Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ2½Ú

posterior analytics-µÚ2½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






or¡¡a¡¡'laying¡¡something¡¡down'£»¡¡since¡¡the¡¡arithmetician¡¡lays¡¡it¡¡down



that¡¡to¡¡be¡¡a¡¡unit¡¡is¡¡to¡¡be¡¡quantitatively¡¡indivisible£»¡¡but¡¡it¡¡is¡¡not¡¡a



hypothesis£»¡¡for¡¡to¡¡define¡¡what¡¡a¡¡unit¡¡is¡¡is¡¡not¡¡the¡¡same¡¡as¡¡to



affirm¡¡its¡¡existence¡£



¡¡¡¡Now¡¡since¡¡the¡¡required¡¡ground¡¡of¡¡our¡¡knowledge¡­i¡£e¡£¡¡of¡¡our



conviction¡­of¡¡a¡¡fact¡¡is¡¡the¡¡possession¡¡of¡¡such¡¡a¡¡syllogism¡¡as¡¡we



call¡¡demonstration£»¡¡and¡¡the¡¡ground¡¡of¡¡the¡¡syllogism¡¡is¡¡the¡¡facts



constituting¡¡its¡¡premisses£»¡¡we¡¡must¡¡not¡¡only¡¡know¡¡the¡¡primary



premisses¡­some¡¡if¡¡not¡¡all¡¡of¡¡them¡­beforehand£»¡¡but¡¡know¡¡them¡¡better



than¡¡the¡¡conclusion£º¡¡for¡¡the¡¡cause¡¡of¡¡an¡¡attribute's¡¡inherence¡¡in¡¡a



subject¡¡always¡¡itself¡¡inheres¡¡in¡¡the¡¡subject¡¡more¡¡firmly¡¡than¡¡that



attribute£»¡¡e¡£g¡£¡¡the¡¡cause¡¡of¡¡our¡¡loving¡¡anything¡¡is¡¡dearer¡¡to¡¡us



than¡¡the¡¡object¡¡of¡¡our¡¡love¡£¡¡So¡¡since¡¡the¡¡primary¡¡premisses¡¡are¡¡the



cause¡¡of¡¡our¡¡knowledge¡­i¡£e¡£¡¡of¡¡our¡¡conviction¡­it¡¡follows¡¡that¡¡we



know¡¡them¡¡better¡­that¡¡is£»¡¡are¡¡more¡¡convinced¡¡of¡¡them¡­than¡¡their



consequences£»¡¡precisely¡¡because¡¡of¡¡our¡¡knowledge¡¡of¡¡the¡¡latter¡¡is



the¡¡effect¡¡of¡¡our¡¡knowledge¡¡of¡¡the¡¡premisses¡£¡¡Now¡¡a¡¡man¡¡cannot¡¡believe



in¡¡anything¡¡more¡¡than¡¡in¡¡the¡¡things¡¡he¡¡knows£»¡¡unless¡¡he¡¡has¡¡either



actual¡¡knowledge¡¡of¡¡it¡¡or¡¡something¡¡better¡¡than¡¡actual¡¡knowledge¡£



But¡¡we¡¡are¡¡faced¡¡with¡¡this¡¡paradox¡¡if¡¡a¡¡student¡¡whose¡¡belief¡¡rests



on¡¡demonstration¡¡has¡¡not¡¡prior¡¡knowledge£»¡¡a¡¡man¡¡must¡¡believe¡¡in



some£»¡¡if¡¡not¡¡in¡¡all£»¡¡of¡¡the¡¡basic¡¡truths¡¡more¡¡than¡¡in¡¡the



conclusion¡£¡¡Moreover£»¡¡if¡¡a¡¡man¡¡sets¡¡out¡¡to¡¡acquire¡¡the¡¡scientific



knowledge¡¡that¡¡comes¡¡through¡¡demonstration£»¡¡he¡¡must¡¡not¡¡only¡¡have¡¡a



better¡¡knowledge¡¡of¡¡the¡¡basic¡¡truths¡¡and¡¡a¡¡firmer¡¡conviction¡¡of¡¡them



than¡¡of¡¡the¡¡connexion¡¡which¡¡is¡¡being¡¡demonstrated£º¡¡more¡¡than¡¡this£»



nothing¡¡must¡¡be¡¡more¡¡certain¡¡or¡¡better¡¡known¡¡to¡¡him¡¡than¡¡these¡¡basic



truths¡¡in¡¡their¡¡character¡¡as¡¡contradicting¡¡the¡¡fundamental¡¡premisses



which¡¡lead¡¡to¡¡the¡¡opposed¡¡and¡¡erroneous¡¡conclusion¡£¡¡For¡¡indeed¡¡the



conviction¡¡of¡¡pure¡¡science¡¡must¡¡be¡¡unshakable¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡3







¡¡¡¡Some¡¡hold¡¡that£»¡¡owing¡¡to¡¡the¡¡necessity¡¡of¡¡knowing¡¡the¡¡primary



premisses£»¡¡there¡¡is¡¡no¡¡scientific¡¡knowledge¡£¡¡Others¡¡think¡¡there¡¡is£»



but¡¡that¡¡all¡¡truths¡¡are¡¡demonstrable¡£¡¡Neither¡¡doctrine¡¡is¡¡either



true¡¡or¡¡a¡¡necessary¡¡deduction¡¡from¡¡the¡¡premisses¡£¡¡The¡¡first¡¡school£»



assuming¡¡that¡¡there¡¡is¡¡no¡¡way¡¡of¡¡knowing¡¡other¡¡than¡¡by



demonstration£»¡¡maintain¡¡that¡¡an¡¡infinite¡¡regress¡¡is¡¡involved£»¡¡on¡¡the



ground¡¡that¡¡if¡¡behind¡¡the¡¡prior¡¡stands¡¡no¡¡primary£»¡¡we¡¡could¡¡not¡¡know



the¡¡posterior¡¡through¡¡the¡¡prior¡¡£¨wherein¡¡they¡¡are¡¡right£»¡¡for¡¡one



cannot¡¡traverse¡¡an¡¡infinite¡¡series£©£º¡¡if¡¡on¡¡the¡¡other¡¡hand¡­they¡¡say¡­the



series¡¡terminates¡¡and¡¡there¡¡are¡¡primary¡¡premisses£»¡¡yet¡¡these¡¡are



unknowable¡¡because¡¡incapable¡¡of¡¡demonstration£»¡¡which¡¡according¡¡to¡¡them



is¡¡the¡¡only¡¡form¡¡of¡¡knowledge¡£¡¡And¡¡since¡¡thus¡¡one¡¡cannot¡¡know¡¡the



primary¡¡premisses£»¡¡knowledge¡¡of¡¡the¡¡conclusions¡¡which¡¡follow¡¡from¡¡them



is¡¡not¡¡pure¡¡scientific¡¡knowledge¡¡nor¡¡properly¡¡knowing¡¡at¡¡all£»¡¡but



rests¡¡on¡¡the¡¡mere¡¡supposition¡¡that¡¡the¡¡premisses¡¡are¡¡true¡£¡¡The¡¡other



party¡¡agree¡¡with¡¡them¡¡as¡¡regards¡¡knowing£»¡¡holding¡¡that¡¡it¡¡is¡¡only



possible¡¡by¡¡demonstration£»¡¡but¡¡they¡¡see¡¡no¡¡difficulty¡¡in¡¡holding



that¡¡all¡¡truths¡¡are¡¡demonstrated£»¡¡on¡¡the¡¡ground¡¡that¡¡demonstration¡¡may



be¡¡circular¡¡and¡¡reciprocal¡£



¡¡¡¡Our¡¡own¡¡doctrine¡¡is¡¡that¡¡not¡¡all¡¡knowledge¡¡is¡¡demonstrative£º¡¡on



the¡¡contrary£»¡¡knowledge¡¡of¡¡the¡¡immediate¡¡premisses¡¡is¡¡independent¡¡of



demonstration¡£¡¡£¨The¡¡necessity¡¡of¡¡this¡¡is¡¡obvious£»¡¡for¡¡since¡¡we¡¡must



know¡¡the¡¡prior¡¡premisses¡¡from¡¡which¡¡the¡¡demonstration¡¡is¡¡drawn£»¡¡and



since¡¡the¡¡regress¡¡must¡¡end¡¡in¡¡immediate¡¡truths£»¡¡those¡¡truths¡¡must¡¡be



indemonstrable¡££©¡¡Such£»¡¡then£»¡¡is¡¡our¡¡doctrine£»¡¡and¡¡in¡¡addition¡¡we



maintain¡¡that¡¡besides¡¡scientific¡¡knowledge¡¡there¡¡is¡¡its¡¡originative



source¡¡which¡¡enables¡¡us¡¡to¡¡recognize¡¡the¡¡definitions¡£



¡¡¡¡Now¡¡demonstration¡¡must¡¡be¡¡based¡¡on¡¡premisses¡¡prior¡¡to¡¡and¡¡better



known¡¡than¡¡the¡¡conclusion£»¡¡and¡¡the¡¡same¡¡things¡¡cannot¡¡simultaneously



be¡¡both¡¡prior¡¡and¡¡posterior¡¡to¡¡one¡¡another£º¡¡so¡¡circular



demonstration¡¡is¡¡clearly¡¡not¡¡possible¡¡in¡¡the¡¡unqualified¡¡sense¡¡of



'demonstration'£»¡¡but¡¡only¡¡possible¡¡if¡¡'demonstration'¡¡be¡¡extended¡¡to



include¡¡that¡¡other¡¡method¡¡of¡¡argument¡¡which¡¡rests¡¡on¡¡a¡¡distinction



between¡¡truths¡¡prior¡¡to¡¡us¡¡and¡¡truths¡¡without¡¡qualification¡¡prior£»



i¡£e¡£¡¡the¡¡method¡¡by¡¡which¡¡induction¡¡produces¡¡knowledge¡£¡¡But¡¡if¡¡we



accept¡¡this¡¡extension¡¡of¡¡its¡¡meaning£»¡¡our¡¡definition¡¡of¡¡unqualified



knowledge¡¡will¡¡prove¡¡faulty£»¡¡for¡¡there¡¡seem¡¡to¡¡be¡¡two¡¡kinds¡¡of¡¡it¡£



Perhaps£»¡¡however£»¡¡the¡¡second¡¡form¡¡of¡¡demonstration£»¡¡that¡¡which



proceeds¡¡from¡¡truths¡¡better¡¡known¡¡to¡¡us£»¡¡is¡¡not¡¡demonstration¡¡in¡¡the



unqualified¡¡sense¡¡of¡¡the¡¡term¡£



¡¡¡¡The¡¡advocates¡¡of¡¡circular¡¡demonstration¡¡are¡¡not¡¡only¡¡faced¡¡with



the¡¡difficulty¡¡we¡¡have¡¡just¡¡stated£º¡¡in¡¡addition¡¡their¡¡theory¡¡reduces



to¡¡the¡¡mere¡¡statement¡¡that¡¡if¡¡a¡¡thing¡¡exists£»¡¡then¡¡it¡¡does¡¡exist¡­an



easy¡¡way¡¡of¡¡proving¡¡anything¡£¡¡That¡¡this¡¡is¡¡so¡¡can¡¡be¡¡clearly¡¡shown



by¡¡taking¡¡three¡¡terms£»¡¡for¡¡to¡¡constitute¡¡the¡¡circle¡¡it¡¡makes¡¡no



difference¡¡whether¡¡many¡¡terms¡¡or¡¡few¡¡or¡¡even¡¡only¡¡two¡¡are¡¡taken¡£



Thus¡¡by¡¡direct¡¡proof£»¡¡if¡¡A¡¡is£»¡¡B¡¡must¡¡be£»¡¡if¡¡B¡¡is£»¡¡C¡¡must¡¡be£»



therefore¡¡if¡¡A¡¡is£»¡¡C¡¡must¡¡be¡£¡¡Since¡¡then¡­by¡¡the¡¡circular¡¡proof¡­if¡¡A



is£»¡¡B¡¡must¡¡be£»¡¡and¡¡if¡¡B¡¡is£»¡¡A¡¡must¡¡be£»¡¡A¡¡may¡¡be¡¡substituted¡¡for¡¡C



above¡£¡¡Then¡¡'if¡¡B¡¡is£»¡¡A¡¡must¡¡be'='if¡¡B¡¡is£»¡¡C¡¡must¡¡be'£»¡¡which¡¡above



gave¡¡the¡¡conclusion¡¡'if¡¡A¡¡is£»¡¡C¡¡must¡¡be'£º¡¡but¡¡C¡¡and¡¡A¡¡have¡¡been



identified¡£¡¡Consequently¡¡the¡¡upholders¡¡of¡¡circular¡¡demonstration¡¡are



in¡¡the¡¡position¡¡of¡¡saying¡¡that¡¡if¡¡A¡¡is£»¡¡A¡¡must¡¡be¡­a¡¡simple¡¡way¡¡of



proving¡¡anything¡£¡¡Moreover£»¡¡even¡¡such¡¡circular¡¡demonstration¡¡is



impossible¡¡except¡¡in¡¡the¡¡case¡¡of¡¡attributes¡¡that¡¡imply¡¡one¡¡another£»



viz¡£¡¡'peculiar'¡¡properties¡£



¡¡¡¡¡¡¡¡Now£»¡¡it¡¡has¡¡been¡¡shown¡¡that¡¡the¡¡positing¡¡of¡¡one¡¡thing¡­be¡¡it¡¡one



term¡¡or¡¡one¡¡premiss¡­never¡¡involves¡¡a¡¡necessary¡¡consequent£º¡¡two



premisses¡¡constitute¡¡the¡¡first¡¡and¡¡smallest¡¡foundation¡¡for¡¡drawing¡¡a



conclusion¡¡at¡¡all¡¡and¡¡therefore¡¡a¡¡fortiori¡¡for¡¡the¡¡demonstrative



syllogism¡¡of¡¡science¡£¡¡If£»¡¡then£»¡¡A¡¡is¡¡implied¡¡in¡¡B¡¡and¡¡C£»¡¡and¡¡B¡¡and¡¡C



are¡¡reciprocally¡¡implied¡¡in¡¡one¡¡another¡¡and¡¡in¡¡A£»¡¡it¡¡is¡¡possible£»¡¡as



has¡¡been¡¡shown¡¡in¡¡my¡¡writings¡¡on¡¡the¡¡syllogism£»¡¡to¡¡prove¡¡all¡¡the



assumptions¡¡on¡¡which¡¡the¡¡original¡¡conclusion¡¡rested£»¡¡by¡¡circular



demonstration¡¡in¡¡the¡¡first¡¡figure¡£¡¡But¡¡it¡¡has¡¡also¡¡been¡¡shown¡¡that



in¡¡the¡¡other¡¡figures¡¡either¡¡no¡¡conclusion¡¡is¡¡possible£»¡¡or¡¡at¡¡least



none¡¡which¡¡proves¡¡both¡¡the¡¡original¡¡premisses¡£¡¡Propositions¡¡the



terms¡¡of¡¡which¡¡are¡¡not¡¡convertible¡¡cannot¡¡be¡¡circularly¡¡demonstrated



at¡¡all£»¡¡and¡¡since¡¡convertible¡¡terms¡¡occur¡¡rarely¡¡in¡¡actual



demonstrations£»¡¡it¡¡is¡¡clearly¡¡frivolous¡¡and¡¡impossible¡¡to¡¡say¡¡that



demonstration¡¡is¡¡reciprocal¡¡and¡¡that¡¡therefore¡¡everything¡¡can¡¡be



demonstrated¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4







¡¡¡¡Since¡¡the¡¡object¡¡of¡¡pure¡¡scientific¡¡knowledge¡¡cannot¡¡be¡¡other¡¡than



it¡¡is£»¡¡the¡¡truth¡¡obtained¡¡by¡¡demonstrative¡¡knowledge¡¡will¡¡be



necessary¡£¡¡And¡¡since¡¡demonstrative¡¡knowledge¡¡is¡¡only¡¡present¡¡when¡¡we



have¡¡a¡¡demonstration£»¡¡it¡¡follows¡¡that¡¡demonstration¡¡is¡¡an¡¡inference



from¡¡necessary¡¡premisses¡£¡¡So¡¡we¡¡must¡¡consider¡¡what¡¡are¡¡the¡¡premisses



of¡¡demonstration¡­i¡£e¡£¡¡what¡¡is¡¡their¡¡character£º¡¡and¡¡as¡¡a¡¡preliminary£»



let¡¡us¡¡define¡¡what¡¡we¡¡mean¡¡by¡¡an¡¡attribute¡¡'true¡¡in¡¡every¡¡instance



of¡¡its¡¡subject'£»¡¡an¡¡'essential'¡¡attribute£»¡¡and¡¡a¡¡'commensurate¡¡and



universal'¡¡attribute¡£¡¡I¡¡call¡¡'true¡¡in¡¡every¡¡instance'¡¡what¡¡is¡¡truly



predicable¡¡of¡¡all¡¡instances¡­not¡¡of¡¡one¡¡to¡¡the¡¡exclusion¡¡of



others¡­and¡¡at¡¡all¡¡times£»¡¡not¡¡at¡¡this¡¡or¡¡that¡¡time¡¡only£»¡¡e¡£g¡£¡¡if¡¡animal



is¡¡truly¡¡predicable¡¡of¡¡every¡¡instance¡¡of¡¡man£»¡¡then¡¡if¡¡it¡¡be¡¡true¡¡to



say¡¡'this¡¡is¡¡a¡¡man'£»¡¡'this¡¡is¡¡an¡¡animal'¡¡is¡¡also¡¡true£»¡¡and¡¡if¡¡the



one¡¡be¡¡true¡¡now¡¡the¡¡other¡¡is¡¡true¡¡now¡£¡¡A¡¡corresponding¡¡account¡¡holds



if¡¡point¡¡is¡¡in¡¡every¡¡instance¡¡predicable¡¡as¡¡contained¡¡in¡¡line¡£¡¡There



is¡¡evidence¡¡for¡¡this¡¡in¡¡the¡¡fact¡¡that¡¡the¡¡objection¡¡we¡¡raise¡¡against¡¡a



proposition¡¡put¡¡to¡¡us¡¡as¡¡true¡¡in¡¡every¡¡instance¡¡is¡¡either¡¡an



instance¡¡in¡¡which£»¡¡or¡¡an¡¡occasion¡¡on¡¡which£»¡¡it¡¡is¡¡not¡¡true¡£



Essential¡¡attributes¡¡are¡¡£¨1£©¡¡such¡¡as¡¡belong¡¡to¡¡their¡¡subject¡¡as



elements¡¡in¡¡its¡¡essential¡¡nature¡¡£¨e¡£g¡£¡¡line¡¡thus¡¡belongs¡¡to



triangle£»¡¡point¡¡to¡¡line£»¡¡for¡¡the¡¡very¡¡being¡¡or¡¡'substance'¡¡of¡¡triangle



and¡¡line¡¡is¡¡composed¡¡of¡¡these¡¡elements£»¡¡which¡¡are¡¡contained¡¡in¡¡the



formulae¡¡defining¡¡triangle¡¡and¡¡line£©£º¡¡£¨2£©¡¡such¡¡that£»¡¡while¡¡they¡¡belong



to¡¡certain¡¡subjects£»¡¡the¡¡subjects¡¡to¡¡which¡¡they¡¡belong¡¡are¡¡contained



in¡¡the¡¡attribute's¡¡own¡¡defining¡¡formula¡£¡¡Thus¡¡straight¡¡and¡¡curved



belong¡¡to¡¡line£»¡¡odd¡¡and¡¡even£»¡¡prime¡¡and¡¡compound£»¡¡square¡¡and¡¡oblong£»



to¡¡number£»¡¡and¡¡also¡¡the¡¡formul

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ