Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ22½Ú

posterior analytics-µÚ22½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






assumed¡¡as¡¡primary£»¡¡and¡¡this¡¡will¡¡be¡¡ensured¡¡if¡¡the¡¡term¡¡selected¡¡is



predicable¡¡of¡¡all¡¡the¡¡others¡¡but¡¡not¡¡all¡¡they¡¡of¡¡it£»¡¡since¡¡there



must¡¡be¡¡one¡¡such¡¡term¡£¡¡Having¡¡assumed¡¡this¡¡we¡¡at¡¡once¡¡proceed¡¡in¡¡the



same¡¡way¡¡with¡¡the¡¡lower¡¡terms£»¡¡for¡¡our¡¡second¡¡term¡¡will¡¡be¡¡the¡¡first



of¡¡the¡¡remainder£»¡¡our¡¡third¡¡the¡¡first¡¡of¡¡those¡¡which¡¡follow¡¡the¡¡second



in¡¡a¡¡'contiguous'¡¡series£»¡¡since¡¡when¡¡the¡¡higher¡¡term¡¡is¡¡excluded£»¡¡that



term¡¡of¡¡the¡¡remainder¡¡which¡¡is¡¡'contiguous'¡¡to¡¡it¡¡will¡¡be¡¡primary£»¡¡and



so¡¡on¡£¡¡Our¡¡procedure¡¡makes¡¡it¡¡clear¡¡that¡¡no¡¡elements¡¡in¡¡the



definable¡¡form¡¡have¡¡been¡¡omitted£º¡¡we¡¡have¡¡taken¡¡the¡¡differentia¡¡that



comes¡¡first¡¡in¡¡the¡¡order¡¡of¡¡division£»¡¡pointing¡¡out¡¡that¡¡animal£»¡¡e¡£g¡£



is¡¡divisible¡¡exhaustively¡¡into¡¡A¡¡and¡¡B£»¡¡and¡¡that¡¡the¡¡subject¡¡accepts



one¡¡of¡¡the¡¡two¡¡as¡¡its¡¡predicate¡£¡¡Next¡¡we¡¡have¡¡taken¡¡the¡¡differentia¡¡of



the¡¡whole¡¡thus¡¡reached£»¡¡and¡¡shown¡¡that¡¡the¡¡whole¡¡we¡¡finally¡¡reach¡¡is



not¡¡further¡¡divisible¡­i¡£e¡£¡¡that¡¡as¡¡soon¡¡as¡¡we¡¡have¡¡taken¡¡the¡¡last



differentia¡¡to¡¡form¡¡the¡¡concrete¡¡totality£»¡¡this¡¡totality¡¡admits¡¡of



no¡¡division¡¡into¡¡species¡£¡¡For¡¡it¡¡is¡¡clear¡¡that¡¡there¡¡is¡¡no¡¡superfluous



addition£»¡¡since¡¡all¡¡these¡¡terms¡¡we¡¡have¡¡selected¡¡are¡¡elements¡¡in¡¡the



definable¡¡form£»¡¡and¡¡nothing¡¡lacking£»¡¡since¡¡any¡¡omission¡¡would¡¡have



to¡¡be¡¡a¡¡genus¡¡or¡¡a¡¡differentia¡£¡¡Now¡¡the¡¡primary¡¡term¡¡is¡¡a¡¡genus£»¡¡and



this¡¡term¡¡taken¡¡in¡¡conjunction¡¡with¡¡its¡¡differentiae¡¡is¡¡a¡¡genus£º



moreover¡¡the¡¡differentiae¡¡are¡¡all¡¡included£»¡¡because¡¡there¡¡is¡¡now¡¡no



further¡¡differentia£»¡¡if¡¡there¡¡were£»¡¡the¡¡final¡¡concrete¡¡would¡¡admit



of¡¡division¡¡into¡¡species£»¡¡which£»¡¡we¡¡said£»¡¡is¡¡not¡¡the¡¡case¡£



¡¡¡¡To¡¡resume¡¡our¡¡account¡¡of¡¡the¡¡right¡¡method¡¡of¡¡investigation£º¡¡We



must¡¡start¡¡by¡¡observing¡¡a¡¡set¡¡of¡¡similar¡­i¡£e¡£¡¡specifically



identical¡­individuals£»¡¡and¡¡consider¡¡what¡¡element¡¡they¡¡have¡¡in



common¡£¡¡We¡¡must¡¡then¡¡apply¡¡the¡¡same¡¡process¡¡to¡¡another¡¡set¡¡of



individuals¡¡which¡¡belong¡¡to¡¡one¡¡species¡¡and¡¡are¡¡generically¡¡but¡¡not



specifically¡¡identical¡¡with¡¡the¡¡former¡¡set¡£¡¡When¡¡we¡¡have¡¡established



what¡¡the¡¡common¡¡element¡¡is¡¡in¡¡all¡¡members¡¡of¡¡this¡¡second¡¡species£»



and¡¡likewise¡¡in¡¡members¡¡of¡¡further¡¡species£»¡¡we¡¡should¡¡again¡¡consider



whether¡¡the¡¡results¡¡established¡¡possess¡¡any¡¡identity£»¡¡and¡¡persevere



until¡¡we¡¡reach¡¡a¡¡single¡¡formula£»¡¡since¡¡this¡¡will¡¡be¡¡the¡¡definition



of¡¡the¡¡thing¡£¡¡But¡¡if¡¡we¡¡reach¡¡not¡¡one¡¡formula¡¡but¡¡two¡¡or¡¡more£»



evidently¡¡the¡¡definiendum¡¡cannot¡¡be¡¡one¡¡thing¡¡but¡¡must¡¡be¡¡more¡¡than



one¡£¡¡I¡¡may¡¡illustrate¡¡my¡¡meaning¡¡as¡¡follows¡£¡¡If¡¡we¡¡were¡¡inquiring¡¡what



the¡¡essential¡¡nature¡¡of¡¡pride¡¡is£»¡¡we¡¡should¡¡examine¡¡instances¡¡of¡¡proud



men¡¡we¡¡know¡¡of¡¡to¡¡see¡¡what£»¡¡as¡¡such£»¡¡they¡¡have¡¡in¡¡common£»¡¡e¡£g¡£¡¡if



Alcibiades¡¡was¡¡proud£»¡¡or¡¡Achilles¡¡and¡¡Ajax¡¡were¡¡proud£»¡¡we¡¡should



find¡¡on¡¡inquiring¡¡what¡¡they¡¡all¡¡had¡¡in¡¡common£»¡¡that¡¡it¡¡was¡¡intolerance



of¡¡insult£»¡¡it¡¡was¡¡this¡¡which¡¡drove¡¡Alcibiades¡¡to¡¡war£»¡¡Achilles



wrath£»¡¡and¡¡Ajax¡¡to¡¡suicide¡£¡¡We¡¡should¡¡next¡¡examine¡¡other¡¡cases£»



Lysander£»¡¡for¡¡example£»¡¡or¡¡Socrates£»¡¡and¡¡then¡¡if¡¡these¡¡have¡¡in¡¡common



indifference¡¡alike¡¡to¡¡good¡¡and¡¡ill¡¡fortune£»¡¡I¡¡take¡¡these¡¡two¡¡results



and¡¡inquire¡¡what¡¡common¡¡element¡¡have¡¡equanimity¡¡amid¡¡the



vicissitudes¡¡of¡¡life¡¡and¡¡impatience¡¡of¡¡dishonour¡£¡¡If¡¡they¡¡have¡¡none£»



there¡¡will¡¡be¡¡two¡¡genera¡¡of¡¡pride¡£¡¡Besides£»¡¡every¡¡definition¡¡is¡¡always



universal¡¡and¡¡commensurate£º¡¡the¡¡physician¡¡does¡¡not¡¡prescribe¡¡what¡¡is



healthy¡¡for¡¡a¡¡single¡¡eye£»¡¡but¡¡for¡¡all¡¡eyes¡¡or¡¡for¡¡a¡¡determinate



species¡¡of¡¡eye¡£¡¡It¡¡is¡¡also¡¡easier¡¡by¡¡this¡¡method¡¡to¡¡define¡¡the



single¡¡species¡¡than¡¡the¡¡universal£»¡¡and¡¡that¡¡is¡¡why¡¡our¡¡procedure



should¡¡be¡¡from¡¡the¡¡several¡¡species¡¡to¡¡the¡¡universal¡¡genera¡­this¡¡for



the¡¡further¡¡reason¡¡too¡¡that¡¡equivocation¡¡is¡¡less¡¡readily¡¡detected¡¡in



genera¡¡than¡¡in¡¡infimae¡¡species¡£¡¡Indeed£»¡¡perspicuity¡¡is¡¡essential¡¡in



definitions£»¡¡just¡¡as¡¡inferential¡¡movement¡¡is¡¡the¡¡minimum¡¡required¡¡in



demonstrations£»¡¡and¡¡we¡¡shall¡¡attain¡¡perspicuity¡¡if¡¡we¡¡can¡¡collect



separately¡¡the¡¡definition¡¡of¡¡each¡¡species¡¡through¡¡the¡¡group¡¡of



singulars¡¡which¡¡we¡¡have¡¡established¡¡e¡£g¡£¡¡the¡¡definition¡¡of



similarity¡¡not¡¡unqualified¡¡but¡¡restricted¡¡to¡¡colours¡¡and¡¡to¡¡figures£»



the¡¡definition¡¡of¡¡acuteness£»¡¡but¡¡only¡¡of¡¡sound¡­and¡¡so¡¡proceed¡¡to¡¡the



common¡¡universal¡¡with¡¡a¡¡careful¡¡avoidance¡¡of¡¡equivocation¡£¡¡We¡¡may



add¡¡that¡¡if¡¡dialectical¡¡disputation¡¡must¡¡not¡¡employ¡¡metaphors£»¡¡clearly



metaphors¡¡and¡¡metaphorical¡¡expressions¡¡are¡¡precluded¡¡in¡¡definition£º



otherwise¡¡dialectic¡¡would¡¡involve¡¡metaphors¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡14







¡¡¡¡In¡¡order¡¡to¡¡formulate¡¡the¡¡connexions¡¡we¡¡wish¡¡to¡¡prove¡¡we¡¡have¡¡to



select¡¡our¡¡analyses¡¡and¡¡divisions¡£¡¡The¡¡method¡¡of¡¡selection¡¡consists¡¡in



laying¡¡down¡¡the¡¡common¡¡genus¡¡of¡¡all¡¡our¡¡subjects¡¡of¡¡investigation¡­if



e¡£g¡£¡¡they¡¡are¡¡animals£»¡¡we¡¡lay¡¡down¡¡what¡¡the¡¡properties¡¡are¡¡which



inhere¡¡in¡¡every¡¡animal¡£¡¡These¡¡established£»¡¡we¡¡next¡¡lay¡¡down¡¡the



properties¡¡essentially¡¡connected¡¡with¡¡the¡¡first¡¡of¡¡the¡¡remaining



classes¡­e¡£g¡£¡¡if¡¡this¡¡first¡¡subgenus¡¡is¡¡bird£»¡¡the¡¡essential



properties¡¡of¡¡every¡¡bird¡­and¡¡so¡¡on£»¡¡always¡¡characterizing¡¡the



proximate¡¡subgenus¡£¡¡This¡¡will¡¡clearly¡¡at¡¡once¡¡enable¡¡us¡¡to¡¡say¡¡in



virtue¡¡of¡¡what¡¡character¡¡the¡¡subgenera¡­man£»¡¡e¡£g¡£¡¡or¡¡horse¡­possess



their¡¡properties¡£¡¡Let¡¡A¡¡be¡¡animal£»¡¡B¡¡the¡¡properties¡¡of¡¡every¡¡animal£»¡¡C



D¡¡E¡¡various¡¡species¡¡of¡¡animal¡£¡¡Then¡¡it¡¡is¡¡clear¡¡in¡¡virtue¡¡of¡¡what



character¡¡B¡¡inheres¡¡in¡¡D¡­namely¡¡A¡­and¡¡that¡¡it¡¡inheres¡¡in¡¡C¡¡and¡¡E¡¡for



the¡¡same¡¡reason£º¡¡and¡¡throughout¡¡the¡¡remaining¡¡subgenera¡¡always¡¡the



same¡¡rule¡¡applies¡£



¡¡¡¡We¡¡are¡¡now¡¡taking¡¡our¡¡examples¡¡from¡¡the¡¡traditional¡¡class¡­names£»¡¡but



we¡¡must¡¡not¡¡confine¡¡ourselves¡¡to¡¡considering¡¡these¡£¡¡We¡¡must¡¡collect



any¡¡other¡¡common¡¡character¡¡which¡¡we¡¡observe£»¡¡and¡¡then¡¡consider¡¡with



what¡¡species¡¡it¡¡is¡¡connected¡¡and¡¡what¡£properties¡¡belong¡¡to¡¡it¡£¡¡For



example£»¡¡as¡¡the¡¡common¡¡properties¡¡of¡¡horned¡¡animals¡¡we¡¡collect¡¡the



possession¡¡of¡¡a¡¡third¡¡stomach¡¡and¡¡only¡¡one¡¡row¡¡of¡¡teeth¡£¡¡Then¡¡since¡¡it



is¡¡clear¡¡in¡¡virtue¡¡of¡¡what¡¡character¡¡they¡¡possess¡¡these



attributes¡­namely¡¡their¡¡horned¡¡character¡­the¡¡next¡¡question¡¡is£»¡¡to¡¡what



species¡¡does¡¡the¡¡possession¡¡of¡¡horns¡¡attach£¿



¡¡¡¡Yet¡¡a¡¡further¡¡method¡¡of¡¡selection¡¡is¡¡by¡¡analogy£º¡¡for¡¡we¡¡cannot



find¡¡a¡¡single¡¡identical¡¡name¡¡to¡¡give¡¡to¡¡a¡¡squid's¡¡pounce£»¡¡a¡¡fish's



spine£»¡¡and¡¡an¡¡animal's¡¡bone£»¡¡although¡¡these¡¡too¡¡possess¡¡common



properties¡¡as¡¡if¡¡there¡¡were¡¡a¡¡single¡¡osseous¡¡nature¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡15







¡¡¡¡Some¡¡connexions¡¡that¡¡require¡¡proof¡¡are¡¡identical¡¡in¡¡that¡¡they



possess¡¡an¡¡identical¡¡'middle'¡¡e¡£g¡£¡¡a¡¡whole¡¡group¡¡might¡¡be¡¡proved



through¡¡'reciprocal¡¡replacement'¡­and¡¡of¡¡these¡¡one¡¡class¡¡are



identical¡¡in¡¡genus£»¡¡namely¡¡all¡¡those¡¡whose¡¡difference¡¡consists¡¡in



their¡¡concerning¡¡different¡¡subjects¡¡or¡¡in¡¡their¡¡mode¡¡of¡¡manifestation¡£



This¡¡latter¡¡class¡¡may¡¡be¡¡exemplified¡¡by¡¡the¡¡questions¡¡as¡¡to¡¡the¡¡causes



respectively¡¡of¡¡echo£»¡¡of¡¡reflection£»¡¡and¡¡of¡¡the¡¡rainbow£º¡¡the



connexions¡¡to¡¡be¡¡proved¡¡which¡¡these¡¡questions¡¡embody¡¡are¡¡identical



generically£»¡¡because¡¡all¡¡three¡¡are¡¡forms¡¡of¡¡repercussion£»¡¡but



specifically¡¡they¡¡are¡¡different¡£



¡¡¡¡Other¡¡connexions¡¡that¡¡require¡¡proof¡¡only¡¡differ¡¡in¡¡that¡¡the¡¡'middle'



of¡¡the¡¡one¡¡is¡¡subordinate¡¡to¡¡the¡¡'middle'¡¡of¡¡the¡¡other¡£¡¡For¡¡example£º



Why¡¡does¡¡the¡¡Nile¡¡rise¡¡towards¡¡the¡¡end¡¡of¡¡the¡¡month£¿¡¡Because¡¡towards



its¡¡close¡¡the¡¡month¡¡is¡¡more¡¡stormy¡£¡¡Why¡¡is¡¡the¡¡month¡¡more¡¡stormy



towards¡¡its¡¡close£¿¡¡Because¡¡the¡¡moon¡¡is¡¡waning¡£¡¡Here¡¡the¡¡one¡¡cause¡¡is



subordinate¡¡to¡¡the¡¡other¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡16







¡¡¡¡The¡¡question¡¡might¡¡be¡¡raised¡¡with¡¡regard¡¡to¡¡cause¡¡and¡¡effect¡¡whether



when¡¡the¡¡effect¡¡is¡¡present¡¡the¡¡cause¡¡also¡¡is¡¡present£»¡¡whether£»¡¡for



instance£»¡¡if¡¡a¡¡plant¡¡sheds¡¡its¡¡leaves¡¡or¡¡the¡¡moon¡¡is¡¡eclipsed£»¡¡there



is¡¡present¡¡also¡¡the¡¡cause¡¡of¡¡the¡¡eclipse¡¡or¡¡of¡¡the¡¡fall¡¡of¡¡the



leaves¡­the¡¡possession¡¡of¡¡broad¡¡leaves£»¡¡let¡¡us¡¡say£»¡¡in¡¡the¡¡latter¡¡case£»



in¡¡the¡¡former¡¡the¡¡earth's¡¡interposition¡£¡¡For£»¡¡one¡¡might¡¡argue£»¡¡if¡¡this



cause¡¡is¡¡not¡¡present£»¡¡these¡¡phenomena¡¡will¡¡have¡¡some¡¡other¡¡cause£º¡¡if



it¡¡is¡¡present£»¡¡its¡¡effect¡¡will¡¡be¡¡at¡¡once¡¡implied¡¡by¡¡it¡­the¡¡eclipse¡¡by



the¡¡earth's¡¡interposition£»¡¡the¡¡fall¡¡of¡¡the¡¡leaves¡¡by¡¡the¡¡possession¡¡of



broad¡¡leaves£»¡¡but¡¡if¡¡so£»¡¡they¡¡will¡¡be¡¡logically¡¡coincident¡¡and¡¡each



capable¡¡of¡¡proof¡¡through¡¡the¡¡other¡£¡¡Let¡¡me¡¡illustrate£º¡¡Let¡¡A¡¡be



deciduous¡¡character£»¡¡B¡¡the¡¡possession¡¡of¡¡broad¡¡leaves£»¡¡C¡¡vine¡£¡¡Now



if¡¡A¡¡inheres¡¡in¡¡B¡¡£¨for¡¡every¡¡broad¡­leaved¡¡plant¡¡is¡¡deciduous£©£»¡¡and¡¡B



in¡¡C¡¡£¨every¡¡vine¡¡possessing¡¡broad¡¡leaves£©£»¡¡then¡¡A¡¡inheres¡¡in¡¡C



£¨every¡¡vine¡¡is¡¡deciduous£©£»¡¡and¡¡the¡¡middle¡¡term¡¡B¡¡is¡¡the¡¡cause¡£¡¡But



we¡¡can¡¡also¡¡demonstrate¡¡that¡¡the¡¡vine¡¡has¡¡broad¡¡leaves¡¡because¡¡it¡¡is



deciduous¡£¡¡Thus£»¡¡let¡¡D¡¡be¡¡broad¡­leaved£»¡¡E¡¡deciduous£»¡¡F¡¡vine¡£¡¡Then¡¡E



inheres¡¡in¡¡F¡¡£¨since¡¡every¡¡vine¡¡is¡¡deciduous£©£»¡¡and¡¡D¡¡in¡¡E¡¡£¨for¡¡every



·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ