posterior analytics-µÚ4½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
Clearly¡¡this¡¡point¡¡is¡¡the¡¡first¡¡term¡¡in¡¡which¡¡it¡¡is¡¡found¡¡to¡¡inhere¡¡as
the¡¡elimination¡¡of¡¡inferior¡¡differentiae¡¡proceeds¡£¡¡Thus¡¡the¡¡angles
of¡¡a¡¡brazen¡¡isosceles¡¡triangle¡¡are¡¡equal¡¡to¡¡two¡¡right¡¡angles£º¡¡but
eliminate¡¡brazen¡¡and¡¡isosceles¡¡and¡¡the¡¡attribute¡¡remains¡£¡¡'But'¡you
may¡¡say¡'eliminate¡¡figure¡¡or¡¡limit£»¡¡and¡¡the¡¡attribute¡¡vanishes¡£'¡¡True£»
but¡¡figure¡¡and¡¡limit¡¡are¡¡not¡¡the¡¡first¡¡differentiae¡¡whose
elimination¡¡destroys¡¡the¡¡attribute¡£¡¡'Then¡¡what¡¡is¡¡the¡¡first£¿'¡¡If¡¡it¡¡is
triangle£»¡¡it¡¡will¡¡be¡¡in¡¡virtue¡¡of¡¡triangle¡¡that¡¡the¡¡attribute
belongs¡¡to¡¡all¡¡the¡¡other¡¡subjects¡¡of¡¡which¡¡it¡¡is¡¡predicable£»¡¡and
triangle¡¡is¡¡the¡¡subject¡¡to¡¡which¡¡it¡¡can¡¡be¡¡demonstrated¡¡as¡¡belonging
commensurately¡¡and¡¡universally¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6
¡¡¡¡Demonstrative¡¡knowledge¡¡must¡¡rest¡¡on¡¡necessary¡¡basic¡¡truths£»¡¡for¡¡the
object¡¡of¡¡scientific¡¡knowledge¡¡cannot¡¡be¡¡other¡¡than¡¡it¡¡is¡£¡¡Now
attributes¡¡attaching¡¡essentially¡¡to¡¡their¡¡subjects¡¡attach
necessarily¡¡to¡¡them£º¡¡for¡¡essential¡¡attributes¡¡are¡¡either¡¡elements¡¡in
the¡¡essential¡¡nature¡¡of¡¡their¡¡subjects£»¡¡or¡¡contain¡¡their¡¡subjects¡¡as
elements¡¡in¡¡their¡¡own¡¡essential¡¡nature¡£¡¡£¨The¡¡pairs¡¡of¡¡opposites
which¡¡the¡¡latter¡¡class¡¡includes¡¡are¡¡necessary¡¡because¡¡one¡¡member¡¡or
the¡¡other¡¡necessarily¡¡inheres¡££©¡¡It¡¡follows¡¡from¡¡this¡¡that¡¡premisses¡¡of
the¡¡demonstrative¡¡syllogism¡¡must¡¡be¡¡connexions¡¡essential¡¡in¡¡the
sense¡¡explained£º¡¡for¡¡all¡¡attributes¡¡must¡¡inhere¡¡essentially¡¡or¡¡else¡¡be
accidental£»¡¡and¡¡accidental¡¡attributes¡¡are¡¡not¡¡necessary¡¡to¡¡their
subjects¡£
¡¡¡¡We¡¡must¡¡either¡¡state¡¡the¡¡case¡¡thus£»¡¡or¡¡else¡¡premise¡¡that¡¡the
conclusion¡¡of¡¡demonstration¡¡is¡¡necessary¡¡and¡¡that¡¡a¡¡demonstrated
conclusion¡¡cannot¡¡be¡¡other¡¡than¡¡it¡¡is£»¡¡and¡¡then¡¡infer¡¡that¡¡the
conclusion¡¡must¡¡be¡¡developed¡¡from¡¡necessary¡¡premisses¡£¡¡For¡¡though
you¡¡may¡¡reason¡¡from¡¡true¡¡premisses¡¡without¡¡demonstrating£»¡¡yet¡¡if
your¡¡premisses¡¡are¡¡necessary¡¡you¡¡will¡¡assuredly¡¡demonstrate¡in¡¡such
necessity¡¡you¡¡have¡¡at¡¡once¡¡a¡¡distinctive¡¡character¡¡of¡¡demonstration¡£
That¡¡demonstration¡¡proceeds¡¡from¡¡necessary¡¡premisses¡¡is¡¡also¡¡indicated
by¡¡the¡¡fact¡¡that¡¡the¡¡objection¡¡we¡¡raise¡¡against¡¡a¡¡professed
demonstration¡¡is¡¡that¡¡a¡¡premiss¡¡of¡¡it¡¡is¡¡not¡¡a¡¡necessary¡¡truth¡whether
we¡¡think¡¡it¡¡altogether¡¡devoid¡¡of¡¡necessity£»¡¡or¡¡at¡¡any¡¡rate¡¡so¡¡far¡¡as
our¡¡opponent's¡¡previous¡¡argument¡¡goes¡£¡¡This¡¡shows¡¡how¡¡naive¡¡it¡¡is¡¡to
suppose¡¡one's¡¡basic¡¡truths¡¡rightly¡¡chosen¡¡if¡¡one¡¡starts¡¡with¡¡a
proposition¡¡which¡¡is¡¡£¨1£©¡¡popularly¡¡accepted¡¡and¡¡£¨2£©¡¡true£»¡¡such¡¡as
the¡¡sophists'¡¡assumption¡¡that¡¡to¡¡know¡¡is¡¡the¡¡same¡¡as¡¡to¡¡possess
knowledge¡£¡¡For¡¡£¨1£©¡¡popular¡¡acceptance¡¡or¡¡rejection¡¡is¡¡no¡¡criterion
of¡¡a¡¡basic¡¡truth£»¡¡which¡¡can¡¡only¡¡be¡¡the¡¡primary¡¡law¡¡of¡¡the¡¡genus
constituting¡¡the¡¡subject¡¡matter¡¡of¡¡the¡¡demonstration£»¡¡and¡¡£¨2£©¡¡not
all¡¡truth¡¡is¡¡'appropriate'¡£
¡¡¡¡A¡¡further¡¡proof¡¡that¡¡the¡¡conclusion¡¡must¡¡be¡¡the¡¡development¡¡of
necessary¡¡premisses¡¡is¡¡as¡¡follows¡£¡¡Where¡¡demonstration¡¡is¡¡possible£»
one¡¡who¡¡can¡¡give¡¡no¡¡account¡¡which¡¡includes¡¡the¡¡cause¡¡has¡¡no¡¡scientific
knowledge¡£¡¡If£»¡¡then£»¡¡we¡¡suppose¡¡a¡¡syllogism¡¡in¡¡which£»¡¡though¡¡A
necessarily¡¡inheres¡¡in¡¡C£»¡¡yet¡¡B£»¡¡the¡¡middle¡¡term¡¡of¡¡the¡¡demonstration£»
is¡¡not¡¡necessarily¡¡connected¡¡with¡¡A¡¡and¡¡C£»¡¡then¡¡the¡¡man¡¡who¡¡argues
thus¡¡has¡¡no¡¡reasoned¡¡knowledge¡¡of¡¡the¡¡conclusion£»¡¡since¡¡this
conclusion¡¡does¡¡not¡¡owe¡¡its¡¡necessity¡¡to¡¡the¡¡middle¡¡term£»¡¡for¡¡though
the¡¡conclusion¡¡is¡¡necessary£»¡¡the¡¡mediating¡¡link¡¡is¡¡a¡¡contingent
fact¡£¡¡Or¡¡again£»¡¡if¡¡a¡¡man¡¡is¡¡without¡¡knowledge¡¡now£»¡¡though¡¡he¡¡still
retains¡¡the¡¡steps¡¡of¡¡the¡¡argument£»¡¡though¡¡there¡¡is¡¡no¡¡change¡¡in
himself¡¡or¡¡in¡¡the¡¡fact¡¡and¡¡no¡¡lapse¡¡of¡¡memory¡¡on¡¡his¡¡part£»¡¡then
neither¡¡had¡¡he¡¡knowledge¡¡previously¡£¡¡But¡¡the¡¡mediating¡¡link£»¡¡not¡¡being
necessary£»¡¡may¡¡have¡¡perished¡¡in¡¡the¡¡interval£»¡¡and¡¡if¡¡so£»¡¡though
there¡¡be¡¡no¡¡change¡¡in¡¡him¡¡nor¡¡in¡¡the¡¡fact£»¡¡and¡¡though¡¡he¡¡will¡¡still
retain¡¡the¡¡steps¡¡of¡¡the¡¡argument£»¡¡yet¡¡he¡¡has¡¡not¡¡knowledge£»¡¡and
therefore¡¡had¡¡not¡¡knowledge¡¡before¡£¡¡Even¡¡if¡¡the¡¡link¡¡has¡¡not
actually¡¡perished¡¡but¡¡is¡¡liable¡¡to¡¡perish£»¡¡this¡¡situation¡¡is
possible¡¡and¡¡might¡¡occur¡£¡¡But¡¡such¡¡a¡¡condition¡¡cannot¡¡be¡¡knowledge¡£
¡¡¡¡When¡¡the¡¡conclusion¡¡is¡¡necessary£»¡¡the¡¡middle¡¡through¡¡which¡¡it¡¡was
proved¡¡may¡¡yet¡¡quite¡¡easily¡¡be¡¡non¡necessary¡£¡¡You¡¡can¡¡in¡¡fact¡¡infer
the¡¡necessary¡¡even¡¡from¡¡a¡¡non¡necessary¡¡premiss£»¡¡just¡¡as¡¡you¡¡can¡¡infer
the¡¡true¡¡from¡¡the¡¡not¡¡true¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡when¡¡the¡¡middle¡¡is
necessary¡¡the¡¡conclusion¡¡must¡¡be¡¡necessary£»¡¡just¡¡as¡¡true¡¡premisses
always¡¡give¡¡a¡¡true¡¡conclusion¡£¡¡Thus£»¡¡if¡¡A¡¡is¡¡necessarily¡¡predicated¡¡of
B¡¡and¡¡B¡¡of¡¡C£»¡¡then¡¡A¡¡is¡¡necessarily¡¡predicated¡¡of¡¡C¡£¡¡But¡¡when¡¡the
conclusion¡¡is¡¡nonnecessary¡¡the¡¡middle¡¡cannot¡¡be¡¡necessary¡¡either¡£
Thus£º¡¡let¡¡A¡¡be¡¡predicated¡¡non¡necessarily¡¡of¡¡C¡¡but¡¡necessarily¡¡of¡¡B£»
and¡¡let¡¡B¡¡be¡¡a¡¡necessary¡¡predicate¡¡of¡¡C£»¡¡then¡¡A¡¡too¡¡will¡¡be¡¡a
necessary¡¡predicate¡¡of¡¡C£»¡¡which¡¡by¡¡hypothesis¡¡it¡¡is¡¡not¡£
¡¡¡¡To¡¡sum¡¡up£»¡¡then£º¡¡demonstrative¡¡knowledge¡¡must¡¡be¡¡knowledge¡¡of¡¡a
necessary¡¡nexus£»¡¡and¡¡therefore¡¡must¡¡clearly¡¡be¡¡obtained¡¡through¡¡a
necessary¡¡middle¡¡term£»¡¡otherwise¡¡its¡¡possessor¡¡will¡¡know¡¡neither¡¡the
cause¡¡nor¡¡the¡¡fact¡¡that¡¡his¡¡conclusion¡¡is¡¡a¡¡necessary¡¡connexion¡£
Either¡¡he¡¡will¡¡mistake¡¡the¡¡non¡necessary¡¡for¡¡the¡¡necessary¡¡and¡¡believe
the¡¡necessity¡¡of¡¡the¡¡conclusion¡¡without¡¡knowing¡¡it£»¡¡or¡¡else¡¡he¡¡will
not¡¡even¡¡believe¡¡it¡in¡¡which¡¡case¡¡he¡¡will¡¡be¡¡equally¡¡ignorant£»¡¡whether
he¡¡actually¡¡infers¡¡the¡¡mere¡¡fact¡¡through¡¡middle¡¡terms¡¡or¡¡the
reasoned¡¡fact¡¡and¡¡from¡¡immediate¡¡premisses¡£
¡¡¡¡Of¡¡accidents¡¡that¡¡are¡¡not¡¡essential¡¡according¡¡to¡¡our¡¡definition¡¡of
essential¡¡there¡¡is¡¡no¡¡demonstrative¡¡knowledge£»¡¡for¡¡since¡¡an
accident£»¡¡in¡¡the¡¡sense¡¡in¡¡which¡¡I¡¡here¡¡speak¡¡of¡¡it£»¡¡may¡¡also¡¡not
inhere£»¡¡it¡¡is¡¡impossible¡¡to¡¡prove¡¡its¡¡inherence¡¡as¡¡a¡¡necessary
conclusion¡£¡¡A¡¡difficulty£»¡¡however£»¡¡might¡¡be¡¡raised¡¡as¡¡to¡¡why¡¡in
dialectic£»¡¡if¡¡the¡¡conclusion¡¡is¡¡not¡¡a¡¡necessary¡¡connexion£»¡¡such¡¡and
such¡¡determinate¡¡premisses¡¡should¡¡be¡¡proposed¡¡in¡¡order¡¡to¡¡deal¡¡with
such¡¡and¡¡such¡¡determinate¡¡problems¡£¡¡Would¡¡not¡¡the¡¡result¡¡be¡¡the¡¡same
if¡¡one¡¡asked¡¡any¡¡questions¡¡whatever¡¡and¡¡then¡¡merely¡¡stated¡¡one's
conclusion£¿¡¡The¡¡solution¡¡is¡¡that¡¡determinate¡¡questions¡¡have¡¡to¡¡be¡¡put£»
not¡¡because¡¡the¡¡replies¡¡to¡¡them¡¡affirm¡¡facts¡¡which¡¡necessitate¡¡facts
affirmed¡¡by¡¡the¡¡conclusion£»¡¡but¡¡because¡¡these¡¡answers¡¡are¡¡propositions
which¡¡if¡¡the¡¡answerer¡¡affirm£»¡¡he¡¡must¡¡affirm¡¡the¡¡conclusion¡¡and¡¡affirm
it¡¡with¡¡truth¡¡if¡¡they¡¡are¡¡true¡£
¡¡¡¡Since¡¡it¡¡is¡¡just¡¡those¡¡attributes¡¡within¡¡every¡¡genus¡¡which¡¡are
essential¡¡and¡¡possessed¡¡by¡¡their¡¡respective¡¡subjects¡¡as¡¡such¡¡that
are¡¡necessary¡¡it¡¡is¡¡clear¡¡that¡¡both¡¡the¡¡conclusions¡¡and¡¡the
premisses¡¡of¡¡demonstrations¡¡which¡¡produce¡¡scientific¡¡knowledge¡¡are
essential¡£¡¡For¡¡accidents¡¡are¡¡not¡¡necessary£º¡¡and£»¡¡further£»¡¡since
accidents¡¡are¡¡not¡¡necessary¡¡one¡¡does¡¡not¡¡necessarily¡¡have¡¡reasoned
knowledge¡¡of¡¡a¡¡conclusion¡¡drawn¡¡from¡¡them¡¡£¨this¡¡is¡¡so¡¡even¡¡if¡¡the
accidental¡¡premisses¡¡are¡¡invariable¡¡but¡¡not¡¡essential£»¡¡as¡¡in¡¡proofs
through¡¡signs£»¡¡for¡¡though¡¡the¡¡conclusion¡¡be¡¡actually¡¡essential£»¡¡one
will¡¡not¡¡know¡¡it¡¡as¡¡essential¡¡nor¡¡know¡¡its¡¡reason£©£»¡¡but¡¡to¡¡have
reasoned¡¡knowledge¡¡of¡¡a¡¡conclusion¡¡is¡¡to¡¡know¡¡it¡¡through¡¡its¡¡cause¡£¡¡We
may¡¡conclude¡¡that¡¡the¡¡middle¡¡must¡¡be¡¡consequentially¡¡connected¡¡with
the¡¡minor£»¡¡and¡¡the¡¡major¡¡with¡¡the¡¡middle¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡7
¡¡¡¡It¡¡follows¡¡that¡¡we¡¡cannot¡¡in¡¡demonstrating¡¡pass¡¡from¡¡one¡¡genus¡¡to
another¡£¡¡We¡¡cannot£»¡¡for¡¡instance£»¡¡prove¡¡geometrical¡¡truths¡¡by
arithmetic¡£¡¡For¡¡there¡¡are¡¡three¡¡elements¡¡in¡¡demonstration£º¡¡£¨1£©¡¡what¡¡is
proved£»¡¡the¡¡conclusion¡an¡¡attribute¡¡inhering¡¡essentially¡¡in¡¡a¡¡genus£»
£¨2£©¡¡the¡¡axioms£»¡¡i¡£e¡£¡¡axioms¡¡which¡¡are¡¡premisses¡¡of¡¡demonstration£»
£¨3£©¡¡the¡¡subject¡genus¡¡whose¡¡attributes£»¡¡i¡£e¡£¡¡essential¡¡properties£»¡¡are
revealed¡¡by¡¡the¡¡demonstration¡£¡¡The¡¡axioms¡¡which¡¡are¡¡premisses¡¡of
demonstration¡¡may¡¡be¡¡identical¡¡in¡¡two¡¡or¡¡more¡¡sciences£º¡¡but¡¡in¡¡the
case¡¡of¡¡two¡¡different¡¡genera¡¡such¡¡as¡¡arithmetic¡¡and¡¡geometry¡¡you
cannot¡¡apply¡¡arithmetical¡¡demonstration¡¡to¡¡the¡¡properties¡¡of
magnitudes¡¡unless¡¡the¡¡magnitudes¡¡in¡¡question¡¡are¡¡numbers¡£¡¡How¡¡in
certain¡¡cases¡¡transference¡¡is¡¡possible¡¡I¡¡will¡¡explain¡¡later¡£
¡¡¡¡Arithmetical¡¡demonstration¡¡and¡¡the¡¡other¡¡sciences¡¡likewise
possess£»¡¡each¡¡of¡¡them£»¡¡their¡¡own¡¡genera£»¡¡so¡¡that¡¡if¡¡the
demonstration¡¡is¡¡to¡¡pass¡¡from¡¡one¡¡sphere¡¡to¡¡another£»¡¡the¡¡genus¡¡must¡¡be
either¡¡absolutely¡¡or¡¡to¡¡some¡¡extent¡¡the¡¡same¡£¡¡If¡¡this¡¡is¡¡not¡¡so£»
transference¡¡is¡¡clearly¡¡impossible£»¡¡because¡¡the¡¡extreme¡¡and¡¡the¡¡middle
terms¡¡must¡¡be¡¡drawn¡¡from¡¡the¡¡same¡¡genus£º¡¡otherwise£»¡¡as¡¡predicated£»
they¡¡will¡¡not¡¡be¡¡essential¡¡and¡¡will¡¡thus¡¡be¡¡accidents¡£¡¡That¡¡is¡¡why
it¡¡cannot¡¡be¡¡proved¡¡by¡¡geometry¡¡that¡¡opposites¡¡fall¡¡under¡¡one¡¡science£»
nor¡¡even¡¡that