Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ17½Ú

posterior analytics-µÚ17½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






the¡¡fact¡¡of¡¡a¡¡connexion¡£¡¡Now¡¡definition¡¡reveals¡¡essential¡¡nature£»



demonstration¡¡reveals¡¡that¡¡a¡¡given¡¡attribute¡¡attaches¡¡or¡¡does¡¡not



attach¡¡to¡¡a¡¡given¡¡subject£»¡¡but¡¡different¡¡things¡¡require¡¡different



demonstrations¡­unless¡¡the¡¡one¡¡demonstration¡¡is¡¡related¡¡to¡¡the¡¡other¡¡as



part¡¡to¡¡whole¡£¡¡I¡¡add¡¡this¡¡because¡¡if¡¡all¡¡triangles¡¡have¡¡been¡¡proved¡¡to



possess¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡then¡¡this¡¡attribute¡¡has¡¡been



proved¡¡to¡¡attach¡¡to¡¡isosceles£»¡¡for¡¡isosceles¡¡is¡¡a¡¡part¡¡of¡¡which¡¡all



triangles¡¡constitute¡¡the¡¡whole¡£¡¡But¡¡in¡¡the¡¡case¡¡before¡¡us¡¡the¡¡fact¡¡and



the¡¡essential¡¡nature¡¡are¡¡not¡¡so¡¡related¡¡to¡¡one¡¡another£»¡¡since¡¡the



one¡¡is¡¡not¡¡a¡¡part¡¡of¡¡the¡¡other¡£



¡¡¡¡So¡¡it¡¡emerges¡¡that¡¡not¡¡all¡¡the¡¡definable¡¡is¡¡demonstrable¡¡nor¡¡all¡¡the



demonstrable¡¡definable£»¡¡and¡¡we¡¡may¡¡draw¡¡the¡¡general¡¡conclusion¡¡that



there¡¡is¡¡no¡¡identical¡¡object¡¡of¡¡which¡¡it¡¡is¡¡possible¡¡to¡¡possess¡¡both¡¡a



definition¡¡and¡¡a¡¡demonstration¡£¡¡It¡¡follows¡¡obviously¡¡that¡¡definition



and¡¡demonstration¡¡are¡¡neither¡¡identical¡¡nor¡¡contained¡¡either¡¡within



the¡¡other£º¡¡if¡¡they¡¡were£»¡¡their¡¡objects¡¡would¡¡be¡¡related¡¡either¡¡as



identical¡¡or¡¡as¡¡whole¡¡and¡¡part¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡4







¡¡¡¡So¡¡much£»¡¡then£»¡¡for¡¡the¡¡first¡¡stage¡¡of¡¡our¡¡problem¡£¡¡The¡¡next¡¡step



is¡¡to¡¡raise¡¡the¡¡question¡¡whether¡¡syllogism¡­i¡£e¡£¡¡demonstration¡­of¡¡the



definable¡¡nature¡¡is¡¡possible¡¡or£»¡¡as¡¡our¡¡recent¡¡argument¡¡assumed£»



impossible¡£



¡¡¡¡We¡¡might¡¡argue¡¡it¡¡impossible¡¡on¡¡the¡¡following¡¡grounds£º¡­£¨a£©¡¡syllogism



proves¡¡an¡¡attribute¡¡of¡¡a¡¡subject¡¡through¡¡the¡¡middle¡¡term£»¡¡on¡¡the¡¡other



hand¡¡£¨b£©¡¡its¡¡definable¡¡nature¡¡is¡¡both¡¡'peculiar'¡¡to¡¡a¡¡subject¡¡and



predicated¡¡of¡¡it¡¡as¡¡belonging¡¡to¡¡its¡¡essence¡£¡¡But¡¡in¡¡that¡¡case¡¡£¨1£©¡¡the



subject£»¡¡its¡¡definition£»¡¡and¡¡the¡¡middle¡¡term¡¡connecting¡¡them¡¡must¡¡be



reciprocally¡¡predicable¡¡of¡¡one¡¡another£»¡¡for¡¡if¡¡A¡¡is¡¡to¡¡C£»¡¡obviously



A¡¡is¡¡'peculiar'¡¡to¡¡B¡¡and¡¡B¡¡to¡¡C¡­in¡¡fact¡¡all¡¡three¡¡terms¡¡are¡¡'peculiar'



to¡¡one¡¡another£º¡¡and¡¡further¡¡£¨2£©¡¡if¡¡A¡¡inheres¡¡in¡¡the¡¡essence¡¡of¡¡all¡¡B



and¡¡B¡¡is¡¡predicated¡¡universally¡¡of¡¡all¡¡C¡¡as¡¡belonging¡¡to¡¡C's



essence£»¡¡A¡¡also¡¡must¡¡be¡¡predicated¡¡of¡¡C¡¡as¡¡belonging¡¡to¡¡its¡¡essence¡£



¡¡¡¡If¡¡one¡¡does¡¡not¡¡take¡¡this¡¡relation¡¡as¡¡thus¡¡duplicated¡­if£»¡¡that¡¡is£»¡¡A



is¡¡predicated¡¡as¡¡being¡¡of¡¡the¡¡essence¡¡of¡¡B£»¡¡but¡¡B¡¡is¡¡not¡¡of¡¡the



essence¡¡of¡¡the¡¡subjects¡¡of¡¡which¡¡it¡¡is¡¡predicated¡­A¡¡will¡¡not



necessarily¡¡be¡¡predicated¡¡of¡¡C¡¡as¡¡belonging¡¡to¡¡its¡¡essence¡£¡¡So¡¡both



premisses¡¡will¡¡predicate¡¡essence£»¡¡and¡¡consequently¡¡B¡¡also¡¡will¡¡be



predicated¡¡of¡¡C¡¡as¡¡its¡¡essence¡£¡¡Since£»¡¡therefore£»¡¡both¡¡premisses¡¡do



predicate¡¡essence¡­i¡£e¡£¡¡definable¡¡form¡­C's¡¡definable¡¡form¡¡will¡¡appear



in¡¡the¡¡middle¡¡term¡¡before¡¡the¡¡conclusion¡¡is¡¡drawn¡£



¡¡¡¡We¡¡may¡¡generalize¡¡by¡¡supposing¡¡that¡¡it¡¡is¡¡possible¡¡to¡¡prove¡¡the



essential¡¡nature¡¡of¡¡man¡£¡¡Let¡¡C¡¡be¡¡man£»¡¡A¡¡man's¡¡essential



naturetwo¡­footed¡¡animal£»¡¡or¡¡aught¡¡else¡¡it¡¡may¡¡be¡£¡¡Then£»¡¡if¡¡we¡¡are¡¡to



syllogize£»¡¡A¡¡must¡¡be¡¡predicated¡¡of¡¡all¡¡B¡£¡¡But¡¡this¡¡premiss¡¡will¡¡be



mediated¡¡by¡¡a¡¡fresh¡¡definition£»¡¡which¡¡consequently¡¡will¡¡also¡¡be¡¡the



essential¡¡nature¡¡of¡¡man¡£¡¡Therefore¡¡the¡¡argument¡¡assumes¡¡what¡¡it¡¡has¡¡to



prove£»¡¡since¡¡B¡¡too¡¡is¡¡the¡¡essential¡¡nature¡¡of¡¡man¡£¡¡It¡¡is£»¡¡however£»¡¡the



case¡¡in¡¡which¡¡there¡¡are¡¡only¡¡the¡¡two¡¡premisses¡­i¡£e¡£¡¡in¡¡which¡¡the



premisses¡¡are¡¡primary¡¡and¡¡immediate¡­which¡¡we¡¡ought¡¡to¡¡investigate£»



because¡¡it¡¡best¡¡illustrates¡¡the¡¡point¡¡under¡¡discussion¡£



¡¡¡¡Thus¡¡they¡¡who¡¡prove¡¡the¡¡essential¡¡nature¡¡of¡¡soul¡¡or¡¡man¡¡or



anything¡¡else¡¡through¡¡reciprocating¡¡terms¡¡beg¡¡the¡¡question¡£¡¡It¡¡would



be¡¡begging¡¡the¡¡question£»¡¡for¡¡example£»¡¡to¡¡contend¡¡that¡¡the¡¡soul¡¡is¡¡that



which¡¡causes¡¡its¡¡own¡¡life£»¡¡and¡¡that¡¡what¡¡causes¡¡its¡¡own¡¡life¡¡is¡¡a



self¡­moving¡¡number£»¡¡for¡¡one¡¡would¡¡have¡¡to¡¡postulate¡¡that¡¡the¡¡soul¡¡is¡¡a



self¡­moving¡¡number¡¡in¡¡the¡¡sense¡¡of¡¡being¡¡identical¡¡with¡¡it¡£¡¡For¡¡if¡¡A



is¡¡predicable¡¡as¡¡a¡¡mere¡¡consequent¡¡of¡¡B¡¡and¡¡B¡¡of¡¡C£»¡¡A¡¡will¡¡not¡¡on¡¡that



account¡¡be¡¡the¡¡definable¡¡form¡¡of¡¡C£º¡¡A¡¡will¡¡merely¡¡be¡¡what¡¡it¡¡was



true¡¡to¡¡say¡¡of¡¡C¡£¡¡Even¡¡if¡¡A¡¡is¡¡predicated¡¡of¡¡all¡¡B¡¡inasmuch¡¡as¡¡B¡¡is



identical¡¡with¡¡a¡¡species¡¡of¡¡A£»¡¡still¡¡it¡¡will¡¡not¡¡follow£º¡¡being¡¡an



animal¡¡is¡¡predicated¡¡of¡¡being¡¡a¡¡man¡­since¡¡it¡¡is¡¡true¡¡that¡¡in¡¡all



instances¡¡to¡¡be¡¡human¡¡is¡¡to¡¡be¡¡animal£»¡¡just¡¡as¡¡it¡¡is¡¡also¡¡true¡¡that



every¡¡man¡¡is¡¡an¡¡animal¡­but¡¡not¡¡as¡¡identical¡¡with¡¡being¡¡man¡£



¡¡¡¡We¡¡conclude£»¡¡then£»¡¡that¡¡unless¡¡one¡¡takes¡¡both¡¡the¡¡premisses¡¡as



predicating¡¡essence£»¡¡one¡¡cannot¡¡infer¡¡that¡¡A¡¡is¡¡the¡¡definable¡¡form¡¡and



essence¡¡of¡¡C£º¡¡but¡¡if¡¡one¡¡does¡¡so¡¡take¡¡them£»¡¡in¡¡assuming¡¡B¡¡one¡¡will



have¡¡assumed£»¡¡before¡¡drawing¡¡the¡¡conclusion£»¡¡what¡¡the¡¡definable¡¡form



of¡¡C¡¡is£»¡¡so¡¡that¡¡there¡¡has¡¡been¡¡no¡¡inference£»¡¡for¡¡one¡¡has¡¡begged¡¡the



question¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡5







¡¡¡¡Nor£»¡¡as¡¡was¡¡said¡¡in¡¡my¡¡formal¡¡logic£»¡¡is¡¡the¡¡method¡¡of¡¡division¡¡a



process¡¡of¡¡inference¡¡at¡¡all£»¡¡since¡¡at¡¡no¡¡point¡¡does¡¡the



characterization¡¡of¡¡the¡¡subject¡¡follow¡¡necessarily¡¡from¡¡the



premising¡¡of¡¡certain¡¡other¡¡facts£º¡¡division¡¡demonstrates¡¡as¡¡little¡¡as



does¡¡induction¡£¡¡For¡¡in¡¡a¡¡genuine¡¡demonstration¡¡the¡¡conclusion¡¡must¡¡not



be¡¡put¡¡as¡¡a¡¡question¡¡nor¡¡depend¡¡on¡¡a¡¡concession£»¡¡but¡¡must¡¡follow



necessarily¡¡from¡¡its¡¡premisses£»¡¡even¡¡if¡¡the¡¡respondent¡¡deny¡¡it¡£¡¡The



definer¡¡asks¡¡'Is¡¡man¡¡animal¡¡or¡¡inanimate£¿'¡¡and¡¡then¡¡assumes¡­he¡¡has¡¡not



inferred¡­that¡¡man¡¡is¡¡animal¡£¡¡Next£»¡¡when¡¡presented¡¡with¡¡an¡¡exhaustive



division¡¡of¡¡animal¡¡into¡¡terrestrial¡¡and¡¡aquatic£»¡¡he¡¡assumes¡¡that¡¡man



is¡¡terrestrial¡£¡¡Moreover£»¡¡that¡¡man¡¡is¡¡the¡¡complete¡¡formula£»



terrestrial¡­animal£»¡¡does¡¡not¡¡follow¡¡necessarily¡¡from¡¡the¡¡premisses£º



this¡¡too¡¡is¡¡an¡¡assumption£»¡¡and¡¡equally¡¡an¡¡assumption¡¡whether¡¡the



division¡¡comprises¡¡many¡¡differentiae¡¡or¡¡few¡£¡¡£¨Indeed¡¡as¡¡this¡¡method¡¡of



division¡¡is¡¡used¡¡by¡¡those¡¡who¡¡proceed¡¡by¡¡it£»¡¡even¡¡truths¡¡that¡¡can¡¡be



inferred¡¡actually¡¡fail¡¡to¡¡appear¡¡as¡¡such¡££©¡¡For¡¡why¡¡should¡¡not¡¡the



whole¡¡of¡¡this¡¡formula¡¡be¡¡true¡¡of¡¡man£»¡¡and¡¡yet¡¡not¡¡exhibit¡¡his



essential¡¡nature¡¡or¡¡definable¡¡form£¿¡¡Again£»¡¡what¡¡guarantee¡¡is¡¡there



against¡¡an¡¡unessential¡¡addition£»¡¡or¡¡against¡¡the¡¡omission¡¡of¡¡the



final¡¡or¡¡of¡¡an¡¡intermediate¡¡determinant¡¡of¡¡the¡¡substantial¡¡being£¿



¡¡¡¡The¡¡champion¡¡of¡¡division¡¡might¡¡here¡¡urge¡¡that¡¡though¡¡these¡¡lapses¡¡do



occur£»¡¡yet¡¡we¡¡can¡¡solve¡¡that¡¡difficulty¡¡if¡¡all¡¡the¡¡attributes¡¡we



assume¡¡are¡¡constituents¡¡of¡¡the¡¡definable¡¡form£»¡¡and¡¡if£»¡¡postulating¡¡the



genus£»¡¡we¡¡produce¡¡by¡¡division¡¡the¡¡requisite¡¡uninterrupted¡¡sequence



of¡¡terms£»¡¡and¡¡omit¡¡nothing£»¡¡and¡¡that¡¡indeed¡¡we¡¡cannot¡¡fail¡¡to¡¡fulfil



these¡¡conditions¡¡if¡¡what¡¡is¡¡to¡¡be¡¡divided¡¡falls¡¡whole¡¡into¡¡the



division¡¡at¡¡each¡¡stage£»¡¡and¡¡none¡¡of¡¡it¡¡is¡¡omitted£»¡¡and¡¡that¡¡this¡­the



dividendum¡­must¡¡without¡¡further¡¡question¡¡be¡¡£¨ultimately£©¡¡incapable



of¡¡fresh¡¡specific¡¡division¡£¡¡Nevertheless£»¡¡we¡¡reply£»¡¡division¡¡does



not¡¡involve¡¡inference£»¡¡if¡¡it¡¡gives¡¡knowledge£»¡¡it¡¡gives¡¡it¡¡in¡¡another



way¡£¡¡Nor¡¡is¡¡there¡¡any¡¡absurdity¡¡in¡¡this£º¡¡induction£»¡¡perhaps£»¡¡is¡¡not



demonstration¡¡any¡¡more¡¡than¡¡is¡¡division£»¡¡et¡¡it¡¡does¡¡make¡¡evident



some¡¡truth¡£¡¡Yet¡¡to¡¡state¡¡a¡¡definition¡¡reached¡¡by¡¡division¡¡is¡¡not¡¡to



state¡¡a¡¡conclusion£º¡¡as£»¡¡when¡¡conclusions¡¡are¡¡drawn¡¡without¡¡their



appropriate¡¡middles£»¡¡the¡¡alleged¡¡necessity¡¡by¡¡which¡¡the¡¡inference



follows¡¡from¡¡the¡¡premisses¡¡is¡¡open¡¡to¡¡a¡¡question¡¡as¡¡to¡¡the¡¡reason



for¡¡it£»¡¡so¡¡definitions¡¡reached¡¡by¡¡division¡¡invite¡¡the¡¡same¡¡question¡£



¡¡¡¡Thus¡¡to¡¡the¡¡question¡¡'What¡¡is¡¡the¡¡essential¡¡nature¡¡of¡¡man£¿'¡¡the



divider¡¡replies¡¡'Animal£»¡¡mortal£»¡¡footed£»¡¡biped£»¡¡wingless'£»¡¡and¡¡when¡¡at



each¡¡step¡¡he¡¡is¡¡asked¡¡'Why£¿'£»¡¡he¡¡will¡¡say£»¡¡and£»¡¡as¡¡he¡¡thinks£»¡¡proves



by¡¡division£»¡¡that¡¡all¡¡animal¡¡is¡¡mortal¡¡or¡¡immortal£º¡¡but¡¡such¡¡a¡¡formula



taken¡¡in¡¡its¡¡entirety¡¡is¡¡not¡¡definition£»¡¡so¡¡that¡¡even¡¡if¡¡division¡¡does



demonstrate¡¡its¡¡formula£»¡¡definition¡¡at¡¡any¡¡rate¡¡does¡¡not¡¡turn¡¡out¡¡to



be¡¡a¡¡conclusion¡¡of¡¡inference¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡6







¡¡¡¡Can¡¡we¡¡nevertheless¡¡actually¡¡demonstrate¡¡what¡¡a¡¡thing¡¡essentially



and¡¡substantially¡¡is£»¡¡but¡¡hypothetically£»¡¡i¡£e¡£¡¡by¡¡premising¡¡£¨1£©¡¡that



its¡¡definable¡¡form¡¡is¡¡constituted¡¡by¡¡the¡¡'peculiar'¡¡attributes¡¡of



its¡¡essential¡¡nature£»¡¡£¨2£©¡¡that¡¡such¡¡and¡¡such¡¡are¡¡the¡¡only¡¡attributes



of¡¡its¡¡essential¡¡nature£»¡¡and¡¡that¡¡the¡¡complete¡¡synthesis¡¡of¡¡them¡¡is



peculiar¡¡to¡¡the¡¡thing£»¡¡and¡¡thus¡­since¡¡in¡¡this¡¡synthesis¡¡consists¡¡the



being¡¡of¡¡the¡¡thing¡­obtaining¡¡our¡¡conclusion£¿¡¡Or¡¡is¡¡the¡¡truth¡¡that£»



since¡¡proof¡¡must¡¡be¡¡through¡¡the¡¡middle¡¡term£»¡¡the¡¡definable¡¡form¡¡is



once¡¡more¡¡assumed¡¡in¡¡this¡¡minor¡¡premiss¡¡too£¿



¡¡¡¡Further£»¡¡just¡¡as¡¡in¡¡syllogizing¡¡we¡¡do¡¡not¡¡premise¡¡what¡¡syllogistic



inference¡¡is¡¡£¨since¡¡the¡¡premisses¡¡from¡¡which¡¡we¡¡conclude¡¡must¡¡be



related¡¡as¡¡whole¡¡and¡¡part£©£»¡¡so¡¡the¡¡definable¡¡form¡¡must¡¡not¡¡fall¡¡within



the¡¡syllogism¡¡but¡¡remain¡¡outside¡¡the¡¡premisses¡¡posited¡£¡¡It¡¡is¡¡only



against¡¡a¡¡doubt¡¡as¡¡to¡¡its¡¡having¡¡been¡¡a¡¡syllogistic¡¡inference¡¡at¡¡all



that¡¡we¡¡have¡¡to¡¡defend¡¡

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ