posterior analytics-µÚ21½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
was¡¡bound¡¡to¡¡rise£»¡¡and¡¡when¡¡an¡¡exhalation¡¡had¡¡risen¡¡cloud¡¡was¡¡bound¡¡to
form£»¡¡and¡¡from¡¡the¡¡formation¡¡of¡¡cloud¡¡rain¡¡necessarily¡¡resulted¡¡and¡¡by
the¡¡fall¡¡of¡¡rain¡¡the¡¡earth¡¡was¡¡necessarily¡¡moistened£º¡¡but¡¡this¡¡was¡¡the
starting¡point£»¡¡so¡¡that¡¡a¡¡circle¡¡is¡¡completed£»¡¡for¡¡posit¡¡any¡¡one¡¡of
the¡¡terms¡¡and¡¡another¡¡follows¡¡from¡¡it£»¡¡and¡¡from¡¡that¡¡another£»¡¡and¡¡from
that¡¡again¡¡the¡¡first¡£
¡¡¡¡Some¡¡occurrences¡¡are¡¡universal¡¡£¨for¡¡they¡¡are£»¡¡or¡¡come¡to¡be¡¡what
they¡¡are£»¡¡always¡¡and¡¡in¡¡ever¡¡case£©£»¡¡others¡¡again¡¡are¡¡not¡¡always¡¡what
they¡¡are¡¡but¡¡only¡¡as¡¡a¡¡general¡¡rule£º¡¡for¡¡instance£»¡¡not¡¡every¡¡man¡¡can
grow¡¡a¡¡beard£»¡¡but¡¡it¡¡is¡¡the¡¡general¡¡rule¡£¡¡In¡¡the¡¡case¡¡of¡¡such
connexions¡¡the¡¡middle¡¡term¡¡too¡¡must¡¡be¡¡a¡¡general¡¡rule¡£¡¡For¡¡if¡¡A¡¡is
predicated¡¡universally¡¡of¡¡B¡¡and¡¡B¡¡of¡¡C£»¡¡A¡¡too¡¡must¡¡be¡¡predicated
always¡¡and¡¡in¡¡every¡¡instance¡¡of¡¡C£»¡¡since¡¡to¡¡hold¡¡in¡¡every¡¡instance¡¡and
always¡¡is¡¡of¡¡the¡¡nature¡¡of¡¡the¡¡universal¡£¡¡But¡¡we¡¡have¡¡assumed¡¡a
connexion¡¡which¡¡is¡¡a¡¡general¡¡rule£»¡¡consequently¡¡the¡¡middle¡¡term¡¡B¡¡must
also¡¡be¡¡a¡¡general¡¡rule¡£¡¡So¡¡connexions¡¡which¡¡embody¡¡a¡¡general¡¡rule¡i¡£e¡£
which¡¡exist¡¡or¡¡come¡¡to¡¡be¡¡as¡¡a¡¡general¡¡rule¡will¡¡also¡¡derive¡¡from
immediate¡¡basic¡¡premisses¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡13
¡¡¡¡We¡¡have¡¡already¡¡explained¡¡how¡¡essential¡¡nature¡¡is¡¡set¡¡out¡¡in¡¡the
terms¡¡of¡¡a¡¡demonstration£»¡¡and¡¡the¡¡sense¡¡in¡¡which¡¡it¡¡is¡¡or¡¡is¡¡not
demonstrable¡¡or¡¡definable£»¡¡so¡¡let¡¡us¡¡now¡¡discuss¡¡the¡¡method¡¡to¡¡be
adopted¡¡in¡¡tracing¡¡the¡¡elements¡¡predicated¡¡as¡¡constituting¡¡the
definable¡¡form¡£
¡¡¡¡Now¡¡of¡¡the¡¡attributes¡¡which¡¡inhere¡¡always¡¡in¡¡each¡¡several¡¡thing
there¡¡are¡¡some¡¡which¡¡are¡¡wider¡¡in¡¡extent¡¡than¡¡it¡¡but¡¡not¡¡wider¡¡than
its¡¡genus¡¡£¨by¡¡attributes¡¡of¡¡wider¡¡extent¡¡mean¡¡all¡¡such¡¡as¡¡are
universal¡¡attributes¡¡of¡¡each¡¡several¡¡subject£»¡¡but¡¡in¡¡their¡¡application
are¡¡not¡¡confined¡¡to¡¡that¡¡subject£©¡£¡¡while¡¡an¡¡attribute¡¡may¡¡inhere¡¡in
every¡¡triad£»¡¡yet¡¡also¡¡in¡¡a¡¡subject¡¡not¡¡a¡¡triad¡as¡¡being¡¡inheres¡¡in
triad¡¡but¡¡also¡¡in¡¡subjects¡¡not¡¡numbers¡¡at¡¡all¡odd¡¡on¡¡the¡¡other¡¡hand¡¡is
an¡¡attribute¡¡inhering¡¡in¡¡every¡¡triad¡¡and¡¡of¡¡wider¡¡application
£¨inhering¡¡as¡¡it¡¡does¡¡also¡¡in¡¡pentad£©£»¡¡but¡¡which¡¡does¡¡not¡¡extend¡¡beyond
the¡¡genus¡¡of¡¡triad£»¡¡for¡¡pentad¡¡is¡¡a¡¡number£»¡¡but¡¡nothing¡¡outside¡¡number
is¡¡odd¡£¡¡It¡¡is¡¡such¡¡attributes¡¡which¡¡we¡¡have¡¡to¡¡select£»¡¡up¡¡to¡¡the¡¡exact
point¡¡at¡¡which¡¡they¡¡are¡¡severally¡¡of¡¡wider¡¡extent¡¡than¡¡the¡¡subject¡¡but
collectively¡¡coextensive¡¡with¡¡it£»¡¡for¡¡this¡¡synthesis¡¡must¡¡be¡¡the
substance¡¡of¡¡the¡¡thing¡£¡¡For¡¡example¡¡every¡¡triad¡¡possesses¡¡the
attributes¡¡number£»¡¡odd£»¡¡and¡¡prime¡¡in¡¡both¡¡senses£»¡¡i¡£e¡£¡¡not¡¡only¡¡as
possessing¡¡no¡¡divisors£»¡¡but¡¡also¡¡as¡¡not¡¡being¡¡a¡¡sum¡¡of¡¡numbers¡£
This£»¡¡then£»¡¡is¡¡precisely¡¡what¡¡triad¡¡is£»¡¡viz¡£¡¡a¡¡number£»¡¡odd£»¡¡and
prime¡¡in¡¡the¡¡former¡¡and¡¡also¡¡the¡¡latter¡¡sense¡¡of¡¡the¡¡term£º¡¡for¡¡these
attributes¡¡taken¡¡severally¡¡apply£»¡¡the¡¡first¡¡two¡¡to¡¡all¡¡odd¡¡numbers£»
the¡¡last¡¡to¡¡the¡¡dyad¡¡also¡¡as¡¡well¡¡as¡¡to¡¡the¡¡triad£»¡¡but£»¡¡taken
collectively£»¡¡to¡¡no¡¡other¡¡subject¡£¡¡Now¡¡since¡¡we¡¡have¡¡shown¡¡above'¡¡that
attributes¡¡predicated¡¡as¡¡belonging¡¡to¡¡the¡¡essential¡¡nature¡¡are
necessary¡¡and¡¡that¡¡universals¡¡are¡¡necessary£»¡¡and¡¡since¡¡the
attributes¡¡which¡¡we¡¡select¡¡as¡¡inhering¡¡in¡¡triad£»¡¡or¡¡in¡¡any¡¡other
subject¡¡whose¡¡attributes¡¡we¡¡select¡¡in¡¡this¡¡way£»¡¡are¡¡predicated¡¡as
belonging¡¡to¡¡its¡¡essential¡¡nature£»¡¡triad¡¡will¡¡thus¡¡possess¡¡these
attributes¡¡necessarily¡£¡¡Further£»¡¡that¡¡the¡¡synthesis¡¡of¡¡them
constitutes¡¡the¡¡substance¡¡of¡¡triad¡¡is¡¡shown¡¡by¡¡the¡¡following¡¡argument¡£
If¡¡it¡¡is¡¡not¡¡identical¡¡with¡¡the¡¡being¡¡of¡¡triad£»¡¡it¡¡must¡¡be¡¡related
to¡¡triad¡¡as¡¡a¡¡genus¡¡named¡¡or¡¡nameless¡£¡¡It¡¡will¡¡then¡¡be¡¡of¡¡wider¡¡extent
than¡¡triad¡assuming¡¡that¡¡wider¡¡potential¡¡extent¡¡is¡¡the¡¡character¡¡of
a¡¡genus¡£¡¡If¡¡on¡¡the¡¡other¡¡hand¡¡this¡¡synthesis¡¡is¡¡applicable¡¡to¡¡no
subject¡¡other¡¡than¡¡the¡¡individual¡¡triads£»¡¡it¡¡will¡¡be¡¡identical¡¡with
the¡¡being¡¡of¡¡triad£»¡¡because¡¡we¡¡make¡¡the¡¡further¡¡assumption¡¡that¡¡the
substance¡¡of¡¡each¡¡subject¡¡is¡¡the¡¡predication¡¡of¡¡elements¡¡in¡¡its
essential¡¡nature¡¡down¡¡to¡¡the¡¡last¡¡differentia¡¡characterizing¡¡the
individuals¡£¡¡It¡¡follows¡¡that¡¡any¡¡other¡¡synthesis¡¡thus¡¡exhibited¡¡will
likewise¡¡be¡¡identical¡¡with¡¡the¡¡being¡¡of¡¡the¡¡subject¡£
¡¡¡¡The¡¡author¡¡of¡¡a¡¡hand¡book¡¡on¡¡a¡¡subject¡¡that¡¡is¡¡a¡¡generic¡¡whole
should¡¡divide¡¡the¡¡genus¡¡into¡¡its¡¡first¡¡infimae¡¡species¡number¡¡e¡£g¡£
into¡¡triad¡¡and¡¡dyad¡and¡¡then¡¡endeavour¡¡to¡¡seize¡¡their¡¡definitions¡¡by
the¡¡method¡¡we¡¡have¡¡described¡the¡¡definition£»¡¡for¡¡example£»¡¡of
straight¡¡line¡¡or¡¡circle¡¡or¡¡right¡¡angle¡£¡¡After¡¡that£»¡¡having¡¡established
what¡¡the¡¡category¡¡is¡¡to¡¡which¡¡the¡¡subaltern¡¡genus¡¡belongs¡quantity
or¡¡quality£»¡¡for¡¡instance¡he¡¡should¡¡examine¡¡the¡¡properties¡¡'peculiar'
to¡¡the¡¡species£»¡¡working¡¡through¡¡the¡¡proximate¡¡common¡¡differentiae¡£
He¡¡should¡¡proceed¡¡thus¡¡because¡¡the¡¡attributes¡¡of¡¡the¡¡genera¡¡compounded
of¡¡the¡¡infimae¡¡species¡¡will¡¡be¡¡clearly¡¡given¡¡by¡¡the¡¡definitions¡¡of¡¡the
species£»¡¡since¡¡the¡¡basic¡¡element¡¡of¡¡them¡¡all¡¡is¡¡the¡¡definition£»¡¡i¡£e¡£
the¡¡simple¡¡infirma¡¡species£»¡¡and¡¡the¡¡attributes¡¡inhere¡¡essentially¡¡in
the¡¡simple¡¡infimae¡¡species£»¡¡in¡¡the¡¡genera¡¡only¡¡in¡¡virtue¡¡of¡¡these¡£
¡¡¡¡Divisions¡¡according¡¡to¡¡differentiae¡¡are¡¡a¡¡useful¡¡accessory¡¡to¡¡this
method¡£¡¡What¡¡force¡¡they¡¡have¡¡as¡¡proofs¡¡we¡¡did£»¡¡indeed£»¡¡explain
above£»¡¡but¡¡that¡¡merely¡¡towards¡¡collecting¡¡the¡¡essential¡¡nature¡¡they
may¡¡be¡¡of¡¡use¡¡we¡¡will¡¡proceed¡¡to¡¡show¡£¡¡They¡¡might£»¡¡indeed£»¡¡seem¡¡to
be¡¡of¡¡no¡¡use¡¡at¡¡all£»¡¡but¡¡rather¡¡to¡¡assume¡¡everything¡¡at¡¡the¡¡start
and¡¡to¡¡be¡¡no¡¡better¡¡than¡¡an¡¡initial¡¡assumption¡¡made¡¡without
division¡£¡¡But£»¡¡in¡¡fact£»¡¡the¡¡order¡¡in¡¡which¡¡the¡¡attributes¡¡are
predicated¡¡does¡¡make¡¡a¡¡differenceit¡¡matters¡¡whether¡¡we¡¡say
animal¡tame¡biped£»¡¡or¡¡biped¡animal¡tame¡£¡¡For¡¡if¡¡every¡¡definable
thing¡¡consists¡¡of¡¡two¡¡elements¡¡and¡¡'animal¡tame'¡¡forms¡¡a¡¡unity£»¡¡and
again¡¡out¡¡of¡¡this¡¡and¡¡the¡¡further¡¡differentia¡¡man¡¡£¨or¡¡whatever¡¡else¡¡is
the¡¡unity¡¡under¡¡construction£©¡¡is¡¡constituted£»¡¡then¡¡the¡¡elements¡¡we
assume¡¡have¡¡necessarily¡¡been¡¡reached¡¡by¡¡division¡£¡¡Again£»¡¡division¡¡is
the¡¡only¡¡possible¡¡method¡¡of¡¡avoiding¡¡the¡¡omission¡¡of¡¡any¡¡element¡¡of
the¡¡essential¡¡nature¡£¡¡Thus£»¡¡if¡¡the¡¡primary¡¡genus¡¡is¡¡assumed¡¡and¡¡we
then¡¡take¡¡one¡¡of¡¡the¡¡lower¡¡divisions£»¡¡the¡¡dividendum¡¡will¡¡not¡¡fall
whole¡¡into¡¡this¡¡division£º¡¡e¡£g¡£¡¡it¡¡is¡¡not¡¡all¡¡animal¡¡which¡¡is¡¡either
whole¡winged¡¡or¡¡split¡winged¡¡but¡¡all¡¡winged¡¡animal£»¡¡for¡¡it¡¡is¡¡winged
animal¡¡to¡¡which¡¡this¡¡differentiation¡¡belongs¡£¡¡The¡¡primary
differentiation¡¡of¡¡animal¡¡is¡¡that¡¡within¡¡which¡¡all¡¡animal¡¡falls¡£¡¡The
like¡¡is¡¡true¡¡of¡¡every¡¡other¡¡genus£»¡¡whether¡¡outside¡¡animal¡¡or¡¡a
subaltern¡¡genus¡¡of¡¡animal£»¡¡e¡£g¡£¡¡the¡¡primary¡¡differentiation¡¡of¡¡bird¡¡is
that¡¡within¡¡which¡¡falls¡¡every¡¡bird£»¡¡of¡¡fish¡¡that¡¡within¡¡which¡¡falls
every¡¡fish¡£¡¡So£»¡¡if¡¡we¡¡proceed¡¡in¡¡this¡¡way£»¡¡we¡¡can¡¡be¡¡sure¡¡that¡¡nothing
has¡¡been¡¡omitted£º¡¡by¡¡any¡¡other¡¡method¡¡one¡¡is¡¡bound¡¡to¡¡omit¡¡something
without¡¡knowing¡¡it¡£
¡¡¡¡To¡¡define¡¡and¡¡divide¡¡one¡¡need¡¡not¡¡know¡¡the¡¡whole¡¡of¡¡existence¡£¡¡Yet
some¡¡hold¡¡it¡¡impossible¡¡to¡¡know¡¡the¡¡differentiae¡¡distinguishing¡¡each
thing¡¡from¡¡every¡¡single¡¡other¡¡thing¡¡without¡¡knowing¡¡every¡¡single¡¡other
thing£»¡¡and¡¡one¡¡cannot£»¡¡they¡¡say£»¡¡know¡¡each¡¡thing¡¡without¡¡knowing¡¡its
differentiae£»¡¡since¡¡everything¡¡is¡¡identical¡¡with¡¡that¡¡from¡¡which¡¡it
does¡¡not¡¡differ£»¡¡and¡¡other¡¡than¡¡that¡¡from¡¡which¡¡it¡¡differs¡£¡¡Now
first¡¡of¡¡all¡¡this¡¡is¡¡a¡¡fallacy£º¡¡not¡¡every¡¡differentia¡¡precludes
identity£»¡¡since¡¡many¡¡differentiae¡¡inhere¡¡in¡¡things¡¡specifically
identical£»¡¡though¡¡not¡¡in¡¡the¡¡substance¡¡of¡¡these¡¡nor¡¡essentially¡£
Secondly£»¡¡when¡¡one¡¡has¡¡taken¡¡one's¡¡differing¡¡pair¡¡of¡¡opposites¡¡and
assumed¡¡that¡¡the¡¡two¡¡sides¡¡exhaust¡¡the¡¡genus£»¡¡and¡¡that¡¡the¡¡subject¡¡one
seeks¡¡to¡¡define¡¡is¡¡present¡¡in¡¡one¡¡or¡¡other¡¡of¡¡them£»¡¡and¡¡one¡¡has
further¡¡verified¡¡its¡¡presence¡¡in¡¡one¡¡of¡¡them£»¡¡then¡¡it¡¡does¡¡not
matter¡¡whether¡¡or¡¡not¡¡one¡¡knows¡¡all¡¡the¡¡other¡¡subjects¡¡of¡¡which¡¡the
differentiae¡¡are¡¡also¡¡predicated¡£¡¡For¡¡it¡¡is¡¡obvious¡¡that¡¡when¡¡by
this¡¡process¡¡one¡¡reaches¡¡subjects¡¡incapable¡¡of¡¡further¡¡differentiation
one¡¡will¡¡possess¡¡the¡¡formula¡¡defining¡¡the¡¡substance¡£¡¡Moreover£»¡¡to
postulate¡¡that¡¡the¡¡division¡¡exhausts¡¡the¡¡genus¡¡is¡¡not¡¡illegitimate
if¡¡the¡¡opposites¡¡exclude¡¡a¡¡middle£»¡¡since¡¡if¡¡it¡¡is¡¡the¡¡differentia¡¡of
that¡¡genus£»¡¡anything¡¡contained¡¡in¡¡the¡¡genus¡¡must¡¡lie¡¡on¡¡one¡¡of¡¡the¡¡two
sides¡£
¡¡¡¡In¡¡establishing¡¡a¡¡definition¡¡by¡¡division¡¡one¡¡should¡¡keep¡¡three
objects¡¡in¡¡view£º¡¡£¨1£©¡¡the¡¡admission¡¡only¡¡of¡¡elements¡¡in¡¡the¡¡definable
form£»¡¡£¨2£©¡¡the¡¡arrangement¡¡of¡¡these¡¡in¡¡the¡¡right¡¡order£»¡¡£¨3£©¡¡the
omission¡¡of¡¡no¡¡such¡¡elements¡£¡¡The¡¡first¡¡is¡¡feasible¡¡because¡¡one¡¡can
establish¡¡genus¡¡and¡¡differentia¡¡through¡¡the¡¡topic¡¡of¡¡the¡¡genus£»¡¡just
as¡¡one¡¡can¡¡conclude¡¡the¡¡inherence¡¡of¡¡an¡¡accident¡¡through¡¡the¡¡topic
of¡¡the¡¡accident¡£¡¡The¡¡right¡¡order¡¡will¡¡be¡¡achieved¡¡if¡¡the¡¡right¡¡term¡¡is
assumed¡¡as¡¡primary£»¡¡and¡¡this¡¡will¡¡be¡¡ens