posterior analytics-µÚ13½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
as¡¡we¡¡have¡¡exemplified£»¡¡it¡¡follows¡¡that¡¡in¡¡the¡¡case¡¡of¡¡the¡¡other
causes¡¡also¡¡full¡¡knowledge¡¡is¡¡attained¡¡when¡¡an¡¡attribute¡¡no¡¡longer
inheres¡¡because¡¡of¡¡something¡¡else¡£¡¡Thus£»¡¡when¡¡we¡¡learn¡¡that¡¡exterior
angles¡¡are¡¡equal¡¡to¡¡four¡¡right¡¡angles¡¡because¡¡they¡¡are¡¡the¡¡exterior
angles¡¡of¡¡an¡¡isosceles£»¡¡there¡¡still¡¡remains¡¡the¡¡question¡¡'Why¡¡has
isosceles¡¡this¡¡attribute£¿'¡¡and¡¡its¡¡answer¡¡'Because¡¡it¡¡is¡¡a¡¡triangle£»
and¡¡a¡¡triangle¡¡has¡¡it¡¡because¡¡a¡¡triangle¡¡is¡¡a¡¡rectilinear¡¡figure¡£'
If¡¡rectilinear¡¡figure¡¡possesses¡¡the¡¡property¡¡for¡¡no¡¡further¡¡reason£»¡¡at
this¡¡point¡¡we¡¡have¡¡full¡¡knowledge¡but¡¡at¡¡this¡¡point¡¡our¡¡knowledge
has¡¡become¡¡commensurately¡¡universal£»¡¡and¡¡so¡¡we¡¡conclude¡¡that
commensurately¡¡universal¡¡demonstration¡¡is¡¡superior¡£
¡¡¡¡£¨6£©¡¡The¡¡more¡¡demonstration¡¡becomes¡¡particular¡¡the¡¡more¡¡it¡¡sinks¡¡into
an¡¡indeterminate¡¡manifold£»¡¡while¡¡universal¡¡demonstration¡¡tends¡¡to
the¡¡simple¡¡and¡¡determinate¡£¡¡But¡¡objects¡¡so¡¡far¡¡as¡¡they¡¡are¡¡an
indeterminate¡¡manifold¡¡are¡¡unintelligible£»¡¡so¡¡far¡¡as¡¡they¡¡are
determinate£»¡¡intelligible£º¡¡they¡¡are¡¡therefore¡¡intelligible¡¡rather¡¡in
so¡¡far¡¡as¡¡they¡¡are¡¡universal¡¡than¡¡in¡¡so¡¡far¡¡as¡¡they¡¡are¡¡particular¡£
From¡¡this¡¡it¡¡follows¡¡that¡¡universals¡¡are¡¡more¡¡demonstrable£º¡¡but
since¡¡relative¡¡and¡¡correlative¡¡increase¡¡concomitantly£»¡¡of¡¡the¡¡more
demonstrable¡¡there¡¡will¡¡be¡¡fuller¡¡demonstration¡£¡¡Hence¡¡the
commensurate¡¡and¡¡universal¡¡form£»¡¡being¡¡more¡¡truly¡¡demonstration£»¡¡is
the¡¡superior¡£
¡¡¡¡£¨7£©¡¡Demonstration¡¡which¡¡teaches¡¡two¡¡things¡¡is¡¡preferable¡¡to
demonstration¡¡which¡¡teaches¡¡only¡¡one¡£¡¡He¡¡who¡¡possesses
commensurately¡¡universal¡¡demonstration¡¡knows¡¡the¡¡particular¡¡as¡¡well£»
but¡¡he¡¡who¡¡possesses¡¡particular¡¡demonstration¡¡does¡¡not¡¡know¡¡the
universal¡£¡¡So¡¡that¡¡this¡¡is¡¡an¡¡additional¡¡reason¡¡for¡¡preferring
commensurately¡¡universal¡¡demonstration¡£¡¡And¡¡there¡¡is¡¡yet¡¡this
further¡¡argument£º
¡¡¡¡£¨8£©¡¡Proof¡¡becomes¡¡more¡¡and¡¡more¡¡proof¡¡of¡¡the¡¡commensurate
universal¡¡as¡¡its¡¡middle¡¡term¡¡approaches¡¡nearer¡¡to¡¡the¡¡basic¡¡truth£»¡¡and
nothing¡¡is¡¡so¡¡near¡¡as¡¡the¡¡immediate¡¡premiss¡¡which¡¡is¡¡itself¡¡the
basic¡¡truth¡£¡¡If£»¡¡then£»¡¡proof¡¡from¡¡the¡¡basic¡¡truth¡¡is¡¡more¡¡accurate
than¡¡proof¡¡not¡¡so¡¡derived£»¡¡demonstration¡¡which¡¡depends¡¡more¡¡closely¡¡on
it¡¡is¡¡more¡¡accurate¡¡than¡¡demonstration¡¡which¡¡is¡¡less¡¡closely
dependent¡£¡¡But¡¡commensurately¡¡universal¡¡demonstration¡¡is¡¡characterized
by¡¡this¡¡closer¡¡dependence£»¡¡and¡¡is¡¡therefore¡¡superior¡£¡¡Thus£»¡¡if¡¡A¡¡had
to¡¡be¡¡proved¡¡to¡¡inhere¡¡in¡¡D£»¡¡and¡¡the¡¡middles¡¡were¡¡B¡¡and¡¡C£»¡¡B¡¡being¡¡the
higher¡¡term¡¡would¡¡render¡¡the¡¡demonstration¡¡which¡¡it¡¡mediated¡¡the
more¡¡universal¡£
¡¡¡¡Some¡¡of¡¡these¡¡arguments£»¡¡however£»¡¡are¡¡dialectical¡£¡¡The¡¡clearest
indication¡¡of¡¡the¡¡precedence¡¡of¡¡commensurately¡¡universal¡¡demonstration
is¡¡as¡¡follows£º¡¡if¡¡of¡¡two¡¡propositions£»¡¡a¡¡prior¡¡and¡¡a¡¡posterior£»¡¡we
have¡¡a¡¡grasp¡¡of¡¡the¡¡prior£»¡¡we¡¡have¡¡a¡¡kind¡¡of¡¡knowledge¡a¡¡potential
grasp¡of¡¡the¡¡posterior¡¡as¡¡well¡£¡¡For¡¡example£»¡¡if¡¡one¡¡knows¡¡that¡¡the
angles¡¡of¡¡all¡¡triangles¡¡are¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡one¡¡knows¡¡in
a¡¡sense¡potentially¡that¡¡the¡¡isosceles'¡¡angles¡¡also¡¡are¡¡equal¡¡to¡¡two
right¡¡angles£»¡¡even¡¡if¡¡one¡¡does¡¡not¡¡know¡¡that¡¡the¡¡isosceles¡¡is¡¡a
triangle£»¡¡but¡¡to¡¡grasp¡¡this¡¡posterior¡¡proposition¡¡is¡¡by¡¡no¡¡means¡¡to
know¡¡the¡¡commensurate¡¡universal¡¡either¡¡potentially¡¡or¡¡actually¡£
Moreover£»¡¡commensurately¡¡universal¡¡demonstration¡¡is¡¡through¡¡and
through¡¡intelligible£»¡¡particular¡¡demonstration¡¡issues¡¡in
sense¡perception¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡25
¡¡¡¡The¡¡preceding¡¡arguments¡¡constitute¡¡our¡¡defence¡¡of¡¡the¡¡superiority¡¡of
commensurately¡¡universal¡¡to¡¡particular¡¡demonstration¡£¡¡That¡¡affirmative
demonstration¡¡excels¡¡negative¡¡may¡¡be¡¡shown¡¡as¡¡follows¡£
¡¡¡¡£¨1£©¡¡We¡¡may¡¡assume¡¡the¡¡superiority¡¡ceteris¡¡paribus¡¡of¡¡the
demonstration¡¡which¡¡derives¡¡from¡¡fewer¡¡postulates¡¡or¡¡hypotheses¡in
short¡¡from¡¡fewer¡¡premisses£»¡¡for£»¡¡given¡¡that¡¡all¡¡these¡¡are¡¡equally¡¡well
known£»¡¡where¡¡they¡¡are¡¡fewer¡¡knowledge¡¡will¡¡be¡¡more¡¡speedily
acquired£»¡¡and¡¡that¡¡is¡¡a¡¡desideratum¡£¡¡The¡¡argument¡¡implied¡¡in¡¡our
contention¡¡that¡¡demonstration¡¡from¡¡fewer¡¡assumptions¡¡is¡¡superior¡¡may
be¡¡set¡¡out¡¡in¡¡universal¡¡form¡¡as¡¡follows¡£¡¡Assuming¡¡that¡¡in¡¡both¡¡cases
alike¡¡the¡¡middle¡¡terms¡¡are¡¡known£»¡¡and¡¡that¡¡middles¡¡which¡¡are¡¡prior¡¡are
better¡¡known¡¡than¡¡such¡¡as¡¡are¡¡posterior£»¡¡we¡¡may¡¡suppose¡¡two
demonstrations¡¡of¡¡the¡¡inherence¡¡of¡¡A¡¡in¡¡E£»¡¡the¡¡one¡¡proving¡¡it
through¡¡the¡¡middles¡¡B£»¡¡C¡¡and¡¡D£»¡¡the¡¡other¡¡through¡¡F¡¡and¡¡G¡£¡¡Then¡¡A¡D¡¡is
known¡¡to¡¡the¡¡same¡¡degree¡¡as¡¡A¡E¡¡£¨in¡¡the¡¡second¡¡proof£©£»¡¡but¡¡A¡D¡¡is
better¡¡known¡¡than¡¡and¡¡prior¡¡to¡¡A¡E¡¡£¨in¡¡the¡¡first¡¡proof£©£»¡¡since¡¡A¡E
is¡¡proved¡¡through¡¡A¡D£»¡¡and¡¡the¡¡ground¡¡is¡¡more¡¡certain¡¡than¡¡the
conclusion¡£
¡¡¡¡Hence¡¡demonstration¡¡by¡¡fewer¡¡premisses¡¡is¡¡ceteris¡¡paribus
superior¡£¡¡Now¡¡both¡¡affirmative¡¡and¡¡negative¡¡demonstration¡¡operate
through¡¡three¡¡terms¡¡and¡¡two¡¡premisses£»¡¡but¡¡whereas¡¡the¡¡former
assumes¡¡only¡¡that¡¡something¡¡is£»¡¡the¡¡latter¡¡assumes¡¡both¡¡that¡¡something
is¡¡and¡¡that¡¡something¡¡else¡¡is¡¡not£»¡¡and¡¡thus¡¡operating¡¡through¡¡more
kinds¡¡of¡¡premiss¡¡is¡¡inferior¡£
¡¡¡¡£¨2£©¡¡It¡¡has¡¡been¡¡proved¡¡that¡¡no¡¡conclusion¡¡follows¡¡if¡¡both
premisses¡¡are¡¡negative£»¡¡but¡¡that¡¡one¡¡must¡¡be¡¡negative£»¡¡the¡¡other
affirmative¡£¡¡So¡¡we¡¡are¡¡compelled¡¡to¡¡lay¡¡down¡¡the¡¡following
additional¡¡rule£º¡¡as¡¡the¡¡demonstration¡¡expands£»¡¡the¡¡affirmative
premisses¡¡must¡¡increase¡¡in¡¡number£»¡¡but¡¡there¡¡cannot¡¡be¡¡more¡¡than¡¡one
negative¡¡premiss¡¡in¡¡each¡¡complete¡¡proof¡£¡¡Thus£»¡¡suppose¡¡no¡¡B¡¡is¡¡A£»
and¡¡all¡¡C¡¡is¡¡B¡£¡¡Then¡¡if¡¡both¡¡the¡¡premisses¡¡are¡¡to¡¡be¡¡again¡¡expanded£»¡¡a
middle¡¡must¡¡be¡¡interposed¡£¡¡Let¡¡us¡¡interpose¡¡D¡¡between¡¡A¡¡and¡¡B£»¡¡and¡¡E
between¡¡B¡¡and¡¡C¡£¡¡Then¡¡clearly¡¡E¡¡is¡¡affirmatively¡¡related¡¡to¡¡B¡¡and¡¡C£»
while¡¡D¡¡is¡¡affirmatively¡¡related¡¡to¡¡B¡¡but¡¡negatively¡¡to¡¡A£»¡¡for¡¡all¡¡B
is¡¡D£»¡¡but¡¡there¡¡must¡¡be¡¡no¡¡D¡¡which¡¡is¡¡A¡£¡¡Thus¡¡there¡¡proves¡¡to¡¡be¡¡a
single¡¡negative¡¡premiss£»¡¡A¡D¡£¡¡In¡¡the¡¡further¡¡prosyllogisms¡¡too¡¡it¡¡is
the¡¡same£»¡¡because¡¡in¡¡the¡¡terms¡¡of¡¡an¡¡affirmative¡¡syllogism¡¡the
middle¡¡is¡¡always¡¡related¡¡affirmatively¡¡to¡¡both¡¡extremes£»¡¡in¡¡a¡¡negative
syllogism¡¡it¡¡must¡¡be¡¡negatively¡¡related¡¡only¡¡to¡¡one¡¡of¡¡them£»¡¡and¡¡so
this¡¡negation¡¡comes¡¡to¡¡be¡¡a¡¡single¡¡negative¡¡premiss£»¡¡the¡¡other
premisses¡¡being¡¡affirmative¡£¡¡If£»¡¡then£»¡¡that¡¡through¡¡which¡¡a¡¡truth¡¡is
proved¡¡is¡¡a¡¡better¡¡known¡¡and¡¡more¡¡certain¡¡truth£»¡¡and¡¡if¡¡the¡¡negative
proposition¡¡is¡¡proved¡¡through¡¡the¡¡affirmative¡¡and¡¡not¡¡vice¡¡versa£»
affirmative¡¡demonstration£»¡¡being¡¡prior¡¡and¡¡better¡¡known¡¡and¡¡more
certain£»¡¡will¡¡be¡¡superior¡£
¡¡¡¡£¨3£©¡¡The¡¡basic¡¡truth¡¡of¡¡demonstrative¡¡syllogism¡¡is¡¡the¡¡universal
immediate¡¡premiss£»¡¡and¡¡the¡¡universal¡¡premiss¡¡asserts¡¡in¡¡affirmative
demonstration¡¡and¡¡in¡¡negative¡¡denies£º¡¡and¡¡the¡¡affirmative
proposition¡¡is¡¡prior¡¡to¡¡and¡¡better¡¡known¡¡than¡¡the¡¡negative¡¡£¨since
affirmation¡¡explains¡¡denial¡¡and¡¡is¡¡prior¡¡to¡¡denial£»¡¡just¡¡as¡¡being¡¡is
prior¡¡to¡¡not¡being£©¡£¡¡It¡¡follows¡¡that¡¡the¡¡basic¡¡premiss¡¡of
affirmative¡¡demonstration¡¡is¡¡superior¡¡to¡¡that¡¡of¡¡negative
demonstration£»¡¡and¡¡the¡¡demonstration¡¡which¡¡uses¡¡superior¡¡basic
premisses¡¡is¡¡superior¡£
¡¡¡¡£¨4£©¡¡Affirmative¡¡demonstration¡¡is¡¡more¡¡of¡¡the¡¡nature¡¡of¡¡a¡¡basic
form¡¡of¡¡proof£»¡¡because¡¡it¡¡is¡¡a¡¡sine¡¡qua¡¡non¡¡of¡¡negative¡¡demonstration¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡26
¡¡¡¡Since¡¡affirmative¡¡demonstration¡¡is¡¡superior¡¡to¡¡negative£»¡¡it¡¡is
clearly¡¡superior¡¡also¡¡to¡¡reductio¡¡ad¡¡impossibile¡£¡¡We¡¡must¡¡first¡¡make
certain¡¡what¡¡is¡¡the¡¡difference¡¡between¡¡negative¡¡demonstration¡¡and
reductio¡¡ad¡¡impossibile¡£¡¡Let¡¡us¡¡suppose¡¡that¡¡no¡¡B¡¡is¡¡A£»¡¡and¡¡that¡¡all¡¡C
is¡¡B£º¡¡the¡¡conclusion¡¡necessarily¡¡follows¡¡that¡¡no¡¡C¡¡is¡¡A¡£¡¡If¡¡these
premisses¡¡are¡¡assumed£»¡¡therefore£»¡¡the¡¡negative¡¡demonstration¡¡that¡¡no¡¡C
is¡¡A¡¡is¡¡direct¡£¡¡Reductio¡¡ad¡¡impossibile£»¡¡on¡¡the¡¡other¡¡hand£»¡¡proceeds
as¡¡follows¡£¡¡Supposing¡¡we¡¡are¡¡to¡¡prove¡¡that¡¡does¡¡not¡¡inhere¡¡in¡¡B£»¡¡we
have¡¡to¡¡assume¡¡that¡¡it¡¡does¡¡inhere£»¡¡and¡¡further¡¡that¡¡B¡¡inheres¡¡in¡¡C£»
with¡¡the¡¡resulting¡¡inference¡¡that¡¡A¡¡inheres¡¡in¡¡C¡£¡¡This¡¡we¡¡have¡¡to
suppose¡¡a¡¡known¡¡and¡¡admitted¡¡impossibility£»¡¡and¡¡we¡¡then¡¡infer¡¡that¡¡A
cannot¡¡inhere¡¡in¡¡B¡£¡¡Thus¡¡if¡¡the¡¡inherence¡¡of¡¡B¡¡in¡¡C¡¡is¡¡not¡¡questioned£»
A's¡¡inherence¡¡in¡¡B¡¡is¡¡impossible¡£
¡¡¡¡The¡¡order¡¡of¡¡the¡¡terms¡¡is¡¡the¡¡same¡¡in¡¡both¡¡proofs£º¡¡they¡¡differ
according¡¡to¡¡which¡¡of¡¡the¡¡negative¡¡propositions¡¡is¡¡the¡¡better¡¡known£»
the¡¡one¡¡denying¡¡A¡¡of¡¡B¡¡or¡¡the¡¡one¡¡denying¡¡A¡¡of¡¡C¡£¡¡When¡¡the¡¡falsity
of¡¡the¡¡conclusion¡¡is¡¡the¡¡better¡¡known£»¡¡we¡¡use¡¡reductio¡¡ad
impossible£»¡¡when¡¡the¡¡major¡¡premiss¡¡of¡¡the¡¡syllogism¡¡is¡¡the¡¡more
obvious£»¡¡we¡¡use¡¡direct¡¡demonstration¡£¡¡All¡¡the¡¡same¡¡the¡¡proposition
denying¡¡A¡¡of¡¡B¡¡is£»¡¡in¡¡the¡¡order¡¡of¡¡being£»¡¡prior¡¡to¡¡that¡¡denying¡¡A¡¡of
C£»¡¡for¡¡premisses¡¡are¡¡prior¡¡to¡¡the¡¡conclusion¡¡which¡¡follows¡¡from
them£»¡¡and¡¡'no¡¡C¡¡is¡¡A'¡¡is¡¡the¡¡conclusion£»¡¡'no¡¡B¡¡is¡¡A'¡¡one¡¡of¡¡its
premisses¡£¡¡For¡¡the¡¡destructive¡¡result¡¡of¡¡reductio