Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ13½Ú

posterior analytics-µÚ13½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






as¡¡we¡¡have¡¡exemplified£»¡¡it¡¡follows¡¡that¡¡in¡¡the¡¡case¡¡of¡¡the¡¡other



causes¡¡also¡¡full¡¡knowledge¡¡is¡¡attained¡¡when¡¡an¡¡attribute¡¡no¡¡longer



inheres¡¡because¡¡of¡¡something¡¡else¡£¡¡Thus£»¡¡when¡¡we¡¡learn¡¡that¡¡exterior



angles¡¡are¡¡equal¡¡to¡¡four¡¡right¡¡angles¡¡because¡¡they¡¡are¡¡the¡¡exterior



angles¡¡of¡¡an¡¡isosceles£»¡¡there¡¡still¡¡remains¡¡the¡¡question¡¡'Why¡¡has



isosceles¡¡this¡¡attribute£¿'¡¡and¡¡its¡¡answer¡¡'Because¡¡it¡¡is¡¡a¡¡triangle£»



and¡¡a¡¡triangle¡¡has¡¡it¡¡because¡¡a¡¡triangle¡¡is¡¡a¡¡rectilinear¡¡figure¡£'



If¡¡rectilinear¡¡figure¡¡possesses¡¡the¡¡property¡¡for¡¡no¡¡further¡¡reason£»¡¡at



this¡¡point¡¡we¡¡have¡¡full¡¡knowledge¡­but¡¡at¡¡this¡¡point¡¡our¡¡knowledge



has¡¡become¡¡commensurately¡¡universal£»¡¡and¡¡so¡¡we¡¡conclude¡¡that



commensurately¡¡universal¡¡demonstration¡¡is¡¡superior¡£



¡¡¡¡£¨6£©¡¡The¡¡more¡¡demonstration¡¡becomes¡¡particular¡¡the¡¡more¡¡it¡¡sinks¡¡into



an¡¡indeterminate¡¡manifold£»¡¡while¡¡universal¡¡demonstration¡¡tends¡¡to



the¡¡simple¡¡and¡¡determinate¡£¡¡But¡¡objects¡¡so¡¡far¡¡as¡¡they¡¡are¡¡an



indeterminate¡¡manifold¡¡are¡¡unintelligible£»¡¡so¡¡far¡¡as¡¡they¡¡are



determinate£»¡¡intelligible£º¡¡they¡¡are¡¡therefore¡¡intelligible¡¡rather¡¡in



so¡¡far¡¡as¡¡they¡¡are¡¡universal¡¡than¡¡in¡¡so¡¡far¡¡as¡¡they¡¡are¡¡particular¡£



From¡¡this¡¡it¡¡follows¡¡that¡¡universals¡¡are¡¡more¡¡demonstrable£º¡¡but



since¡¡relative¡¡and¡¡correlative¡¡increase¡¡concomitantly£»¡¡of¡¡the¡¡more



demonstrable¡¡there¡¡will¡¡be¡¡fuller¡¡demonstration¡£¡¡Hence¡¡the



commensurate¡¡and¡¡universal¡¡form£»¡¡being¡¡more¡¡truly¡¡demonstration£»¡¡is



the¡¡superior¡£



¡¡¡¡£¨7£©¡¡Demonstration¡¡which¡¡teaches¡¡two¡¡things¡¡is¡¡preferable¡¡to



demonstration¡¡which¡¡teaches¡¡only¡¡one¡£¡¡He¡¡who¡¡possesses



commensurately¡¡universal¡¡demonstration¡¡knows¡¡the¡¡particular¡¡as¡¡well£»



but¡¡he¡¡who¡¡possesses¡¡particular¡¡demonstration¡¡does¡¡not¡¡know¡¡the



universal¡£¡¡So¡¡that¡¡this¡¡is¡¡an¡¡additional¡¡reason¡¡for¡¡preferring



commensurately¡¡universal¡¡demonstration¡£¡¡And¡¡there¡¡is¡¡yet¡¡this



further¡¡argument£º



¡¡¡¡£¨8£©¡¡Proof¡¡becomes¡¡more¡¡and¡¡more¡¡proof¡¡of¡¡the¡¡commensurate



universal¡¡as¡¡its¡¡middle¡¡term¡¡approaches¡¡nearer¡¡to¡¡the¡¡basic¡¡truth£»¡¡and



nothing¡¡is¡¡so¡¡near¡¡as¡¡the¡¡immediate¡¡premiss¡¡which¡¡is¡¡itself¡¡the



basic¡¡truth¡£¡¡If£»¡¡then£»¡¡proof¡¡from¡¡the¡¡basic¡¡truth¡¡is¡¡more¡¡accurate



than¡¡proof¡¡not¡¡so¡¡derived£»¡¡demonstration¡¡which¡¡depends¡¡more¡¡closely¡¡on



it¡¡is¡¡more¡¡accurate¡¡than¡¡demonstration¡¡which¡¡is¡¡less¡¡closely



dependent¡£¡¡But¡¡commensurately¡¡universal¡¡demonstration¡¡is¡¡characterized



by¡¡this¡¡closer¡¡dependence£»¡¡and¡¡is¡¡therefore¡¡superior¡£¡¡Thus£»¡¡if¡¡A¡¡had



to¡¡be¡¡proved¡¡to¡¡inhere¡¡in¡¡D£»¡¡and¡¡the¡¡middles¡¡were¡¡B¡¡and¡¡C£»¡¡B¡¡being¡¡the



higher¡¡term¡¡would¡¡render¡¡the¡¡demonstration¡¡which¡¡it¡¡mediated¡¡the



more¡¡universal¡£



¡¡¡¡Some¡¡of¡¡these¡¡arguments£»¡¡however£»¡¡are¡¡dialectical¡£¡¡The¡¡clearest



indication¡¡of¡¡the¡¡precedence¡¡of¡¡commensurately¡¡universal¡¡demonstration



is¡¡as¡¡follows£º¡¡if¡¡of¡¡two¡¡propositions£»¡¡a¡¡prior¡¡and¡¡a¡¡posterior£»¡¡we



have¡¡a¡¡grasp¡¡of¡¡the¡¡prior£»¡¡we¡¡have¡¡a¡¡kind¡¡of¡¡knowledge¡­a¡¡potential



grasp¡­of¡¡the¡¡posterior¡¡as¡¡well¡£¡¡For¡¡example£»¡¡if¡¡one¡¡knows¡¡that¡¡the



angles¡¡of¡¡all¡¡triangles¡¡are¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡one¡¡knows¡¡in



a¡¡sense¡­potentially¡­that¡¡the¡¡isosceles'¡¡angles¡¡also¡¡are¡¡equal¡¡to¡¡two



right¡¡angles£»¡¡even¡¡if¡¡one¡¡does¡¡not¡¡know¡¡that¡¡the¡¡isosceles¡¡is¡¡a



triangle£»¡¡but¡¡to¡¡grasp¡¡this¡¡posterior¡¡proposition¡¡is¡¡by¡¡no¡¡means¡¡to



know¡¡the¡¡commensurate¡¡universal¡¡either¡¡potentially¡¡or¡¡actually¡£



Moreover£»¡¡commensurately¡¡universal¡¡demonstration¡¡is¡¡through¡¡and



through¡¡intelligible£»¡¡particular¡¡demonstration¡¡issues¡¡in



sense¡­perception¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡25







¡¡¡¡The¡¡preceding¡¡arguments¡¡constitute¡¡our¡¡defence¡¡of¡¡the¡¡superiority¡¡of



commensurately¡¡universal¡¡to¡¡particular¡¡demonstration¡£¡¡That¡¡affirmative



demonstration¡¡excels¡¡negative¡¡may¡¡be¡¡shown¡¡as¡¡follows¡£



¡¡¡¡£¨1£©¡¡We¡¡may¡¡assume¡¡the¡¡superiority¡¡ceteris¡¡paribus¡¡of¡¡the



demonstration¡¡which¡¡derives¡¡from¡¡fewer¡¡postulates¡¡or¡¡hypotheses¡­in



short¡¡from¡¡fewer¡¡premisses£»¡¡for£»¡¡given¡¡that¡¡all¡¡these¡¡are¡¡equally¡¡well



known£»¡¡where¡¡they¡¡are¡¡fewer¡¡knowledge¡¡will¡¡be¡¡more¡¡speedily



acquired£»¡¡and¡¡that¡¡is¡¡a¡¡desideratum¡£¡¡The¡¡argument¡¡implied¡¡in¡¡our



contention¡¡that¡¡demonstration¡¡from¡¡fewer¡¡assumptions¡¡is¡¡superior¡¡may



be¡¡set¡¡out¡¡in¡¡universal¡¡form¡¡as¡¡follows¡£¡¡Assuming¡¡that¡¡in¡¡both¡¡cases



alike¡¡the¡¡middle¡¡terms¡¡are¡¡known£»¡¡and¡¡that¡¡middles¡¡which¡¡are¡¡prior¡¡are



better¡¡known¡¡than¡¡such¡¡as¡¡are¡¡posterior£»¡¡we¡¡may¡¡suppose¡¡two



demonstrations¡¡of¡¡the¡¡inherence¡¡of¡¡A¡¡in¡¡E£»¡¡the¡¡one¡¡proving¡¡it



through¡¡the¡¡middles¡¡B£»¡¡C¡¡and¡¡D£»¡¡the¡¡other¡¡through¡¡F¡¡and¡¡G¡£¡¡Then¡¡A¡­D¡¡is



known¡¡to¡¡the¡¡same¡¡degree¡¡as¡¡A¡­E¡¡£¨in¡¡the¡¡second¡¡proof£©£»¡¡but¡¡A¡­D¡¡is



better¡¡known¡¡than¡¡and¡¡prior¡¡to¡¡A¡­E¡¡£¨in¡¡the¡¡first¡¡proof£©£»¡¡since¡¡A¡­E



is¡¡proved¡¡through¡¡A¡­D£»¡¡and¡¡the¡¡ground¡¡is¡¡more¡¡certain¡¡than¡¡the



conclusion¡£



¡¡¡¡Hence¡¡demonstration¡¡by¡¡fewer¡¡premisses¡¡is¡¡ceteris¡¡paribus



superior¡£¡¡Now¡¡both¡¡affirmative¡¡and¡¡negative¡¡demonstration¡¡operate



through¡¡three¡¡terms¡¡and¡¡two¡¡premisses£»¡¡but¡¡whereas¡¡the¡¡former



assumes¡¡only¡¡that¡¡something¡¡is£»¡¡the¡¡latter¡¡assumes¡¡both¡¡that¡¡something



is¡¡and¡¡that¡¡something¡¡else¡¡is¡¡not£»¡¡and¡¡thus¡¡operating¡¡through¡¡more



kinds¡¡of¡¡premiss¡¡is¡¡inferior¡£



¡¡¡¡£¨2£©¡¡It¡¡has¡¡been¡¡proved¡¡that¡¡no¡¡conclusion¡¡follows¡¡if¡¡both



premisses¡¡are¡¡negative£»¡¡but¡¡that¡¡one¡¡must¡¡be¡¡negative£»¡¡the¡¡other



affirmative¡£¡¡So¡¡we¡¡are¡¡compelled¡¡to¡¡lay¡¡down¡¡the¡¡following



additional¡¡rule£º¡¡as¡¡the¡¡demonstration¡¡expands£»¡¡the¡¡affirmative



premisses¡¡must¡¡increase¡¡in¡¡number£»¡¡but¡¡there¡¡cannot¡¡be¡¡more¡¡than¡¡one



negative¡¡premiss¡¡in¡¡each¡¡complete¡¡proof¡£¡¡Thus£»¡¡suppose¡¡no¡¡B¡¡is¡¡A£»



and¡¡all¡¡C¡¡is¡¡B¡£¡¡Then¡¡if¡¡both¡¡the¡¡premisses¡¡are¡¡to¡¡be¡¡again¡¡expanded£»¡¡a



middle¡¡must¡¡be¡¡interposed¡£¡¡Let¡¡us¡¡interpose¡¡D¡¡between¡¡A¡¡and¡¡B£»¡¡and¡¡E



between¡¡B¡¡and¡¡C¡£¡¡Then¡¡clearly¡¡E¡¡is¡¡affirmatively¡¡related¡¡to¡¡B¡¡and¡¡C£»



while¡¡D¡¡is¡¡affirmatively¡¡related¡¡to¡¡B¡¡but¡¡negatively¡¡to¡¡A£»¡¡for¡¡all¡¡B



is¡¡D£»¡¡but¡¡there¡¡must¡¡be¡¡no¡¡D¡¡which¡¡is¡¡A¡£¡¡Thus¡¡there¡¡proves¡¡to¡¡be¡¡a



single¡¡negative¡¡premiss£»¡¡A¡­D¡£¡¡In¡¡the¡¡further¡¡prosyllogisms¡¡too¡¡it¡¡is



the¡¡same£»¡¡because¡¡in¡¡the¡¡terms¡¡of¡¡an¡¡affirmative¡¡syllogism¡¡the



middle¡¡is¡¡always¡¡related¡¡affirmatively¡¡to¡¡both¡¡extremes£»¡¡in¡¡a¡¡negative



syllogism¡¡it¡¡must¡¡be¡¡negatively¡¡related¡¡only¡¡to¡¡one¡¡of¡¡them£»¡¡and¡¡so



this¡¡negation¡¡comes¡¡to¡¡be¡¡a¡¡single¡¡negative¡¡premiss£»¡¡the¡¡other



premisses¡¡being¡¡affirmative¡£¡¡If£»¡¡then£»¡¡that¡¡through¡¡which¡¡a¡¡truth¡¡is



proved¡¡is¡¡a¡¡better¡¡known¡¡and¡¡more¡¡certain¡¡truth£»¡¡and¡¡if¡¡the¡¡negative



proposition¡¡is¡¡proved¡¡through¡¡the¡¡affirmative¡¡and¡¡not¡¡vice¡¡versa£»



affirmative¡¡demonstration£»¡¡being¡¡prior¡¡and¡¡better¡¡known¡¡and¡¡more



certain£»¡¡will¡¡be¡¡superior¡£



¡¡¡¡£¨3£©¡¡The¡¡basic¡¡truth¡¡of¡¡demonstrative¡¡syllogism¡¡is¡¡the¡¡universal



immediate¡¡premiss£»¡¡and¡¡the¡¡universal¡¡premiss¡¡asserts¡¡in¡¡affirmative



demonstration¡¡and¡¡in¡¡negative¡¡denies£º¡¡and¡¡the¡¡affirmative



proposition¡¡is¡¡prior¡¡to¡¡and¡¡better¡¡known¡¡than¡¡the¡¡negative¡¡£¨since



affirmation¡¡explains¡¡denial¡¡and¡¡is¡¡prior¡¡to¡¡denial£»¡¡just¡¡as¡¡being¡¡is



prior¡¡to¡¡not¡­being£©¡£¡¡It¡¡follows¡¡that¡¡the¡¡basic¡¡premiss¡¡of



affirmative¡¡demonstration¡¡is¡¡superior¡¡to¡¡that¡¡of¡¡negative



demonstration£»¡¡and¡¡the¡¡demonstration¡¡which¡¡uses¡¡superior¡¡basic



premisses¡¡is¡¡superior¡£



¡¡¡¡£¨4£©¡¡Affirmative¡¡demonstration¡¡is¡¡more¡¡of¡¡the¡¡nature¡¡of¡¡a¡¡basic



form¡¡of¡¡proof£»¡¡because¡¡it¡¡is¡¡a¡¡sine¡¡qua¡¡non¡¡of¡¡negative¡¡demonstration¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡26







¡¡¡¡Since¡¡affirmative¡¡demonstration¡¡is¡¡superior¡¡to¡¡negative£»¡¡it¡¡is



clearly¡¡superior¡¡also¡¡to¡¡reductio¡¡ad¡¡impossibile¡£¡¡We¡¡must¡¡first¡¡make



certain¡¡what¡¡is¡¡the¡¡difference¡¡between¡¡negative¡¡demonstration¡¡and



reductio¡¡ad¡¡impossibile¡£¡¡Let¡¡us¡¡suppose¡¡that¡¡no¡¡B¡¡is¡¡A£»¡¡and¡¡that¡¡all¡¡C



is¡¡B£º¡¡the¡¡conclusion¡¡necessarily¡¡follows¡¡that¡¡no¡¡C¡¡is¡¡A¡£¡¡If¡¡these



premisses¡¡are¡¡assumed£»¡¡therefore£»¡¡the¡¡negative¡¡demonstration¡¡that¡¡no¡¡C



is¡¡A¡¡is¡¡direct¡£¡¡Reductio¡¡ad¡¡impossibile£»¡¡on¡¡the¡¡other¡¡hand£»¡¡proceeds



as¡¡follows¡£¡¡Supposing¡¡we¡¡are¡¡to¡¡prove¡¡that¡¡does¡¡not¡¡inhere¡¡in¡¡B£»¡¡we



have¡¡to¡¡assume¡¡that¡¡it¡¡does¡¡inhere£»¡¡and¡¡further¡¡that¡¡B¡¡inheres¡¡in¡¡C£»



with¡¡the¡¡resulting¡¡inference¡¡that¡¡A¡¡inheres¡¡in¡¡C¡£¡¡This¡¡we¡¡have¡¡to



suppose¡¡a¡¡known¡¡and¡¡admitted¡¡impossibility£»¡¡and¡¡we¡¡then¡¡infer¡¡that¡¡A



cannot¡¡inhere¡¡in¡¡B¡£¡¡Thus¡¡if¡¡the¡¡inherence¡¡of¡¡B¡¡in¡¡C¡¡is¡¡not¡¡questioned£»



A's¡¡inherence¡¡in¡¡B¡¡is¡¡impossible¡£



¡¡¡¡The¡¡order¡¡of¡¡the¡¡terms¡¡is¡¡the¡¡same¡¡in¡¡both¡¡proofs£º¡¡they¡¡differ



according¡¡to¡¡which¡¡of¡¡the¡¡negative¡¡propositions¡¡is¡¡the¡¡better¡¡known£»



the¡¡one¡¡denying¡¡A¡¡of¡¡B¡¡or¡¡the¡¡one¡¡denying¡¡A¡¡of¡¡C¡£¡¡When¡¡the¡¡falsity



of¡¡the¡¡conclusion¡¡is¡¡the¡¡better¡¡known£»¡¡we¡¡use¡¡reductio¡¡ad



impossible£»¡¡when¡¡the¡¡major¡¡premiss¡¡of¡¡the¡¡syllogism¡¡is¡¡the¡¡more



obvious£»¡¡we¡¡use¡¡direct¡¡demonstration¡£¡¡All¡¡the¡¡same¡¡the¡¡proposition



denying¡¡A¡¡of¡¡B¡¡is£»¡¡in¡¡the¡¡order¡¡of¡¡being£»¡¡prior¡¡to¡¡that¡¡denying¡¡A¡¡of



C£»¡¡for¡¡premisses¡¡are¡¡prior¡¡to¡¡the¡¡conclusion¡¡which¡¡follows¡¡from



them£»¡¡and¡¡'no¡¡C¡¡is¡¡A'¡¡is¡¡the¡¡conclusion£»¡¡'no¡¡B¡¡is¡¡A'¡¡one¡¡of¡¡its



premisses¡£¡¡For¡¡the¡¡destructive¡¡result¡¡of¡¡reductio

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ