¡¡belong¡¡to¡¡the¡¡same¡¡kind¡¡as¡¡the¡¡major¡¡and¡¡minor¡¡terms¡£



The¡¡only¡¡exceptions¡¡to¡¡this¡¡rule¡¡are¡¡such¡¡cases¡¡as¡¡theorems¡¡in



harmonics¡¡which¡¡are¡¡demonstrable¡¡by¡¡arithmetic¡£¡¡Such¡¡theorems¡¡are



proved¡¡by¡¡the¡¡same¡¡middle¡¡terms¡¡as¡¡arithmetical¡¡properties£»¡¡but¡¡with¡¡a



qualification¡­the¡¡fact¡¡falls¡¡under¡¡a¡¡separate¡¡science¡¡£¨for¡¡the¡¡subject



genus¡¡is¡¡separate£©£»¡¡but¡¡the¡¡reasoned¡¡fact¡¡concerns¡¡the¡¡superior



science£»¡¡to¡¡which¡¡the¡¡attributes¡¡essentially¡¡belong¡£¡¡Thus£»¡¡even



these¡¡apparent¡¡exceptions¡¡show¡¡that¡¡no¡¡attribute¡¡is¡¡strictly



demonstrable¡¡except¡¡from¡¡its¡¡'appropriate'¡¡basic¡¡truths£»¡¡which£»



however£»¡¡in¡¡the¡¡case¡¡of¡¡these¡¡sciences¡¡have¡¡the¡¡requisite¡¡identity



of¡¡character¡£



¡¡¡¡It¡¡is¡¡no¡¡less¡¡evident¡¡that¡¡the¡¡peculiar¡¡basic¡¡truths¡¡of¡¡each



inhering¡¡attribute¡¡are¡¡indemonstrable£»¡¡for¡¡basic¡¡truths¡¡from¡¡which



they¡¡might¡¡be¡¡deduced¡¡would¡¡be¡¡basic¡¡truths¡¡of¡¡all¡¡that¡¡is£»¡¡and¡¡the



science¡¡to¡¡which¡¡they¡¡belonged¡¡would¡¡possess¡¡universal¡¡sovereignty¡£



This¡¡is¡¡so¡¡because¡¡he¡¡knows¡¡better¡¡whose¡¡knowledge¡¡is¡¡deduced¡¡from



higher¡¡causes£»¡¡for¡¡his¡¡knowledge¡¡is¡¡from¡¡prior¡¡premisses¡¡when¡¡it



derives¡¡from¡¡causes¡¡themselves¡¡uncaused£º¡¡hence£»¡¡if¡¡he¡¡knows¡¡better



than¡¡others¡¡or¡¡best¡¡of¡¡all£»¡¡his¡¡knowledge¡¡would¡¡be¡¡science¡¡in¡¡a¡¡higher



or¡¡the¡¡highest¡¡degree¡£¡¡But£»¡¡as¡¡things¡¡are£»¡¡demonstration¡¡is¡¡not



transferable¡¡to¡¡another¡¡genus£»¡¡with¡¡such¡¡exceptions¡¡as¡¡we¡¡have



mentioned¡¡of¡¡the¡¡application¡¡of¡¡geometrical¡¡demonstrations¡¡to¡¡theorems



in¡¡mechanics¡¡or¡¡optics£»¡¡or¡¡of¡¡arithmetical¡¡demonstrations¡¡to¡¡those



of¡¡harmonics¡£



¡¡¡¡It¡¡is¡¡hard¡¡to¡¡be¡¡sure¡¡whether¡¡one¡¡knows¡¡or¡¡not£»¡¡for¡¡it¡¡is¡¡hard¡¡to¡¡be



sure¡¡whether¡¡one's¡¡knowledge¡¡is¡¡based¡¡on¡¡the¡¡basic¡¡truths



appropriate¡¡to¡¡each¡¡attribute¡­the¡¡differentia¡¡of¡¡true¡¡knowledge¡£¡¡We



think¡¡we¡¡have¡¡scientific¡¡knowledge¡¡if¡¡we¡¡have¡¡reasoned¡¡from¡¡true¡¡and



primary¡¡premisses¡£¡¡But¡¡that¡¡is¡¡not¡¡so£º¡¡the¡¡conclusion¡¡must¡¡be



homogeneous¡¡with¡¡the¡¡basic¡¡facts¡¡of¡¡the¡¡science¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10







¡¡¡¡I¡¡call¡¡the¡¡basic¡¡truths¡¡of¡¡every¡¡genus¡¡those¡¡clements¡¡in¡¡it¡¡the



existence¡¡of¡¡which¡¡cannot¡¡be¡¡proved¡£¡¡As¡¡regards¡¡both¡¡these¡¡primary



truths¡¡and¡¡the¡¡attributes¡¡dependent¡¡on¡¡them¡¡the¡¡meaning¡¡of¡¡the¡¡name¡¡is



assumed¡£¡¡The¡¡fact¡¡of¡¡their¡¡existence¡¡as¡¡regards¡¡the¡¡primary¡¡truths



must¡¡be¡¡assumed£»¡¡but¡¡it¡¡has¡¡to¡¡be¡¡proved¡¡of¡¡the¡¡remainder£»¡¡the



attributes¡£¡¡Thus¡¡we¡¡assume¡¡the¡¡meaning¡¡alike¡¡of¡¡unity£»¡¡straight£»¡¡and



triangular£»¡¡but¡¡while¡¡as¡¡regards¡¡unity¡¡and¡¡magnitude¡¡we¡¡assume¡¡also



the¡¡fact¡¡of¡¡their¡¡existence£»¡¡in¡¡the¡¡case¡¡of¡¡the¡¡remainder¡¡proof¡¡is



required¡£



¡¡¡¡Of¡¡the¡¡basic¡¡truths¡¡used¡¡in¡¡the¡¡demonstrative¡¡sciences¡¡some¡¡are



peculiar¡¡to¡¡each¡¡science£»¡¡and¡¡some¡¡are¡¡common£»¡¡but¡¡common¡¡only¡¡in



the¡¡sense¡¡of¡¡analogous£»¡¡being¡¡of¡¡use¡¡only¡¡in¡¡so¡¡far¡¡as¡¡they¡¡fall



within¡¡the¡¡genus¡¡constituting¡¡the¡¡province¡¡of¡¡the¡¡science¡¡in¡¡question¡£



¡¡¡¡Peculiar¡¡truths¡¡are£»¡¡e¡£g¡£¡¡the¡¡definitions¡¡of¡¡line¡¡and¡¡straight£»



common¡¡truths¡¡are¡¡such¡¡as¡¡'take¡¡equals¡¡from¡¡equals¡¡and¡¡equals¡¡remain'¡£



Only¡¡so¡¡much¡¡of¡¡these¡¡common¡¡truths¡¡is¡¡required¡¡as¡¡falls¡¡within¡¡the



genus¡¡in¡¡question£º¡¡for¡¡a¡¡truth¡¡of¡¡this¡¡kind¡¡will¡¡have¡¡the¡¡same¡¡force



even¡¡if¡¡not¡¡used¡¡generally¡¡but¡¡applied¡¡by¡¡the¡¡geometer¡¡only¡¡to



magnitudes£»¡¡or¡¡by¡¡the¡¡arithmetician¡¡only¡¡to¡¡numbers¡£¡¡Also¡¡peculiar



to¡¡a¡¡science¡¡are¡¡the¡¡subjects¡¡the¡¡existence¡¡as¡¡well¡¡as¡¡the¡¡meaning



of¡¡which¡¡it¡¡assumes£»¡¡and¡¡the¡¡essential¡¡attributes¡¡of¡¡which¡¡it



investigates£»¡¡e¡£g¡£¡¡in¡¡arithmetic¡¡units£»¡¡in¡¡geometry¡¡points¡¡and



lines¡£¡¡Both¡¡the¡¡existence¡¡and¡¡the¡¡meaning¡¡of¡¡the¡¡subjects¡¡are



assumed¡¡by¡¡these¡¡sciences£»¡¡but¡¡of¡¡their¡¡essential¡¡attributes¡¡only



the¡¡meaning¡¡is¡¡assumed¡£¡¡For¡¡example¡¡arithmetic¡¡assumes¡¡the¡¡meaning



of¡¡odd¡¡and¡¡even£»¡¡square¡¡and¡¡cube£»¡¡geometry¡¡that¡¡of¡¡incommensurable£»¡¡or



of¡¡deflection¡¡or¡¡verging¡¡of¡¡lines£»¡¡whereas¡¡the¡¡existence¡¡of¡¡these



attributes¡¡is¡¡demonstrated¡¡by¡¡means¡¡of¡¡the¡¡axioms¡¡and¡¡from¡¡previous



conclusions¡¡as¡¡premisses¡£¡¡Astronomy¡¡too¡¡proceeds¡¡in¡¡the¡¡same¡¡way¡£



For¡¡indeed¡¡every¡¡demonstrative¡¡science¡¡has¡¡three¡¡elements£º¡¡£¨1£©¡¡that



which¡¡it¡¡posits£»¡¡the¡¡subject¡¡genus¡¡whose¡¡essential¡¡attributes¡¡it



examines£»¡¡£¨2£©¡¡the¡¡so¡­called¡¡axioms£»¡¡which¡¡are¡¡primary¡¡premisses¡¡of¡¡its



demonstration£»¡¡£¨3£©¡¡the¡¡attributes£»¡¡the¡¡meaning¡¡of¡¡which¡¡it¡¡assumes¡£



Yet¡¡some¡¡sciences¡¡may¡¡very¡¡well¡¡pass¡¡over¡¡some¡¡of¡¡these¡¡elements£»¡¡e¡£g¡£



we¡¡might¡¡not¡¡expressly¡¡posit¡¡the¡¡existence¡¡of¡¡the¡¡genus¡¡if¡¡its



existence¡¡were¡¡obvious¡¡£¨for¡¡instance£»¡¡the¡¡existence¡¡of¡¡hot¡¡and¡¡cold¡¡is



more¡¡evident¡¡than¡¡that¡¡of¡¡number£©£»¡¡or¡¡we¡¡might¡¡omit¡¡to¡¡assume



expressly¡¡the¡¡meaning¡¡of¡¡the¡¡attributes¡¡if¡¡it¡¡were¡¡well¡¡understood¡£¡¡In



the¡¡way¡¡the¡¡meaning¡¡of¡¡axioms£»¡¡such¡¡as¡¡'Take¡¡equals¡¡from¡¡equals¡¡and



equals¡¡remain'£»¡¡is¡¡well¡¡known¡¡and¡¡so¡¡not¡¡expressly¡¡assumed¡£



Nevertheless¡¡in¡¡the¡¡nature¡¡of¡¡the¡¡case¡¡the¡¡essential¡¡elements¡¡of



demonstration¡¡are¡¡three£º¡¡the¡¡subject£»¡¡the¡¡attributes£»¡¡and¡¡the¡¡basic



premisses¡£



¡¡¡¡That¡¡which¡¡expresses¡¡necessary¡¡self¡­grounded¡¡fact£»¡¡and¡¡which¡¡we¡¡must



necessarily¡¡believe£»¡¡is¡¡distinct¡¡both¡¡from¡¡the¡¡hypotheses¡¡of¡¡a¡¡science



and¡¡from¡¡illegitimate¡¡postulate¡­I¡¡say¡¡'must¡¡believe'£»¡¡because¡¡all



syllogism£»¡¡and¡¡therefore¡¡a¡¡fortiori¡¡demonstration£»¡¡is¡¡addressed¡¡not¡¡to




·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ