Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ14½Ú

posterior analytics-µÚ14½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






them£»¡¡and¡¡'no¡¡C¡¡is¡¡A'¡¡is¡¡the¡¡conclusion£»¡¡'no¡¡B¡¡is¡¡A'¡¡one¡¡of¡¡its



premisses¡£¡¡For¡¡the¡¡destructive¡¡result¡¡of¡¡reductio¡¡ad¡¡impossibile¡¡is



not¡¡a¡¡proper¡¡conclusion£»¡¡nor¡¡are¡¡its¡¡antecedents¡¡proper¡¡premisses¡£



On¡¡the¡¡contrary£º¡¡the¡¡constituents¡¡of¡¡syllogism¡¡are¡¡premisses¡¡related



to¡¡one¡¡another¡¡as¡¡whole¡¡to¡¡part¡¡or¡¡part¡¡to¡¡whole£»¡¡whereas¡¡the



premisses¡¡A¡­C¡¡and¡¡A¡­B¡¡are¡¡not¡¡thus¡¡related¡¡to¡¡one¡¡another¡£¡¡Now¡¡the



superior¡¡demonstration¡¡is¡¡that¡¡which¡¡proceeds¡¡from¡¡better¡¡known¡¡and



prior¡¡premisses£»¡¡and¡¡while¡¡both¡¡these¡¡forms¡¡depend¡¡for¡¡credence¡¡on¡¡the



not¡­being¡¡of¡¡something£»¡¡yet¡¡the¡¡source¡¡of¡¡the¡¡one¡¡is¡¡prior¡¡to¡¡that



of¡¡the¡¡other¡£¡¡Therefore¡¡negative¡¡demonstration¡¡will¡¡have¡¡an



unqualified¡¡superiority¡¡to¡¡reductio¡¡ad¡¡impossibile£»¡¡and¡¡affirmative



demonstration£»¡¡being¡¡superior¡¡to¡¡negative£»¡¡will¡¡consequently¡¡be



superior¡¡also¡¡to¡¡reductio¡¡ad¡¡impossibile¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡27







¡¡¡¡The¡¡science¡¡which¡¡is¡¡knowledge¡¡at¡¡once¡¡of¡¡the¡¡fact¡¡and¡¡of¡¡the



reasoned¡¡fact£»¡¡not¡¡of¡¡the¡¡fact¡¡by¡¡itself¡¡without¡¡the¡¡reasoned¡¡fact£»¡¡is



the¡¡more¡¡exact¡¡and¡¡the¡¡prior¡¡science¡£



¡¡¡¡A¡¡science¡¡such¡¡as¡¡arithmetic£»¡¡which¡¡is¡¡not¡¡a¡¡science¡¡of¡¡properties



qua¡¡inhering¡¡in¡¡a¡¡substratum£»¡¡is¡¡more¡¡exact¡¡than¡¡and¡¡prior¡¡to¡¡a



science¡¡like¡¡harmonics£»¡¡which¡¡is¡¡a¡¡science¡¡of¡¡pr£»operties¡¡inhering



in¡¡a¡¡substratum£»¡¡and¡¡similarly¡¡a¡¡science¡¡like¡¡arithmetic£»¡¡which¡¡is



constituted¡¡of¡¡fewer¡¡basic¡¡elements£»¡¡is¡¡more¡¡exact¡¡than¡¡and¡¡prior¡¡to



geometry£»¡¡which¡¡requires¡¡additional¡¡elements¡£¡¡What¡¡I¡¡mean¡¡by



'additional¡¡elements'¡¡is¡¡this£º¡¡a¡¡unit¡¡is¡¡substance¡¡without¡¡position£»



while¡¡a¡¡point¡¡is¡¡substance¡¡with¡¡position£»¡¡the¡¡latter¡¡contains¡¡an



additional¡¡element¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡28







¡¡¡¡A¡¡single¡¡science¡¡is¡¡one¡¡whose¡¡domain¡¡is¡¡a¡¡single¡¡genus£»¡¡viz¡£¡¡all¡¡the



subjects¡¡constituted¡¡out¡¡of¡¡the¡¡primary¡¡entities¡¡of¡¡the¡¡genus¡­i¡£e¡£¡¡the



parts¡¡of¡¡this¡¡total¡¡subject¡­and¡¡their¡¡essential¡¡properties¡£



¡¡¡¡One¡¡science¡¡differs¡¡from¡¡another¡¡when¡¡their¡¡basic¡¡truths¡¡have



neither¡¡a¡¡common¡¡source¡¡nor¡¡are¡¡derived¡¡those¡¡of¡¡the¡¡one¡¡science



from¡¡those¡¡the¡¡other¡£¡¡This¡¡is¡¡verified¡¡when¡¡we¡¡reach¡¡the



indemonstrable¡¡premisses¡¡of¡¡a¡¡science£»¡¡for¡¡they¡¡must¡¡be¡¡within¡¡one



genus¡¡with¡¡its¡¡conclusions£º¡¡and¡¡this¡¡again¡¡is¡¡verified¡¡if¡¡the



conclusions¡¡proved¡¡by¡¡means¡¡of¡¡them¡¡fall¡¡within¡¡one¡¡genus¡­i¡£e¡£¡¡are



homogeneous¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡29







¡¡¡¡One¡¡can¡¡have¡¡several¡¡demonstrations¡¡of¡¡the¡¡same¡¡connexion¡¡not¡¡only



by¡¡taking¡¡from¡¡the¡¡same¡¡series¡¡of¡¡predication¡¡middles¡¡which¡¡are



other¡¡than¡¡the¡¡immediately¡¡cohering¡¡term¡¡e¡£g¡£¡¡by¡¡taking¡¡C£»¡¡D£»¡¡and¡¡F



severally¡¡to¡¡prove¡¡A¡­Bbut¡¡also¡¡by¡¡taking¡¡a¡¡middle¡¡from¡¡another



series¡£¡¡Thus¡¡let¡¡A¡¡be¡¡change£»¡¡D¡¡alteration¡¡of¡¡a¡¡property£»¡¡B¡¡feeling



pleasure£»¡¡and¡¡G¡¡relaxation¡£¡¡We¡¡can¡¡then¡¡without¡¡falsehood¡¡predicate



D¡¡of¡¡B¡¡and¡¡A¡¡of¡¡D£»¡¡for¡¡he¡¡who¡¡is¡¡pleased¡¡suffers¡¡alteration¡¡of¡¡a



property£»¡¡and¡¡that¡¡which¡¡alters¡¡a¡¡property¡¡changes¡£¡¡Again£»¡¡we¡¡can



predicate¡¡A¡¡of¡¡G¡¡without¡¡falsehood£»¡¡and¡¡G¡¡of¡¡B£»¡¡for¡¡to¡¡feel¡¡pleasure



is¡¡to¡¡relax£»¡¡and¡¡to¡¡relax¡¡is¡¡to¡¡change¡£¡¡So¡¡the¡¡conclusion¡¡can¡¡be¡¡drawn



through¡¡middles¡¡which¡¡are¡¡different£»¡¡i¡£e¡£¡¡not¡¡in¡¡the¡¡same¡¡series¡­yet



not¡¡so¡¡that¡¡neither¡¡of¡¡these¡¡middles¡¡is¡¡predicable¡¡of¡¡the¡¡other£»¡¡for



they¡¡must¡¡both¡¡be¡¡attributable¡¡to¡¡some¡¡one¡¡subject¡£



¡¡¡¡A¡¡further¡¡point¡¡worth¡¡investigating¡¡is¡¡how¡¡many¡¡ways¡¡of¡¡proving



the¡¡same¡¡conclusion¡¡can¡¡be¡¡obtained¡¡by¡¡varying¡¡the¡¡figure£»







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡30







¡¡¡¡There¡¡is¡¡no¡¡knowledge¡¡by¡¡demonstration¡¡of¡¡chance¡¡conjunctions£»¡¡for



chance¡¡conjunctions¡¡exist¡¡neither¡¡by¡¡necessity¡¡nor¡¡as¡¡general



connexions¡¡but¡¡comprise¡¡what¡¡comes¡¡to¡¡be¡¡as¡¡something¡¡distinct¡¡from



these¡£¡¡Now¡¡demonstration¡¡is¡¡concerned¡¡only¡¡with¡¡one¡¡or¡¡other¡¡of



these¡¡two£»¡¡for¡¡all¡¡reasoning¡¡proceeds¡¡from¡¡necessary¡¡or¡¡general



premisses£»¡¡the¡¡conclusion¡¡being¡¡necessary¡¡if¡¡the¡¡premisses¡¡are



necessary¡¡and¡¡general¡¡if¡¡the¡¡premisses¡¡are¡¡general¡£¡¡Consequently£»¡¡if



chance¡¡conjunctions¡¡are¡¡neither¡¡general¡¡nor¡¡necessary£»¡¡they¡¡are¡¡not



demonstrable¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡31







¡¡¡¡Scientific¡¡knowledge¡¡is¡¡not¡¡possible¡¡through¡¡the¡¡act¡¡of



perception¡£¡¡Even¡¡if¡¡perception¡¡as¡¡a¡¡faculty¡¡is¡¡of¡¡'the¡¡such'¡¡and¡¡not



merely¡¡of¡¡a¡¡'this¡¡somewhat'£»¡¡yet¡¡one¡¡must¡¡at¡¡any¡¡rate¡¡actually



perceive¡¡a¡¡'this¡¡somewhat'£»¡¡and¡¡at¡¡a¡¡definite¡¡present¡¡place¡¡and



time£º¡¡but¡¡that¡¡which¡¡is¡¡commensurately¡¡universal¡¡and¡¡true¡¡in¡¡all¡¡cases



one¡¡cannot¡¡perceive£»¡¡since¡¡it¡¡is¡¡not¡¡'this'¡¡and¡¡it¡¡is¡¡not¡¡'now'£»¡¡if¡¡it



were£»¡¡it¡¡would¡¡not¡¡be¡¡commensurately¡¡universal¡­the¡¡term¡¡we¡¡apply¡¡to



what¡¡is¡¡always¡¡and¡¡everywhere¡£¡¡Seeing£»¡¡therefore£»¡¡that



demonstrations¡¡are¡¡commensurately¡¡universal¡¡and¡¡universals



imperceptible£»¡¡we¡¡clearly¡¡cannot¡¡obtain¡¡scientific¡¡knowledge¡¡by¡¡the



act¡¡of¡¡perception£º¡¡nay£»¡¡it¡¡is¡¡obvious¡¡that¡¡even¡¡if¡¡it¡¡were¡¡possible¡¡to



perceive¡¡that¡¡a¡¡triangle¡¡has¡¡its¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles£»



we¡¡should¡¡still¡¡be¡¡looking¡¡for¡¡a¡¡demonstration¡­we¡¡should¡¡not¡¡£¨as



some¡¡say£©¡¡possess¡¡knowledge¡¡of¡¡it£»¡¡for¡¡perception¡¡must¡¡be¡¡of¡¡a



particular£»¡¡whereas¡¡scientific¡¡knowledge¡¡involves¡¡the¡¡recognition¡¡of



the¡¡commensurate¡¡universal¡£¡¡So¡¡if¡¡we¡¡were¡¡on¡¡the¡¡moon£»¡¡and¡¡saw¡¡the



earth¡¡shutting¡¡out¡¡the¡¡sun's¡¡light£»¡¡we¡¡should¡¡not¡¡know¡¡the¡¡cause¡¡of



the¡¡eclipse£º¡¡we¡¡should¡¡perceive¡¡the¡¡present¡¡fact¡¡of¡¡the¡¡eclipse£»¡¡but



not¡¡the¡¡reasoned¡¡fact¡¡at¡¡all£»¡¡since¡¡the¡¡act¡¡of¡¡perception¡¡is¡¡not¡¡of



the¡¡commensurate¡¡universal¡£¡¡I¡¡do¡¡not£»¡¡of¡¡course£»¡¡deny¡¡that¡¡by¡¡watching



the¡¡frequent¡¡recurrence¡¡of¡¡this¡¡event¡¡we¡¡might£»¡¡after¡¡tracking¡¡the



commensurate¡¡universal£»¡¡possess¡¡a¡¡demonstration£»¡¡for¡¡the



commensurate¡¡universal¡¡is¡¡elicited¡¡from¡¡the¡¡several¡¡groups¡¡of



singulars¡£



¡¡¡¡The¡¡commensurate¡¡universal¡¡is¡¡precious¡¡because¡¡it¡¡makes¡¡clear¡¡the



cause£»¡¡so¡¡that¡¡in¡¡the¡¡case¡¡of¡¡facts¡¡like¡¡these¡¡which¡¡have¡¡a¡¡cause



other¡¡than¡¡themselves¡¡universal¡¡knowledge¡¡is¡¡more¡¡precious¡¡than



sense¡­perceptions¡¡and¡¡than¡¡intuition¡£¡¡£¨As¡¡regards¡¡primary¡¡truths¡¡there



is¡¡of¡¡course¡¡a¡¡different¡¡account¡¡to¡¡be¡¡given¡££©¡¡Hence¡¡it¡¡is¡¡clear



that¡¡knowledge¡¡of¡¡things¡¡demonstrable¡¡cannot¡¡be¡¡acquired¡¡by



perception£»¡¡unless¡¡the¡¡term¡¡perception¡¡is¡¡applied¡¡to¡¡the¡¡possession¡¡of



scientific¡¡knowledge¡¡through¡¡demonstration¡£¡¡Nevertheless¡¡certain



points¡¡do¡¡arise¡¡with¡¡regard¡¡to¡¡connexions¡¡to¡¡be¡¡proved¡¡which¡¡are



referred¡¡for¡¡their¡¡explanation¡¡to¡¡a¡¡failure¡¡in¡¡sense¡­perception£º¡¡there



are¡¡cases¡¡when¡¡an¡¡act¡¡of¡¡vision¡¡would¡¡terminate¡¡our¡¡inquiry£»¡¡not



because¡¡in¡¡seeing¡¡we¡¡should¡¡be¡¡knowing£»¡¡but¡¡because¡¡we¡¡should¡¡have



elicited¡¡the¡¡universal¡¡from¡¡seeing£»¡¡if£»¡¡for¡¡example£»¡¡we¡¡saw¡¡the



pores¡¡in¡¡the¡¡glass¡¡and¡¡the¡¡light¡¡passing¡¡through£»¡¡the¡¡reason¡¡of¡¡the



kindling¡¡would¡¡be¡¡clear¡¡to¡¡us¡¡because¡¡we¡¡should¡¡at¡¡the¡¡same¡¡time¡¡see



it¡¡in¡¡each¡¡instance¡¡and¡¡intuit¡¡that¡¡it¡¡must¡¡be¡¡so¡¡in¡¡all¡¡instances¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡32







¡¡¡¡All¡¡syllogisms¡¡cannot¡¡have¡¡the¡¡same¡¡basic¡¡truths¡£¡¡This¡¡may¡¡be



shown¡¡first¡¡of¡¡all¡¡by¡¡the¡¡following¡¡dialectical¡¡considerations¡£¡¡£¨1£©



Some¡¡syllogisms¡¡are¡¡true¡¡and¡¡some¡¡false£º¡¡for¡¡though¡¡a¡¡true¡¡inference



is¡¡possible¡¡from¡¡false¡¡premisses£»¡¡yet¡¡this¡¡occurs¡¡once¡¡only¡­I¡¡mean



if¡¡A¡¡for¡¡instance£»¡¡is¡¡truly¡¡predicable¡¡of¡¡C£»¡¡but¡¡B£»¡¡the¡¡middle£»¡¡is



false£»¡¡both¡¡A¡­B¡¡and¡¡B¡­C¡¡being¡¡false£»¡¡nevertheless£»¡¡if¡¡middles¡¡are



taken¡¡to¡¡prove¡¡these¡¡premisses£»¡¡they¡¡will¡¡be¡¡false¡¡because¡¡every



conclusion¡¡which¡¡is¡¡a¡¡falsehood¡¡has¡¡false¡¡premisses£»¡¡while¡¡true



conclusions¡¡have¡¡true¡¡premisses£»¡¡and¡¡false¡¡and¡¡true¡¡differ¡¡in¡¡kind¡£



Then¡¡again£»¡¡£¨2£©¡¡falsehoods¡¡are¡¡not¡¡all¡¡derived¡¡from¡¡a¡¡single¡¡identical



set¡¡of¡¡principles£º¡¡there¡¡are¡¡falsehoods¡¡which¡¡are¡¡the¡¡contraries¡¡of



one¡¡another¡¡and¡¡cannot¡¡coexist£»¡¡e¡£g¡£¡¡'justice¡¡is¡¡injustice'£»¡¡and



'justice¡¡is¡¡cowardice'£»¡¡'man¡¡is¡¡horse'£»¡¡and¡¡'man¡¡is¡¡ox'£»¡¡'the¡¡equal¡¡is



greater'£»¡¡and¡¡'the¡¡equal¡¡is¡¡less¡£'¡¡From¡¡established¡¡principles¡¡we



may¡¡argue¡¡the¡¡case¡¡as¡¡follows£»¡¡confining¡­ourselves¡¡therefore¡¡to¡¡true



conclusions¡£¡¡Not¡¡even¡¡all¡¡these¡¡are¡¡inferred¡¡from¡¡the¡¡same¡¡basic



truths£»¡¡many¡¡of¡¡them¡¡in¡¡fact¡¡have¡¡basic¡¡truths¡¡which¡¡differ



generically¡¡and¡¡are¡¡not¡¡transferable£»¡¡units£»¡¡for¡¡instance£»¡¡which¡¡are



without¡¡position£»¡¡cannot¡¡take¡¡the¡¡place¡¡of¡¡points£»¡¡which¡¡have



position¡£¡¡The¡¡transferred¡¡terms¡¡could¡¡only¡¡fit¡¡in¡¡as¡¡middle¡¡terms¡¡or



as¡¡major¡¡or¡¡minor¡¡terms£»¡¡or¡¡else¡¡have¡¡some¡¡of¡¡the¡¡other¡¡terms



between¡¡them£»¡¡others¡¡outside¡¡them¡£



¡¡¡¡Nor¡¡can¡¡any¡¡of¡¡the¡¡common¡¡axioms¡­such£»¡¡I¡¡mean£»¡¡as¡¡the¡¡law¡¡of



excluded¡¡middle¡­serve¡¡as¡¡premisses¡¡for¡¡the¡¡proof¡¡of¡¡all¡¡conclusions¡£



For¡¡the¡¡kinds¡¡of¡¡being¡¡are¡¡different£»¡¡and¡¡some¡¡attributes¡¡attach¡¡to



quanta¡¡and¡¡some¡¡to¡¡qualia¡¡only£»¡¡and¡¡proof¡¡is¡¡achieved¡¡by¡¡means¡¡of



the¡¡common¡¡axioms¡¡taken¡¡in¡¡conjunction¡¡with¡¡these¡¡several¡¡kinds¡¡and



their¡¡attributes¡£



¡¡¡¡Again£»¡¡it¡¡is¡¡not

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ