Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ21½Ú

posterior analytics-µÚ21½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡





was¡¡bound¡¡to¡¡rise£»¡¡and¡¡when¡¡an¡¡exhalation¡¡had¡¡risen¡¡cloud¡¡was¡¡bound¡¡to



form£»¡¡and¡¡from¡¡the¡¡formation¡¡of¡¡cloud¡¡rain¡¡necessarily¡¡resulted¡¡and¡¡by



the¡¡fall¡¡of¡¡rain¡¡the¡¡earth¡¡was¡¡necessarily¡¡moistened£º¡¡but¡¡this¡¡was¡¡the



starting¡­point£»¡¡so¡¡that¡¡a¡¡circle¡¡is¡¡completed£»¡¡for¡¡posit¡¡any¡¡one¡¡of



the¡¡terms¡¡and¡¡another¡¡follows¡¡from¡¡it£»¡¡and¡¡from¡¡that¡¡another£»¡¡and¡¡from



that¡¡again¡¡the¡¡first¡£



¡¡¡¡Some¡¡occurrences¡¡are¡¡universal¡¡£¨for¡¡they¡¡are£»¡¡or¡¡come¡­to¡­be¡¡what



they¡¡are£»¡¡always¡¡and¡¡in¡¡ever¡¡case£©£»¡¡others¡¡again¡¡are¡¡not¡¡always¡¡what



they¡¡are¡¡but¡¡only¡¡as¡¡a¡¡general¡¡rule£º¡¡for¡¡instance£»¡¡not¡¡every¡¡man¡¡can



grow¡¡a¡¡beard£»¡¡but¡¡it¡¡is¡¡the¡¡general¡¡rule¡£¡¡In¡¡the¡¡case¡¡of¡¡such



connexions¡¡the¡¡middle¡¡term¡¡too¡¡must¡¡be¡¡a¡¡general¡¡rule¡£¡¡For¡¡if¡¡A¡¡is



predicated¡¡universally¡¡of¡¡B¡¡and¡¡B¡¡of¡¡C£»¡¡A¡¡too¡¡must¡¡be¡¡predicated



always¡¡and¡¡in¡¡every¡¡instance¡¡of¡¡C£»¡¡since¡¡to¡¡hold¡¡in¡¡every¡¡instance¡¡and



always¡¡is¡¡of¡¡the¡¡nature¡¡of¡¡the¡¡universal¡£¡¡But¡¡we¡¡have¡¡assumed¡¡a



connexion¡¡which¡¡is¡¡a¡¡general¡¡rule£»¡¡consequently¡¡the¡¡middle¡¡term¡¡B¡¡must



also¡¡be¡¡a¡¡general¡¡rule¡£¡¡So¡¡connexions¡¡which¡¡embody¡¡a¡¡general¡¡rule¡­i¡£e¡£



which¡¡exist¡¡or¡¡come¡¡to¡¡be¡¡as¡¡a¡¡general¡¡rule¡­will¡¡also¡¡derive¡¡from



immediate¡¡basic¡¡premisses¡£



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡13







¡¡¡¡We¡¡have¡¡already¡¡explained¡¡how¡¡essential¡¡nature¡¡is¡¡set¡¡out¡¡in¡¡the



terms¡¡of¡¡a¡¡demonstration£»¡¡and¡¡the¡¡sense¡¡in¡¡which¡¡it¡¡is¡¡or¡¡is¡¡not



demonstrable¡¡or¡¡definable£»¡¡so¡¡let¡¡us¡¡now¡¡discuss¡¡the¡¡method¡¡to¡¡be



adopted¡¡in¡¡tracing¡¡the¡¡elements¡¡predicated¡¡as¡¡constituting¡¡the



definable¡¡form¡£



¡¡¡¡Now¡¡of¡¡the¡¡attributes¡¡which¡¡inhere¡¡always¡¡in¡¡each¡¡several¡¡thing



there¡¡are¡¡some¡¡which¡¡are¡¡wider¡¡in¡¡extent¡¡than¡¡it¡¡but¡¡not¡¡wider¡¡than



its¡¡genus¡¡£¨by¡¡attributes¡¡of¡¡wider¡¡extent¡¡mean¡¡all¡¡such¡¡as¡¡are



universal¡¡attributes¡¡of¡¡each¡¡several¡¡subject£»¡¡but¡¡in¡¡their¡¡application



are¡¡not¡¡confined¡¡to¡¡that¡¡subject£©¡£¡¡while¡¡an¡¡attribute¡¡may¡¡inhere¡¡in



every¡¡triad£»¡¡yet¡¡also¡¡in¡¡a¡¡subject¡¡not¡¡a¡¡triad¡­as¡¡being¡¡inheres¡¡in



triad¡¡but¡¡also¡¡in¡¡subjects¡¡not¡¡numbers¡¡at¡¡all¡­odd¡¡on¡¡the¡¡other¡¡hand¡¡is



an¡¡attribute¡¡inhering¡¡in¡¡every¡¡triad¡¡and¡¡of¡¡wider¡¡application



£¨inhering¡¡as¡¡it¡¡does¡¡also¡¡in¡¡pentad£©£»¡¡but¡¡which¡¡does¡¡not¡¡extend¡¡beyond



the¡¡genus¡¡of¡¡triad£»¡¡for¡¡pentad¡¡is¡¡a¡¡number£»¡¡but¡¡nothing¡¡outside¡¡number



is¡¡odd¡£¡¡It¡¡is¡¡such¡¡attributes¡¡which¡¡we¡¡have¡¡to¡¡select£»¡¡up¡¡to¡¡the¡¡exact



point¡¡at¡¡which¡¡they¡¡are¡¡severally¡¡of¡¡wider¡¡extent¡¡than¡¡the¡¡subject¡¡but



collectively¡¡coextensive¡¡with¡¡it£»¡¡for¡¡this¡¡synthesis¡¡must¡¡be¡¡the



substance¡¡of¡¡the¡¡thing¡£¡¡For¡¡example¡¡every¡¡triad¡¡possesses¡¡the



attributes¡¡number£»¡¡odd£»¡¡and¡¡prime¡¡in¡¡both¡¡senses£»¡¡i¡£e¡£¡¡not¡¡only¡¡as



possessing¡¡no¡¡divisors£»¡¡but¡¡also¡¡as¡¡not¡¡being¡¡a¡¡sum¡¡of¡¡numbers¡£



This£»¡¡then£»¡¡is¡¡precisely¡¡what¡¡triad¡¡is£»¡¡viz¡£¡¡a¡¡number£»¡¡odd£»¡¡and



prime¡¡in¡¡the¡¡former¡¡and¡¡also¡¡the¡¡latter¡¡sense¡¡of¡¡the¡¡term£º¡¡for¡¡these



attributes¡¡taken¡¡severally¡¡apply£»¡¡the¡¡first¡¡two¡¡to¡¡all¡¡odd¡¡numbers£»



the¡¡last¡¡to¡¡the¡¡dyad¡¡also¡¡as¡¡well¡¡as¡¡to¡¡the¡¡triad£»¡¡but£»¡¡taken



collectively£»¡¡to¡¡no¡¡other¡¡subject¡£¡¡Now¡¡since¡¡we¡¡have¡¡shown¡¡above'¡¡that



attributes¡¡predicated¡¡as¡¡belonging¡¡to¡¡the¡¡essential¡¡nature¡¡are



necessary¡¡and¡¡that¡¡universals¡¡are¡¡necessary£»¡¡and¡¡since¡¡the



attributes¡¡which¡¡we¡¡select¡¡as¡¡inhering¡¡in¡¡triad£»¡¡or¡¡in¡¡any¡¡other



subject¡¡whose¡¡attributes¡¡we¡¡select¡¡in¡¡this¡¡way£»¡¡are¡¡predicated¡¡as



belonging¡¡to¡¡its¡¡essential¡¡nature£»¡¡triad¡¡will¡¡thus¡¡possess¡¡these



attributes¡¡necessarily¡£¡¡Further£»¡¡that¡¡the¡¡synthesis¡¡of¡¡them



constitutes¡¡the¡¡substance¡¡of¡¡triad¡¡is¡¡shown¡¡by¡¡the¡¡following¡¡argument¡£



If¡¡it¡¡is¡¡not¡¡identical¡¡with¡¡the¡¡being¡¡of¡¡triad£»¡¡it¡¡must¡¡be¡¡related



to¡¡triad¡¡as¡¡a¡¡genus¡¡named¡¡or¡¡nameless¡£¡¡It¡¡will¡¡then¡¡be¡¡of¡¡wider¡¡extent



than¡¡triad¡­assuming¡¡that¡¡wider¡¡potential¡¡extent¡¡is¡¡the¡¡character¡¡of



a¡¡genus¡£¡¡If¡¡on¡¡the¡¡other¡¡hand¡¡this¡¡synthesis¡¡is¡¡applicable¡¡to¡¡no



subject¡¡other¡¡than¡¡the¡¡individual¡¡triads£»¡¡it¡¡will¡¡be¡¡identical¡¡with



the¡¡being¡¡of¡¡triad£»¡¡because¡¡we¡¡make¡¡the¡¡further¡¡assumption¡¡that¡¡the



substance¡¡of¡¡each¡¡subject¡¡is¡¡the¡¡predication¡¡of¡¡elements¡¡in¡¡its



essential¡¡nature¡¡down¡¡to¡¡the¡¡last¡¡differentia¡¡characterizing¡¡the



individuals¡£¡¡It¡¡follows¡¡that¡¡any¡¡other¡¡synthesis¡¡thus¡¡exhibited¡¡will



likewise¡¡be¡¡identical¡¡with¡¡the¡¡being¡¡of¡¡the¡¡subject¡£



¡¡¡¡The¡¡author¡¡of¡¡a¡¡hand¡­book¡¡on¡¡a¡¡subject¡¡that¡¡is¡¡a¡¡generic¡¡whole



should¡¡divide¡¡the¡¡genus¡¡into¡¡its¡¡first¡¡infimae¡¡species¡­number¡¡e¡£g¡£



into¡¡triad¡¡and¡¡dyad¡­and¡¡then¡¡endeavour¡¡to¡¡seize¡¡their¡¡definitions¡¡by



the¡¡method¡¡we¡¡have¡¡described¡­the¡¡definition£»¡¡for¡¡example£»¡¡of



straight¡¡line¡¡or¡¡circle¡¡or¡¡right¡¡angle¡£¡¡After¡¡that£»¡¡having¡¡established



what¡¡the¡¡category¡¡is¡¡to¡¡which¡¡the¡¡subaltern¡¡genus¡¡belongs¡­quantity



or¡¡quality£»¡¡for¡¡instance¡­he¡¡should¡¡examine¡¡the¡¡properties¡¡'peculiar'



to¡¡the¡¡species£»¡¡working¡¡through¡¡the¡¡proximate¡¡common¡¡differentiae¡£



He¡¡should¡¡proceed¡¡thus¡¡because¡¡the¡¡attributes¡¡of¡¡the¡¡genera¡¡compounded



of¡¡the¡¡infimae¡¡species¡¡will¡¡be¡¡clearly¡¡given¡¡by¡¡the¡¡definitions¡¡of¡¡the



species£»¡¡since¡¡the¡¡basic¡¡element¡¡of¡¡them¡¡all¡¡is¡¡the¡¡definition£»¡¡i¡£e¡£



the¡¡simple¡¡infirma¡¡species£»¡¡and¡¡the¡¡attributes¡¡inhere¡¡essentially¡¡in



the¡¡simple¡¡infimae¡¡species£»¡¡in¡¡the¡¡genera¡¡only¡¡in¡¡virtue¡¡of¡¡these¡£



¡¡¡¡Divisions¡¡according¡¡to¡¡differentiae¡¡are¡¡a¡¡useful¡¡accessory¡¡to¡¡this



method¡£¡¡What¡¡force¡¡they¡¡have¡¡as¡¡proofs¡¡we¡¡did£»¡¡indeed£»¡¡explain



above£»¡¡but¡¡that¡¡merely¡¡towards¡¡collecting¡¡the¡¡essential¡¡nature¡¡they



may¡¡be¡¡of¡¡use¡¡we¡¡will¡¡proceed¡¡to¡¡show¡£¡¡They¡¡might£»¡¡indeed£»¡¡seem¡¡to



be¡¡of¡¡no¡¡use¡¡at¡¡all£»¡¡but¡¡rather¡¡to¡¡assume¡¡everything¡¡at¡¡the¡¡start



and¡¡to¡¡be¡¡no¡¡better¡¡than¡¡an¡¡initial¡¡assumption¡¡made¡¡without



division¡£¡¡But£»¡¡in¡¡fact£»¡¡the¡¡order¡¡in¡¡which¡¡the¡¡attributes¡¡are



predicated¡¡does¡¡make¡¡a¡¡differenceit¡¡matters¡¡whether¡¡we¡¡say



animal¡­tame¡­biped£»¡¡or¡¡biped¡­animal¡­tame¡£¡¡For¡¡if¡¡every¡¡definable



thing¡¡consists¡¡of¡¡two¡¡elements¡¡and¡¡'animal¡­tame'¡¡forms¡¡a¡¡unity£»¡¡and



again¡¡out¡¡of¡¡this¡¡and¡¡the¡¡further¡¡differentia¡¡man¡¡£¨or¡¡whatever¡¡else¡¡is



the¡¡unity¡¡under¡¡construction£©¡¡is¡¡constituted£»¡¡then¡¡the¡¡elements¡¡we



assume¡¡have¡¡necessarily¡¡been¡¡reached¡¡by¡¡division¡£¡¡Again£»¡¡division¡¡is



the¡¡only¡¡possible¡¡method¡¡of¡¡avoiding¡¡the¡¡omission¡¡of¡¡any¡¡element¡¡of



the¡¡essential¡¡nature¡£¡¡Thus£»¡¡if¡¡the¡¡primary¡¡genus¡¡is¡¡assumed¡¡and¡¡we



then¡¡take¡¡one¡¡of¡¡the¡¡lower¡¡divisions£»¡¡the¡¡dividendum¡¡will¡¡not¡¡fall



whole¡¡into¡¡this¡¡division£º¡¡e¡£g¡£¡¡it¡¡is¡¡not¡¡all¡¡animal¡¡which¡¡is¡¡either



whole¡­winged¡¡or¡¡split¡­winged¡¡but¡¡all¡¡winged¡¡animal£»¡¡for¡¡it¡¡is¡¡winged



animal¡¡to¡¡which¡¡this¡¡differentiation¡¡belongs¡£¡¡The¡¡primary



differentiation¡¡of¡¡animal¡¡is¡¡that¡¡within¡¡which¡¡all¡¡animal¡¡falls¡£¡¡The



like¡¡is¡¡true¡¡of¡¡every¡¡other¡¡genus£»¡¡whether¡¡outside¡¡animal¡¡or¡¡a



subaltern¡¡genus¡¡of¡¡animal£»¡¡e¡£g¡£¡¡the¡¡primary¡¡differentiation¡¡of¡¡bird¡¡is



that¡¡within¡¡which¡¡falls¡¡every¡¡bird£»¡¡of¡¡fish¡¡that¡¡within¡¡which¡¡falls



every¡¡fish¡£¡¡So£»¡¡if¡¡we¡¡proceed¡¡in¡¡this¡¡way£»¡¡we¡¡can¡¡be¡¡sure¡¡that¡¡nothing



has¡¡been¡¡omitted£º¡¡by¡¡any¡¡other¡¡method¡¡one¡¡is¡¡bound¡¡to¡¡omit¡¡something



without¡¡knowing¡¡it¡£



¡¡¡¡To¡¡define¡¡and¡¡divide¡¡one¡¡need¡¡not¡¡know¡¡the¡¡whole¡¡of¡¡existence¡£¡¡Yet



some¡¡hold¡¡it¡¡impossible¡¡to¡¡know¡¡the¡¡differentiae¡¡distinguishing¡¡each



thing¡¡from¡¡every¡¡single¡¡other¡¡thing¡¡without¡¡knowing¡¡every¡¡single¡¡other



thing£»¡¡and¡¡one¡¡cannot£»¡¡they¡¡say£»¡¡know¡¡each¡¡thing¡¡without¡¡knowing¡¡its



differentiae£»¡¡since¡¡everything¡¡is¡¡identical¡¡with¡¡that¡¡from¡¡which¡¡it



does¡¡not¡¡differ£»¡¡and¡¡other¡¡than¡¡that¡¡from¡¡which¡¡it¡¡differs¡£¡¡Now



first¡¡of¡¡all¡¡this¡¡is¡¡a¡¡fallacy£º¡¡not¡¡every¡¡differentia¡¡precludes



identity£»¡¡since¡¡many¡¡differentiae¡¡inhere¡¡in¡¡things¡¡specifically



identical£»¡¡though¡¡not¡¡in¡¡the¡¡substance¡¡of¡¡these¡¡nor¡¡essentially¡£



Secondly£»¡¡when¡¡one¡¡has¡¡taken¡¡one's¡¡differing¡¡pair¡¡of¡¡opposites¡¡and



assumed¡¡that¡¡the¡¡two¡¡sides¡¡exhaust¡¡the¡¡genus£»¡¡and¡¡that¡¡the¡¡subject¡¡one



seeks¡¡to¡¡define¡¡is¡¡present¡¡in¡¡one¡¡or¡¡other¡¡of¡¡them£»¡¡and¡¡one¡¡has



further¡¡verified¡¡its¡¡presence¡¡in¡¡one¡¡of¡¡them£»¡¡then¡¡it¡¡does¡¡not



matter¡¡whether¡¡or¡¡not¡¡one¡¡knows¡¡all¡¡the¡¡other¡¡subjects¡¡of¡¡which¡¡the



differentiae¡¡are¡¡also¡¡predicated¡£¡¡For¡¡it¡¡is¡¡obvious¡¡that¡¡when¡¡by



this¡¡process¡¡one¡¡reaches¡¡subjects¡¡incapable¡¡of¡¡further¡¡differentiation



one¡¡will¡¡possess¡¡the¡¡formula¡¡defining¡¡the¡¡substance¡£¡¡Moreover£»¡¡to



postulate¡¡that¡¡the¡¡division¡¡exhausts¡¡the¡¡genus¡¡is¡¡not¡¡illegitimate



if¡¡the¡¡opposites¡¡exclude¡¡a¡¡middle£»¡¡since¡¡if¡¡it¡¡is¡¡the¡¡differentia¡¡of



that¡¡genus£»¡¡anything¡¡contained¡¡in¡¡the¡¡genus¡¡must¡¡lie¡¡on¡¡one¡¡of¡¡the¡¡two



sides¡£



¡¡¡¡In¡¡establishing¡¡a¡¡definition¡¡by¡¡division¡¡one¡¡should¡¡keep¡¡three



objects¡¡in¡¡view£º¡¡£¨1£©¡¡the¡¡admission¡¡only¡¡of¡¡elements¡¡in¡¡the¡¡definable



form£»¡¡£¨2£©¡¡the¡¡arrangement¡¡of¡¡these¡¡in¡¡the¡¡right¡¡order£»¡¡£¨3£©¡¡the



omission¡¡of¡¡no¡¡such¡¡elements¡£¡¡The¡¡first¡¡is¡¡feasible¡¡because¡¡one¡¡can



establish¡¡genus¡¡and¡¡differentia¡¡through¡¡the¡¡topic¡¡of¡¡the¡¡genus£»¡¡just



as¡¡one¡¡can¡¡conclude¡¡the¡¡inherence¡¡of¡¡an¡¡accident¡¡through¡¡the¡¡topic



of¡¡the¡¡accident¡£¡¡The¡¡right¡¡order¡¡will¡¡be¡¡achieved¡¡if¡¡the¡¡right¡¡term¡¡is



assumed¡¡as¡¡primary£»¡¡and¡¡this¡¡will¡¡be¡¡ens

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ