Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ4½Ú

posterior analytics-µÚ4½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






Clearly¡¡this¡¡point¡¡is¡¡the¡¡first¡¡term¡¡in¡¡which¡¡it¡¡is¡¡found¡¡to¡¡inhere¡¡as



the¡¡elimination¡¡of¡¡inferior¡¡differentiae¡¡proceeds¡£¡¡Thus¡¡the¡¡angles



of¡¡a¡¡brazen¡¡isosceles¡¡triangle¡¡are¡¡equal¡¡to¡¡two¡¡right¡¡angles£º¡¡but



eliminate¡¡brazen¡¡and¡¡isosceles¡¡and¡¡the¡¡attribute¡¡remains¡£¡¡'But'¡­you



may¡¡say¡­'eliminate¡¡figure¡¡or¡¡limit£»¡¡and¡¡the¡¡attribute¡¡vanishes¡£'¡¡True£»



but¡¡figure¡¡and¡¡limit¡¡are¡¡not¡¡the¡¡first¡¡differentiae¡¡whose



elimination¡¡destroys¡¡the¡¡attribute¡£¡¡'Then¡¡what¡¡is¡¡the¡¡first£¿'¡¡If¡¡it¡¡is



triangle£»¡¡it¡¡will¡¡be¡¡in¡¡virtue¡¡of¡¡triangle¡¡that¡¡the¡¡attribute



belongs¡¡to¡¡all¡¡the¡¡other¡¡subjects¡¡of¡¡which¡¡it¡¡is¡¡predicable£»¡¡and



triangle¡¡is¡¡the¡¡subject¡¡to¡¡which¡¡it¡¡can¡¡be¡¡demonstrated¡¡as¡¡belonging



commensurately¡¡and¡¡universally¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6







¡¡¡¡Demonstrative¡¡knowledge¡¡must¡¡rest¡¡on¡¡necessary¡¡basic¡¡truths£»¡¡for¡¡the



object¡¡of¡¡scientific¡¡knowledge¡¡cannot¡¡be¡¡other¡¡than¡¡it¡¡is¡£¡¡Now



attributes¡¡attaching¡¡essentially¡¡to¡¡their¡¡subjects¡¡attach



necessarily¡¡to¡¡them£º¡¡for¡¡essential¡¡attributes¡¡are¡¡either¡¡elements¡¡in



the¡¡essential¡¡nature¡¡of¡¡their¡¡subjects£»¡¡or¡¡contain¡¡their¡¡subjects¡¡as



elements¡¡in¡¡their¡¡own¡¡essential¡¡nature¡£¡¡£¨The¡¡pairs¡¡of¡¡opposites



which¡¡the¡¡latter¡¡class¡¡includes¡¡are¡¡necessary¡¡because¡¡one¡¡member¡¡or



the¡¡other¡¡necessarily¡¡inheres¡££©¡¡It¡¡follows¡¡from¡¡this¡¡that¡¡premisses¡¡of



the¡¡demonstrative¡¡syllogism¡¡must¡¡be¡¡connexions¡¡essential¡¡in¡¡the



sense¡¡explained£º¡¡for¡¡all¡¡attributes¡¡must¡¡inhere¡¡essentially¡¡or¡¡else¡¡be



accidental£»¡¡and¡¡accidental¡¡attributes¡¡are¡¡not¡¡necessary¡¡to¡¡their



subjects¡£



¡¡¡¡We¡¡must¡¡either¡¡state¡¡the¡¡case¡¡thus£»¡¡or¡¡else¡¡premise¡¡that¡¡the



conclusion¡¡of¡¡demonstration¡¡is¡¡necessary¡¡and¡¡that¡¡a¡¡demonstrated



conclusion¡¡cannot¡¡be¡¡other¡¡than¡¡it¡¡is£»¡¡and¡¡then¡¡infer¡¡that¡¡the



conclusion¡¡must¡¡be¡¡developed¡¡from¡¡necessary¡¡premisses¡£¡¡For¡¡though



you¡¡may¡¡reason¡¡from¡¡true¡¡premisses¡¡without¡¡demonstrating£»¡¡yet¡¡if



your¡¡premisses¡¡are¡¡necessary¡¡you¡¡will¡¡assuredly¡¡demonstrate¡­in¡¡such



necessity¡¡you¡¡have¡¡at¡¡once¡¡a¡¡distinctive¡¡character¡¡of¡¡demonstration¡£



That¡¡demonstration¡¡proceeds¡¡from¡¡necessary¡¡premisses¡¡is¡¡also¡¡indicated



by¡¡the¡¡fact¡¡that¡¡the¡¡objection¡¡we¡¡raise¡¡against¡¡a¡¡professed



demonstration¡¡is¡¡that¡¡a¡¡premiss¡¡of¡¡it¡¡is¡¡not¡¡a¡¡necessary¡¡truth¡­whether



we¡¡think¡¡it¡¡altogether¡¡devoid¡¡of¡¡necessity£»¡¡or¡¡at¡¡any¡¡rate¡¡so¡¡far¡¡as



our¡¡opponent's¡¡previous¡¡argument¡¡goes¡£¡¡This¡¡shows¡¡how¡¡naive¡¡it¡¡is¡¡to



suppose¡¡one's¡¡basic¡¡truths¡¡rightly¡¡chosen¡¡if¡¡one¡¡starts¡¡with¡¡a



proposition¡¡which¡¡is¡¡£¨1£©¡¡popularly¡¡accepted¡¡and¡¡£¨2£©¡¡true£»¡¡such¡¡as



the¡¡sophists'¡¡assumption¡¡that¡¡to¡¡know¡¡is¡¡the¡¡same¡¡as¡¡to¡¡possess



knowledge¡£¡¡For¡¡£¨1£©¡¡popular¡¡acceptance¡¡or¡¡rejection¡¡is¡¡no¡¡criterion



of¡¡a¡¡basic¡¡truth£»¡¡which¡¡can¡¡only¡¡be¡¡the¡¡primary¡¡law¡¡of¡¡the¡¡genus



constituting¡¡the¡¡subject¡¡matter¡¡of¡¡the¡¡demonstration£»¡¡and¡¡£¨2£©¡¡not



all¡¡truth¡¡is¡¡'appropriate'¡£



¡¡¡¡A¡¡further¡¡proof¡¡that¡¡the¡¡conclusion¡¡must¡¡be¡¡the¡¡development¡¡of



necessary¡¡premisses¡¡is¡¡as¡¡follows¡£¡¡Where¡¡demonstration¡¡is¡¡possible£»



one¡¡who¡¡can¡¡give¡¡no¡¡account¡¡which¡¡includes¡¡the¡¡cause¡¡has¡¡no¡¡scientific



knowledge¡£¡¡If£»¡¡then£»¡¡we¡¡suppose¡¡a¡¡syllogism¡¡in¡¡which£»¡¡though¡¡A



necessarily¡¡inheres¡¡in¡¡C£»¡¡yet¡¡B£»¡¡the¡¡middle¡¡term¡¡of¡¡the¡¡demonstration£»



is¡¡not¡¡necessarily¡¡connected¡¡with¡¡A¡¡and¡¡C£»¡¡then¡¡the¡¡man¡¡who¡¡argues



thus¡¡has¡¡no¡¡reasoned¡¡knowledge¡¡of¡¡the¡¡conclusion£»¡¡since¡¡this



conclusion¡¡does¡¡not¡¡owe¡¡its¡¡necessity¡¡to¡¡the¡¡middle¡¡term£»¡¡for¡¡though



the¡¡conclusion¡¡is¡¡necessary£»¡¡the¡¡mediating¡¡link¡¡is¡¡a¡¡contingent



fact¡£¡¡Or¡¡again£»¡¡if¡¡a¡¡man¡¡is¡¡without¡¡knowledge¡¡now£»¡¡though¡¡he¡¡still



retains¡¡the¡¡steps¡¡of¡¡the¡¡argument£»¡¡though¡¡there¡¡is¡¡no¡¡change¡¡in



himself¡¡or¡¡in¡¡the¡¡fact¡¡and¡¡no¡¡lapse¡¡of¡¡memory¡¡on¡¡his¡¡part£»¡¡then



neither¡¡had¡¡he¡¡knowledge¡¡previously¡£¡¡But¡¡the¡¡mediating¡¡link£»¡¡not¡¡being



necessary£»¡¡may¡¡have¡¡perished¡¡in¡¡the¡¡interval£»¡¡and¡¡if¡¡so£»¡¡though



there¡¡be¡¡no¡¡change¡¡in¡¡him¡¡nor¡¡in¡¡the¡¡fact£»¡¡and¡¡though¡¡he¡¡will¡¡still



retain¡¡the¡¡steps¡¡of¡¡the¡¡argument£»¡¡yet¡¡he¡¡has¡¡not¡¡knowledge£»¡¡and



therefore¡¡had¡¡not¡¡knowledge¡¡before¡£¡¡Even¡¡if¡¡the¡¡link¡¡has¡¡not



actually¡¡perished¡¡but¡¡is¡¡liable¡¡to¡¡perish£»¡¡this¡¡situation¡¡is



possible¡¡and¡¡might¡¡occur¡£¡¡But¡¡such¡¡a¡¡condition¡¡cannot¡¡be¡¡knowledge¡£



¡¡¡¡When¡¡the¡¡conclusion¡¡is¡¡necessary£»¡¡the¡¡middle¡¡through¡¡which¡¡it¡¡was



proved¡¡may¡¡yet¡¡quite¡¡easily¡¡be¡¡non¡­necessary¡£¡¡You¡¡can¡¡in¡¡fact¡¡infer



the¡¡necessary¡¡even¡¡from¡¡a¡¡non¡­necessary¡¡premiss£»¡¡just¡¡as¡¡you¡¡can¡¡infer



the¡¡true¡¡from¡¡the¡¡not¡¡true¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡when¡¡the¡¡middle¡¡is



necessary¡¡the¡¡conclusion¡¡must¡¡be¡¡necessary£»¡¡just¡¡as¡¡true¡¡premisses



always¡¡give¡¡a¡¡true¡¡conclusion¡£¡¡Thus£»¡¡if¡¡A¡¡is¡¡necessarily¡¡predicated¡¡of



B¡¡and¡¡B¡¡of¡¡C£»¡¡then¡¡A¡¡is¡¡necessarily¡¡predicated¡¡of¡¡C¡£¡¡But¡¡when¡¡the



conclusion¡¡is¡¡nonnecessary¡¡the¡¡middle¡¡cannot¡¡be¡¡necessary¡¡either¡£



Thus£º¡¡let¡¡A¡¡be¡¡predicated¡¡non¡­necessarily¡¡of¡¡C¡¡but¡¡necessarily¡¡of¡¡B£»



and¡¡let¡¡B¡¡be¡¡a¡¡necessary¡¡predicate¡¡of¡¡C£»¡¡then¡¡A¡¡too¡¡will¡¡be¡¡a



necessary¡¡predicate¡¡of¡¡C£»¡¡which¡¡by¡¡hypothesis¡¡it¡¡is¡¡not¡£



¡¡¡¡To¡¡sum¡¡up£»¡¡then£º¡¡demonstrative¡¡knowledge¡¡must¡¡be¡¡knowledge¡¡of¡¡a



necessary¡¡nexus£»¡¡and¡¡therefore¡¡must¡¡clearly¡¡be¡¡obtained¡¡through¡¡a



necessary¡¡middle¡¡term£»¡¡otherwise¡¡its¡¡possessor¡¡will¡¡know¡¡neither¡¡the



cause¡¡nor¡¡the¡¡fact¡¡that¡¡his¡¡conclusion¡¡is¡¡a¡¡necessary¡¡connexion¡£



Either¡¡he¡¡will¡¡mistake¡¡the¡¡non¡­necessary¡¡for¡¡the¡¡necessary¡¡and¡¡believe



the¡¡necessity¡¡of¡¡the¡¡conclusion¡¡without¡¡knowing¡¡it£»¡¡or¡¡else¡¡he¡¡will



not¡¡even¡¡believe¡¡it¡­in¡¡which¡¡case¡¡he¡¡will¡¡be¡¡equally¡¡ignorant£»¡¡whether



he¡¡actually¡¡infers¡¡the¡¡mere¡¡fact¡¡through¡¡middle¡¡terms¡¡or¡¡the



reasoned¡¡fact¡¡and¡¡from¡¡immediate¡¡premisses¡£



¡¡¡¡Of¡¡accidents¡¡that¡¡are¡¡not¡¡essential¡¡according¡¡to¡¡our¡¡definition¡¡of



essential¡¡there¡¡is¡¡no¡¡demonstrative¡¡knowledge£»¡¡for¡¡since¡¡an



accident£»¡¡in¡¡the¡¡sense¡¡in¡¡which¡¡I¡¡here¡¡speak¡¡of¡¡it£»¡¡may¡¡also¡¡not



inhere£»¡¡it¡¡is¡¡impossible¡¡to¡¡prove¡¡its¡¡inherence¡¡as¡¡a¡¡necessary



conclusion¡£¡¡A¡¡difficulty£»¡¡however£»¡¡might¡¡be¡¡raised¡¡as¡¡to¡¡why¡¡in



dialectic£»¡¡if¡¡the¡¡conclusion¡¡is¡¡not¡¡a¡¡necessary¡¡connexion£»¡¡such¡¡and



such¡¡determinate¡¡premisses¡¡should¡¡be¡¡proposed¡¡in¡¡order¡¡to¡¡deal¡¡with



such¡¡and¡¡such¡¡determinate¡¡problems¡£¡¡Would¡¡not¡¡the¡¡result¡¡be¡¡the¡¡same



if¡¡one¡¡asked¡¡any¡¡questions¡¡whatever¡¡and¡¡then¡¡merely¡¡stated¡¡one's



conclusion£¿¡¡The¡¡solution¡¡is¡¡that¡¡determinate¡¡questions¡¡have¡¡to¡¡be¡¡put£»



not¡¡because¡¡the¡¡replies¡¡to¡¡them¡¡affirm¡¡facts¡¡which¡¡necessitate¡¡facts



affirmed¡¡by¡¡the¡¡conclusion£»¡¡but¡¡because¡¡these¡¡answers¡¡are¡¡propositions



which¡¡if¡¡the¡¡answerer¡¡affirm£»¡¡he¡¡must¡¡affirm¡¡the¡¡conclusion¡¡and¡¡affirm



it¡¡with¡¡truth¡¡if¡¡they¡¡are¡¡true¡£



¡¡¡¡Since¡¡it¡¡is¡¡just¡¡those¡¡attributes¡¡within¡¡every¡¡genus¡¡which¡¡are



essential¡¡and¡¡possessed¡¡by¡¡their¡¡respective¡¡subjects¡¡as¡¡such¡¡that



are¡¡necessary¡¡it¡¡is¡¡clear¡¡that¡¡both¡¡the¡¡conclusions¡¡and¡¡the



premisses¡¡of¡¡demonstrations¡¡which¡¡produce¡¡scientific¡¡knowledge¡¡are



essential¡£¡¡For¡¡accidents¡¡are¡¡not¡¡necessary£º¡¡and£»¡¡further£»¡¡since



accidents¡¡are¡¡not¡¡necessary¡¡one¡¡does¡¡not¡¡necessarily¡¡have¡¡reasoned



knowledge¡¡of¡¡a¡¡conclusion¡¡drawn¡¡from¡¡them¡¡£¨this¡¡is¡¡so¡¡even¡¡if¡¡the



accidental¡¡premisses¡¡are¡¡invariable¡¡but¡¡not¡¡essential£»¡¡as¡¡in¡¡proofs



through¡¡signs£»¡¡for¡¡though¡¡the¡¡conclusion¡¡be¡¡actually¡¡essential£»¡¡one



will¡¡not¡¡know¡¡it¡¡as¡¡essential¡¡nor¡¡know¡¡its¡¡reason£©£»¡¡but¡¡to¡¡have



reasoned¡¡knowledge¡¡of¡¡a¡¡conclusion¡¡is¡¡to¡¡know¡¡it¡¡through¡¡its¡¡cause¡£¡¡We



may¡¡conclude¡¡that¡¡the¡¡middle¡¡must¡¡be¡¡consequentially¡¡connected¡¡with



the¡¡minor£»¡¡and¡¡the¡¡major¡¡with¡¡the¡¡middle¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7







¡¡¡¡It¡¡follows¡¡that¡¡we¡¡cannot¡¡in¡¡demonstrating¡¡pass¡¡from¡¡one¡¡genus¡¡to



another¡£¡¡We¡¡cannot£»¡¡for¡¡instance£»¡¡prove¡¡geometrical¡¡truths¡¡by



arithmetic¡£¡¡For¡¡there¡¡are¡¡three¡¡elements¡¡in¡¡demonstration£º¡¡£¨1£©¡¡what¡¡is



proved£»¡¡the¡¡conclusion¡­an¡¡attribute¡¡inhering¡¡essentially¡¡in¡¡a¡¡genus£»



£¨2£©¡¡the¡¡axioms£»¡¡i¡£e¡£¡¡axioms¡¡which¡¡are¡¡premisses¡¡of¡¡demonstration£»



£¨3£©¡¡the¡¡subject¡­genus¡¡whose¡¡attributes£»¡¡i¡£e¡£¡¡essential¡¡properties£»¡¡are



revealed¡¡by¡¡the¡¡demonstration¡£¡¡The¡¡axioms¡¡which¡¡are¡¡premisses¡¡of



demonstration¡¡may¡¡be¡¡identical¡¡in¡¡two¡¡or¡¡more¡¡sciences£º¡¡but¡¡in¡¡the



case¡¡of¡¡two¡¡different¡¡genera¡¡such¡¡as¡¡arithmetic¡¡and¡¡geometry¡¡you



cannot¡¡apply¡¡arithmetical¡¡demonstration¡¡to¡¡the¡¡properties¡¡of



magnitudes¡¡unless¡¡the¡¡magnitudes¡¡in¡¡question¡¡are¡¡numbers¡£¡¡How¡¡in



certain¡¡cases¡¡transference¡¡is¡¡possible¡¡I¡¡will¡¡explain¡¡later¡£



¡¡¡¡Arithmetical¡¡demonstration¡¡and¡¡the¡¡other¡¡sciences¡¡likewise



possess£»¡¡each¡¡of¡¡them£»¡¡their¡¡own¡¡genera£»¡¡so¡¡that¡¡if¡¡the



demonstration¡¡is¡¡to¡¡pass¡¡from¡¡one¡¡sphere¡¡to¡¡another£»¡¡the¡¡genus¡¡must¡¡be



either¡¡absolutely¡¡or¡¡to¡¡some¡¡extent¡¡the¡¡same¡£¡¡If¡¡this¡¡is¡¡not¡¡so£»



transference¡¡is¡¡clearly¡¡impossible£»¡¡because¡¡the¡¡extreme¡¡and¡¡the¡¡middle



terms¡¡must¡¡be¡¡drawn¡¡from¡¡the¡¡same¡¡genus£º¡¡otherwise£»¡¡as¡¡predicated£»



they¡¡will¡¡not¡¡be¡¡essential¡¡and¡¡will¡¡thus¡¡be¡¡accidents¡£¡¡That¡¡is¡¡why



it¡¡cannot¡¡be¡¡proved¡¡by¡¡geometry¡¡that¡¡opposites¡¡fall¡¡under¡¡one¡¡science£»



nor¡¡even¡¡that

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ