Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ3½Ú

posterior analytics-µÚ3½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






belong¡¡to¡¡line£»¡¡odd¡¡and¡¡even£»¡¡prime¡¡and¡¡compound£»¡¡square¡¡and¡¡oblong£»



to¡¡number£»¡¡and¡¡also¡¡the¡¡formula¡¡defining¡¡any¡¡one¡¡of¡¡these¡¡attributes



contains¡¡its¡¡subject¡­e¡£g¡£¡¡line¡¡or¡¡number¡¡as¡¡the¡¡case¡¡may¡¡be¡£



¡¡¡¡Extending¡¡this¡¡classification¡¡to¡¡all¡¡other¡¡attributes£»¡¡I¡¡distinguish



those¡¡that¡¡answer¡¡the¡¡above¡¡description¡¡as¡¡belonging¡¡essentially¡¡to



their¡¡respective¡¡subjects£»¡¡whereas¡¡attributes¡¡related¡¡in¡¡neither¡¡of



these¡¡two¡¡ways¡¡to¡¡their¡¡subjects¡¡I¡¡call¡¡accidents¡¡or¡¡'coincidents'£»



e¡£g¡£¡¡musical¡¡or¡¡white¡¡is¡¡a¡¡'coincident'¡¡of¡¡animal¡£



¡¡¡¡Further¡¡£¨a£©¡¡that¡¡is¡¡essential¡¡which¡¡is¡¡not¡¡predicated¡¡of¡¡a¡¡subject



other¡¡than¡¡itself£º¡¡e¡£g¡£¡¡'the¡¡walking¡¡£§thing£§'¡¡walks¡¡and¡¡is¡¡white¡¡in



virtue¡¡of¡¡being¡¡something¡¡else¡¡besides£»¡¡whereas¡¡substance£»¡¡in¡¡the



sense¡¡of¡¡whatever¡¡signifies¡¡a¡¡'this¡¡somewhat'£»¡¡is¡¡not¡¡what¡¡it¡¡is¡¡in



virtue¡¡of¡¡being¡¡something¡¡else¡¡besides¡£¡¡Things£»¡¡then£»¡¡not¡¡predicated



of¡¡a¡¡subject¡¡I¡¡call¡¡essential£»¡¡things¡¡predicated¡¡of¡¡a¡¡subject¡¡I¡¡call



accidental¡¡or¡¡'coincidental'¡£



¡¡¡¡In¡¡another¡¡sense¡¡again¡¡£¨b£©¡¡a¡¡thing¡¡consequentially¡¡connected¡¡with



anything¡¡is¡¡essential£»¡¡one¡¡not¡¡so¡¡connected¡¡is¡¡'coincidental'¡£¡¡An



example¡¡of¡¡the¡¡latter¡¡is¡¡'While¡¡he¡¡was¡¡walking¡¡it¡¡lightened'£º¡¡the



lightning¡¡was¡¡not¡¡due¡¡to¡¡his¡¡walking£»¡¡it¡¡was£»¡¡we¡¡should¡¡say£»¡¡a



coincidence¡£¡¡If£»¡¡on¡¡the¡¡other¡¡hand£»¡¡there¡¡is¡¡a¡¡consequential



connexion£»¡¡the¡¡predication¡¡is¡¡essential£»¡¡e¡£g¡£¡¡if¡¡a¡¡beast¡¡dies¡¡when¡¡its



throat¡¡is¡¡being¡¡cut£»¡¡then¡¡its¡¡death¡¡is¡¡also¡¡essentially¡¡connected¡¡with



the¡¡cutting£»¡¡because¡¡the¡¡cutting¡¡was¡¡the¡¡cause¡¡of¡¡death£»¡¡not¡¡death¡¡a



'coincident'¡¡of¡¡the¡¡cutting¡£



¡¡¡¡So¡¡far¡¡then¡¡as¡¡concerns¡¡the¡¡sphere¡¡of¡¡connexions¡¡scientifically



known¡¡in¡¡the¡¡unqualified¡¡sense¡¡of¡¡that¡¡term£»¡¡all¡¡attributes¡¡which



£¨within¡¡that¡¡sphere£©¡¡are¡¡essential¡¡either¡¡in¡¡the¡¡sense¡¡that¡¡their



subjects¡¡are¡¡contained¡¡in¡¡them£»¡¡or¡¡in¡¡the¡¡sense¡¡that¡¡they¡¡are



contained¡¡in¡¡their¡¡subjects£»¡¡are¡¡necessary¡¡as¡¡well¡¡as



consequentially¡¡connected¡¡with¡¡their¡¡subjects¡£¡¡For¡¡it¡¡is¡¡impossible



for¡¡them¡¡not¡¡to¡¡inhere¡¡in¡¡their¡¡subjects¡¡either¡¡simply¡¡or¡¡in¡¡the



qualified¡¡sense¡¡that¡¡one¡¡or¡¡other¡¡of¡¡a¡¡pair¡¡of¡¡opposites¡¡must¡¡inhere



in¡¡the¡¡subject£»¡¡e¡£g¡£¡¡in¡¡line¡¡must¡¡be¡¡either¡¡straightness¡¡or¡¡curvature£»



in¡¡number¡¡either¡¡oddness¡¡or¡¡evenness¡£¡¡For¡¡within¡¡a¡¡single¡¡identical



genus¡¡the¡¡contrary¡¡of¡¡a¡¡given¡¡attribute¡¡is¡¡either¡¡its¡¡privative¡¡or¡¡its



contradictory£»¡¡e¡£g¡£¡¡within¡¡number¡¡what¡¡is¡¡not¡¡odd¡¡is¡¡even£»¡¡inasmuch¡¡as



within¡¡this¡¡sphere¡¡even¡¡is¡¡a¡¡necessary¡¡consequent¡¡of¡¡not¡­odd¡£¡¡So£»



since¡¡any¡¡given¡¡predicate¡¡must¡¡be¡¡either¡¡affirmed¡¡or¡¡denied¡¡of¡¡any



subject£»¡¡essential¡¡attributes¡¡must¡¡inhere¡¡in¡¡their¡¡subjects¡¡of



necessity¡£



¡¡¡¡Thus£»¡¡then£»¡¡we¡¡have¡¡established¡¡the¡¡distinction¡¡between¡¡the



attribute¡¡which¡¡is¡¡'true¡¡in¡¡every¡¡instance'¡¡and¡¡the¡¡'essential'



attribute¡£



¡¡¡¡I¡¡term¡¡'commensurately¡¡universal'¡¡an¡¡attribute¡¡which¡¡belongs¡¡to



every¡¡instance¡¡of¡¡its¡¡subject£»¡¡and¡¡to¡¡every¡¡instance¡¡essentially¡¡and



as¡¡such£»¡¡from¡¡which¡¡it¡¡clearly¡¡follows¡¡that¡¡all¡¡commensurate



universals¡¡inhere¡¡necessarily¡¡in¡¡their¡¡subjects¡£¡¡The¡¡essential



attribute£»¡¡and¡¡the¡¡attribute¡¡that¡¡belongs¡¡to¡¡its¡¡subject¡¡as¡¡such£»



are¡¡identical¡£¡¡E¡£g¡£¡¡point¡¡and¡¡straight¡¡belong¡¡to¡¡line¡¡essentially£»¡¡for



they¡¡belong¡¡to¡¡line¡¡as¡¡such£»¡¡and¡¡triangle¡¡as¡¡such¡¡has¡¡two¡¡right



angles£»¡¡for¡¡it¡¡is¡¡essentially¡¡equal¡¡to¡¡two¡¡right¡¡angles¡£



¡¡¡¡An¡¡attribute¡¡belongs¡¡commensurately¡¡and¡¡universally¡¡to¡¡a¡¡subject



when¡¡it¡¡can¡¡be¡¡shown¡¡to¡¡belong¡¡to¡¡any¡¡random¡¡instance¡¡of¡¡that



subject¡¡and¡¡when¡¡the¡¡subject¡¡is¡¡the¡¡first¡¡thing¡¡to¡¡which¡¡it¡¡can¡¡be



shown¡¡to¡¡belong¡£¡¡Thus£»¡¡e¡£g¡£¡¡£¨1£©¡¡the¡¡equality¡¡of¡¡its¡¡angles¡¡to¡¡two



right¡¡angles¡¡is¡¡not¡¡a¡¡commensurately¡¡universal¡¡attribute¡¡of¡¡figure¡£



For¡¡though¡¡it¡¡is¡¡possible¡¡to¡¡show¡¡that¡¡a¡¡figure¡¡has¡¡its¡¡angles¡¡equal



to¡¡two¡¡right¡¡angles£»¡¡this¡¡attribute¡¡cannot¡¡be¡¡demonstrated¡¡of¡¡any



figure¡¡selected¡¡at¡¡haphazard£»¡¡nor¡¡in¡¡demonstrating¡¡does¡¡one¡¡take¡¡a



figure¡¡at¡¡random¡­a¡¡square¡¡is¡¡a¡¡figure¡¡but¡¡its¡¡angles¡¡are¡¡not¡¡equal



to¡¡two¡¡right¡¡angles¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡any¡¡isosceles¡¡triangle¡¡has¡¡its



angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡yet¡¡isosceles¡¡triangle¡¡is¡¡not¡¡the



primary¡¡subject¡¡of¡¡this¡¡attribute¡¡but¡¡triangle¡¡is¡¡prior¡£¡¡So¡¡whatever



can¡¡be¡¡shown¡¡to¡¡have¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡or¡¡to



possess¡¡any¡¡other¡¡attribute£»¡¡in¡¡any¡¡random¡¡instance¡¡of¡¡itself¡¡and



primarily¡­that¡¡is¡¡the¡¡first¡¡subject¡¡to¡¡which¡¡the¡¡predicate¡¡in¡¡question



belongs¡¡commensurately¡¡and¡¡universally£»¡¡and¡¡the¡¡demonstration£»¡¡in



the¡¡essential¡¡sense£»¡¡of¡¡any¡¡predicate¡¡is¡¡the¡¡proof¡¡of¡¡it¡¡as



belonging¡¡to¡¡this¡¡first¡¡subject¡¡commensurately¡¡and¡¡universally£º



while¡¡the¡¡proof¡¡of¡¡it¡¡as¡¡belonging¡¡to¡¡the¡¡other¡¡subjects¡¡to¡¡which¡¡it



attaches¡¡is¡¡demonstration¡¡only¡¡in¡¡a¡¡secondary¡¡and¡¡unessential¡¡sense¡£



Nor¡¡again¡¡£¨2£©¡¡is¡¡equality¡¡to¡¡two¡¡right¡¡angles¡¡a¡¡commensurately



universal¡¡attribute¡¡of¡¡isosceles£»¡¡it¡¡is¡¡of¡¡wider¡¡application¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡5







¡¡¡¡We¡¡must¡¡not¡¡fail¡¡to¡¡observe¡¡that¡¡we¡¡often¡¡fall¡¡into¡¡error¡¡because



our¡¡conclusion¡¡is¡¡not¡¡in¡¡fact¡¡primary¡¡and¡¡commensurately¡¡universal



in¡¡the¡¡sense¡¡in¡¡which¡¡we¡¡think¡¡we¡¡prove¡¡it¡¡so¡£¡¡We¡¡make¡¡this¡¡mistake



£¨1£©¡¡when¡¡the¡¡subject¡¡is¡¡an¡¡individual¡¡or¡¡individuals¡¡above¡¡which¡¡there



is¡¡no¡¡universal¡¡to¡¡be¡¡found£º¡¡£¨2£©¡¡when¡¡the¡¡subjects¡¡belong¡¡to¡¡different



species¡¡and¡¡there¡¡is¡¡a¡¡higher¡¡universal£»¡¡but¡¡it¡¡has¡¡no¡¡name£º¡¡£¨3£©



when¡¡the¡¡subject¡¡which¡¡the¡¡demonstrator¡¡takes¡¡as¡¡a¡¡whole¡¡is¡¡really



only¡¡a¡¡part¡¡of¡¡a¡¡larger¡¡whole£»¡¡for¡¡then¡¡the¡¡demonstration¡¡will¡¡be¡¡true



of¡¡the¡¡individual¡¡instances¡¡within¡¡the¡¡part¡¡and¡¡will¡¡hold¡¡in¡¡every



instance¡¡of¡¡it£»¡¡yet¡¡the¡¡demonstration¡¡will¡¡not¡¡be¡¡true¡¡of¡¡this¡¡subject



primarily¡¡and¡¡commensurately¡¡and¡¡universally¡£¡¡When¡¡a¡¡demonstration



is¡¡true¡¡of¡¡a¡¡subject¡¡primarily¡¡and¡¡commensurately¡¡and¡¡universally£»



that¡¡is¡¡to¡¡be¡¡taken¡¡to¡¡mean¡¡that¡¡it¡¡is¡¡true¡¡of¡¡a¡¡given¡¡subject



primarily¡¡and¡¡as¡¡such¡£¡¡Case¡¡£¨3£©¡¡may¡¡be¡¡thus¡¡exemplified¡£¡¡If¡¡a¡¡proof



were¡¡given¡¡that¡¡perpendiculars¡¡to¡¡the¡¡same¡¡line¡¡are¡¡parallel£»¡¡it¡¡might



be¡¡supposed¡¡that¡¡lines¡¡thus¡¡perpendicular¡¡were¡¡the¡¡proper¡¡subject¡¡of



the¡¡demonstration¡¡because¡¡being¡¡parallel¡¡is¡¡true¡¡of¡¡every¡¡instance



of¡¡them¡£¡¡But¡¡it¡¡is¡¡not¡¡so£»¡¡for¡¡the¡¡parallelism¡¡depends¡¡not¡¡on¡¡these



angles¡¡being¡¡equal¡¡to¡¡one¡¡another¡¡because¡¡each¡¡is¡¡a¡¡right¡¡angle£»¡¡but



simply¡¡on¡¡their¡¡being¡¡equal¡¡to¡¡one¡¡another¡£¡¡An¡¡example¡¡of¡¡£¨1£©¡¡would¡¡be



as¡¡follows£º¡¡if¡¡isosceles¡¡were¡¡the¡¡only¡¡triangle£»¡¡it¡¡would¡¡be¡¡thought



to¡¡have¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles¡¡qua¡¡isosceles¡£¡¡An



instance¡¡of¡¡£¨2£©¡¡would¡¡be¡¡the¡¡law¡¡that¡¡proportionals¡¡alternate¡£



Alternation¡¡used¡¡to¡¡be¡¡demonstrated¡¡separately¡¡of¡¡numbers£»¡¡lines£»



solids£»¡¡and¡¡durations£»¡¡though¡¡it¡¡could¡¡have¡¡been¡¡proved¡¡of¡¡them¡¡all¡¡by



a¡¡single¡¡demonstration¡£¡¡Because¡¡there¡¡was¡¡no¡¡single¡¡name¡¡to¡¡denote



that¡¡in¡¡which¡¡numbers£»¡¡lengths£»¡¡durations£»¡¡and¡¡solids¡¡are¡¡identical£»



and¡¡because¡¡they¡¡differed¡¡specifically¡¡from¡¡one¡¡another£»¡¡this¡¡property



was¡¡proved¡¡of¡¡each¡¡of¡¡them¡¡separately¡£¡¡To¡­day£»¡¡however£»¡¡the¡¡proof¡¡is



commensurately¡¡universal£»¡¡for¡¡they¡¡do¡¡not¡¡possess¡¡this¡¡attribute¡¡qua



lines¡¡or¡¡qua¡¡numbers£»¡¡but¡¡qua¡¡manifesting¡¡this¡¡generic¡¡character¡¡which



they¡¡are¡¡postulated¡¡as¡¡possessing¡¡universally¡£¡¡Hence£»¡¡even¡¡if¡¡one



prove¡¡of¡¡each¡¡kind¡¡of¡¡triangle¡¡that¡¡its¡¡angles¡¡are¡¡equal¡¡to¡¡two



right¡¡angles£»¡¡whether¡¡by¡¡means¡¡of¡¡the¡¡same¡¡or¡¡different¡¡proofs£»¡¡still£»



as¡¡long¡¡as¡¡one¡¡treats¡¡separately¡¡equilateral£»¡¡scalene£»¡¡and



isosceles£»¡¡one¡¡does¡¡not¡¡yet¡¡know£»¡¡except¡¡sophistically£»¡¡that



triangle¡¡has¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡nor¡¡does¡¡one¡¡yet



know¡¡that¡¡triangle¡¡has¡¡this¡¡property¡¡commensurately¡¡and¡¡universally£»



even¡¡if¡¡there¡¡is¡¡no¡¡other¡¡species¡¡of¡¡triangle¡¡but¡¡these¡£¡¡For¡¡one



does¡¡not¡¡know¡¡that¡¡triangle¡¡as¡¡such¡¡has¡¡this¡¡property£»¡¡nor¡¡even¡¡that



'all'¡¡triangles¡¡have¡¡it¡­unless¡¡'all'¡¡means¡¡'each¡¡taken¡¡singly'£º¡¡if



'all'¡¡means¡¡'as¡¡a¡¡whole¡¡class'£»¡¡then£»¡¡though¡¡there¡¡be¡¡none¡¡in¡¡which



one¡¡does¡¡not¡¡recognize¡¡this¡¡property£»¡¡one¡¡does¡¡not¡¡know¡¡it¡¡of¡¡'all



triangles'¡£



¡¡¡¡When£»¡¡then£»¡¡does¡¡our¡¡knowledge¡¡fail¡¡of¡¡commensurate¡¡universality£»



and¡¡when¡¡it¡¡is¡¡unqualified¡¡knowledge£¿¡¡If¡¡triangle¡¡be¡¡identical¡¡in



essence¡¡with¡¡equilateral£»¡¡i¡£e¡£¡¡with¡¡each¡¡or¡¡all¡¡equilaterals£»¡¡then



clearly¡¡we¡¡have¡¡unqualified¡¡knowledge£º¡¡if¡¡on¡¡the¡¡other¡¡hand¡¡it¡¡be¡¡not£»



and¡¡the¡¡attribute¡¡belongs¡¡to¡¡equilateral¡¡qua¡¡triangle£»¡¡then¡¡our



knowledge¡¡fails¡¡of¡¡commensurate¡¡universality¡£¡¡'But'£»¡¡it¡¡will¡¡be¡¡asked£»



'does¡¡this¡¡attribute¡¡belong¡¡to¡¡the¡¡subject¡¡of¡¡which¡¡it¡¡has¡¡been



demonstrated¡¡qua¡¡triangle¡¡or¡¡qua¡¡isosceles£¿¡¡What¡¡is¡¡the¡¡point¡¡at¡¡which



the¡¡subject¡£¡¡to¡¡which¡¡it¡¡belongs¡¡is¡¡primary£¿¡¡£¨i¡£e¡£¡¡to¡¡what¡¡subject¡¡can



it¡¡be¡¡demonstrated¡¡as¡¡belonging¡¡commensurately¡¡and¡¡universally£¿£©'



Clearly¡¡this¡¡point¡¡is¡¡the¡¡first¡¡term¡¡in¡¡which¡¡it¡¡is¡¡found¡¡to¡¡inhere¡¡as



the¡¡elimination¡¡of¡¡inferior¡¡differenti

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ