Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ12½Ú

posterior analytics-µÚ12½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






as¡¡are¡¡universal¡­are¡¡the¡¡'elements'¡£¡¡If£»¡¡on¡¡the¡¡other¡¡hand£»¡¡there¡¡is



no¡¡middle¡¡term£»¡¡demonstration¡¡ceases¡¡to¡¡be¡¡possible£º¡¡we¡¡are¡¡on¡¡the¡¡way



to¡¡the¡¡basic¡¡truths¡£¡¡Similarly¡¡if¡¡A¡¡does¡¡not¡¡inhere¡¡in¡¡B£»¡¡this¡¡can



be¡¡demonstrated¡¡if¡¡there¡¡is¡¡a¡¡middle¡¡term¡¡or¡¡a¡¡term¡¡prior¡¡to¡¡B¡¡in



which¡¡A¡¡does¡¡not¡¡inhere£º¡¡otherwise¡¡there¡¡is¡¡no¡¡demonstration¡¡and¡¡a



basic¡¡truth¡¡is¡¡reached¡£¡¡There¡¡are£»¡¡moreover£»¡¡as¡¡many¡¡'elements'¡¡of¡¡the



demonstrated¡¡conclusion¡¡as¡¡there¡¡are¡¡middle¡¡terms£»¡¡since¡¡it¡¡is



propositions¡¡containing¡¡these¡¡middle¡¡terms¡¡that¡¡are¡¡the¡¡basic



premisses¡¡on¡¡which¡¡the¡¡demonstration¡¡rests£»¡¡and¡¡as¡¡there¡¡are¡¡some



indemonstrable¡¡basic¡¡truths¡¡asserting¡¡that¡¡'this¡¡is¡¡that'¡¡or¡¡that



'this¡¡inheres¡¡in¡¡that'£»¡¡so¡¡there¡¡are¡¡others¡¡denying¡¡that¡¡'this¡¡is



that'¡¡or¡¡that¡¡'this¡¡inheres¡¡in¡¡that'¡­in¡¡fact¡¡some¡¡basic¡¡truths¡¡will



affirm¡¡and¡¡some¡¡will¡¡deny¡¡being¡£



¡¡¡¡When¡¡we¡¡are¡¡to¡¡prove¡¡a¡¡conclusion£»¡¡we¡¡must¡¡take¡¡a¡¡primary



essential¡¡predicate¡­suppose¡¡it¡¡C¡­of¡¡the¡¡subject¡¡B£»¡¡and¡¡then¡¡suppose



A¡¡similarly¡¡predicable¡¡of¡¡C¡£¡¡If¡¡we¡¡proceed¡¡in¡¡this¡¡manner£»¡¡no



proposition¡¡or¡¡attribute¡¡which¡¡falls¡¡beyond¡¡A¡¡is¡¡admitted¡¡in¡¡the



proof£º¡¡the¡¡interval¡¡is¡¡constantly¡¡condensed¡¡until¡¡subject¡¡and



predicate¡¡become¡¡indivisible£»¡¡i¡£e¡£¡¡one¡£¡¡We¡¡have¡¡our¡¡unit¡¡when¡¡the



premiss¡¡becomes¡¡immediate£»¡¡since¡¡the¡¡immediate¡¡premiss¡¡alone¡¡is¡¡a



single¡¡premiss¡¡in¡¡the¡¡unqualified¡¡sense¡¡of¡¡'single'¡£¡¡And¡¡as¡¡in¡¡other



spheres¡¡the¡¡basic¡¡element¡¡is¡¡simple¡¡but¡¡not¡¡identical¡¡in¡¡all¡­in¡¡a



system¡¡of¡¡weight¡¡it¡¡is¡¡the¡¡mina£»¡¡in¡¡music¡¡the¡¡quarter¡­tone£»¡¡and¡¡so



onso¡¡in¡¡syllogism¡¡the¡¡unit¡¡is¡¡an¡¡immediate¡¡premiss£»¡¡and¡¡in¡¡the



knowledge¡¡that¡¡demonstration¡¡gives¡¡it¡¡is¡¡an¡¡intuition¡£¡¡In



syllogisms£»¡¡then£»¡¡which¡¡prove¡¡the¡¡inherence¡¡of¡¡an¡¡attribute£»¡¡nothing



falls¡¡outside¡¡the¡¡major¡¡term¡£¡¡In¡¡the¡¡case¡¡of¡¡negative¡¡syllogisms¡¡on



the¡¡other¡¡hand£»¡¡£¨1£©¡¡in¡¡the¡¡first¡¡figure¡¡nothing¡¡falls¡¡outside¡¡the



major¡¡term¡¡whose¡¡inherence¡¡is¡¡in¡¡question£»¡¡e¡£g¡£¡¡to¡¡prove¡¡through¡¡a



middle¡¡C¡¡that¡¡A¡¡does¡¡not¡¡inhere¡¡in¡¡B¡¡the¡¡premisses¡¡required¡¡are£»¡¡all¡¡B



is¡¡C£»¡¡no¡¡C¡¡is¡¡A¡£¡¡Then¡¡if¡¡it¡¡has¡¡to¡¡be¡¡proved¡¡that¡¡no¡¡C¡¡is¡¡A£»¡¡a



middle¡¡must¡¡be¡¡found¡¡between¡¡and¡¡C£»¡¡and¡¡this¡¡procedure¡¡will¡¡never



vary¡£



¡¡¡¡£¨2£©¡¡If¡¡we¡¡have¡¡to¡¡show¡¡that¡¡E¡¡is¡¡not¡¡D¡¡by¡¡means¡¡of¡¡the¡¡premisses£»



all¡¡D¡¡is¡¡C£»¡¡no¡¡E£»¡¡or¡¡not¡¡all¡¡E£»¡¡is¡¡C£»¡¡then¡¡the¡¡middle¡¡will¡¡never



fall¡¡beyond¡¡E£»¡¡and¡¡E¡¡is¡¡the¡¡subject¡¡of¡¡which¡¡D¡¡is¡¡to¡¡be¡¡denied¡¡in



the¡¡conclusion¡£



¡¡¡¡£¨3£©¡¡In¡¡the¡¡third¡¡figure¡¡the¡¡middle¡¡will¡¡never¡¡fall¡¡beyond¡¡the¡¡limits



of¡¡the¡¡subject¡¡and¡¡the¡¡attribute¡¡denied¡¡of¡¡it¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡24







¡¡¡¡Since¡¡demonstrations¡¡may¡¡be¡¡either¡¡commensurately¡¡universal¡¡or



particular£»¡¡and¡¡either¡¡affirmative¡¡or¡¡negative£»¡¡the¡¡question¡¡arises£»



which¡¡form¡¡is¡¡the¡¡better£¿¡¡And¡¡the¡¡same¡¡question¡¡may¡¡be¡¡put¡¡in¡¡regard



to¡¡so¡­called¡¡'direct'¡¡demonstration¡¡and¡¡reductio¡¡ad¡¡impossibile¡£¡¡Let



us¡¡first¡¡examine¡¡the¡¡commensurately¡¡universal¡¡and¡¡the¡¡particular



forms£»¡¡and¡¡when¡¡we¡¡have¡¡cleared¡¡up¡¡this¡¡problem¡¡proceed¡¡to¡¡discuss



'direct'¡¡demonstration¡¡and¡¡reductio¡¡ad¡¡impossibile¡£



¡¡¡¡The¡¡following¡¡considerations¡¡might¡¡lead¡¡some¡¡minds¡¡to¡¡prefer



particular¡¡demonstration¡£



¡¡¡¡£¨1£©¡¡The¡¡superior¡¡demonstration¡¡is¡¡the¡¡demonstration¡¡which¡¡gives¡¡us



greater¡¡knowledge¡¡£¨for¡¡this¡¡is¡¡the¡¡ideal¡¡of¡¡demonstration£©£»¡¡and¡¡we



have¡¡greater¡¡knowledge¡¡of¡¡a¡¡particular¡¡individual¡¡when¡¡we¡¡know¡¡it¡¡in



itself¡¡than¡¡when¡¡we¡¡know¡¡it¡¡through¡¡something¡¡else£»¡¡e¡£g¡£¡¡we¡¡know



Coriscus¡¡the¡¡musician¡¡better¡¡when¡¡we¡¡know¡¡that¡¡Coriscus¡¡is¡¡musical



than¡¡when¡¡we¡¡know¡¡only¡¡that¡¡man¡¡is¡¡musical£»¡¡and¡¡a¡¡like¡¡argument



holds¡¡in¡¡all¡¡other¡¡cases¡£¡¡But¡¡commensurately¡¡universal



demonstration£»¡¡instead¡¡of¡¡proving¡¡that¡¡the¡¡subject¡¡itself¡¡actually



is¡¡x£»¡¡proves¡¡only¡¡that¡¡something¡¡else¡¡is¡¡x¡­¡¡e¡£g¡£¡¡in¡¡attempting¡¡to



prove¡¡that¡¡isosceles¡¡is¡¡x£»¡¡it¡¡proves¡¡not¡¡that¡¡isosceles¡¡but¡¡only¡¡that



triangle¡¡is¡¡x¡­¡¡whereas¡¡particular¡¡demonstration¡¡proves¡¡that¡¡the



subject¡¡itself¡¡is¡¡x¡£¡¡The¡¡demonstration£»¡¡then£»¡¡that¡¡a¡¡subject£»¡¡as¡¡such£»



possesses¡¡an¡¡attribute¡¡is¡¡superior¡£¡¡If¡¡this¡¡is¡¡so£»¡¡and¡¡if¡¡the



particular¡¡rather¡¡than¡¡the¡¡commensurately¡¡universal¡¡forms



demonstrates£»¡¡particular¡¡demonstration¡¡is¡¡superior¡£



¡¡¡¡£¨2£©¡¡The¡¡universal¡¡has¡¡not¡¡a¡¡separate¡¡being¡¡over¡¡against¡¡groups¡¡of



singulars¡£¡¡Demonstration¡¡nevertheless¡¡creates¡¡the¡¡opinion¡¡that¡¡its



function¡¡is¡¡conditioned¡¡by¡¡something¡¡like¡¡this¡­some¡¡separate¡¡entity



belonging¡¡to¡¡the¡¡real¡¡world£»¡¡that£»¡¡for¡¡instance£»¡¡of¡¡triangle¡¡or¡¡of



figure¡¡or¡¡number£»¡¡over¡¡against¡¡particular¡¡triangles£»¡¡figures£»¡¡and



numbers¡£¡¡But¡¡demonstration¡¡which¡¡touches¡¡the¡¡real¡¡and¡¡will¡¡not¡¡mislead



is¡¡superior¡¡to¡¡that¡¡which¡¡moves¡¡among¡¡unrealities¡¡and¡¡is¡¡delusory¡£¡¡Now



commensurately¡¡universal¡¡demonstration¡¡is¡¡of¡¡the¡¡latter¡¡kind£º¡¡if¡¡we



engage¡¡in¡¡it¡¡we¡¡find¡¡ourselves¡¡reasoning¡¡after¡¡a¡¡fashion¡¡well



illustrated¡¡by¡¡the¡¡argument¡¡that¡¡the¡¡proportionate¡¡is¡¡what¡¡answers



to¡¡the¡¡definition¡¡of¡¡some¡¡entity¡¡which¡¡is¡¡neither¡¡line£»¡¡number£»¡¡solid£»



nor¡¡plane£»¡¡but¡¡a¡¡proportionate¡¡apart¡¡from¡¡all¡¡these¡£¡¡Since£»¡¡then£»¡¡such



a¡¡proof¡¡is¡¡characteristically¡¡commensurate¡¡and¡¡universal£»¡¡and¡¡less



touches¡¡reality¡¡than¡¡does¡¡particular¡¡demonstration£»¡¡and¡¡creates¡¡a



false¡¡opinion£»¡¡it¡¡will¡¡follow¡¡that¡¡commensurate¡¡and¡¡universal¡¡is



inferior¡¡to¡¡particular¡¡demonstration¡£



¡¡¡¡We¡¡may¡¡retort¡¡thus¡£¡¡£¨1£©¡¡The¡¡first¡¡argument¡¡applies¡¡no¡¡more¡¡to



commensurate¡¡and¡¡universal¡¡than¡¡to¡¡particular¡¡demonstration¡£¡¡If



equality¡¡to¡¡two¡¡right¡¡angles¡¡is¡¡attributable¡¡to¡¡its¡¡subject¡¡not¡¡qua



isosceles¡¡but¡¡qua¡¡triangle£»¡¡he¡¡who¡¡knows¡¡that¡¡isosceles¡¡possesses¡¡that



attribute¡¡knows¡¡the¡¡subject¡¡as¡¡qua¡¡itself¡¡possessing¡¡the¡¡attribute£»¡¡to



a¡¡less¡¡degree¡¡than¡¡he¡¡who¡¡knows¡¡that¡¡triangle¡¡has¡¡that¡¡attribute¡£¡¡To



sum¡¡up¡¡the¡¡whole¡¡matter£º¡¡if¡¡a¡¡subject¡¡is¡¡proved¡¡to¡¡possess¡¡qua



triangle¡¡an¡¡attribute¡¡which¡¡it¡¡does¡¡not¡¡in¡¡fact¡¡possess¡¡qua



triangle£»¡¡that¡¡is¡¡not¡¡demonstration£º¡¡but¡¡if¡¡it¡¡does¡¡possess¡¡it¡¡qua



triangle¡¡the¡¡rule¡¡applies¡¡that¡¡the¡¡greater¡¡knowledge¡¡is¡¡his¡¡who



knows¡¡the¡¡subject¡¡as¡¡possessing¡¡its¡¡attribute¡¡qua¡¡that¡¡in¡¡virtue¡¡of



which¡¡it¡¡actually¡¡does¡¡possess¡¡it¡£¡¡Since£»¡¡then£»¡¡triangle¡¡is¡¡the



wider¡¡term£»¡¡and¡¡there¡¡is¡¡one¡¡identical¡¡definition¡¡of¡¡triangle¡­i¡£e¡£¡¡the



term¡¡is¡¡not¡¡equivocal¡­and¡¡since¡¡equality¡¡to¡¡two¡¡right¡¡angles¡¡belongs



to¡¡all¡¡triangles£»¡¡it¡¡is¡¡isosceles¡¡qua¡¡triangle¡¡and¡¡not¡¡triangle¡¡qua



isosceles¡¡which¡¡has¡¡its¡¡angles¡¡so¡¡related¡£¡¡It¡¡follows¡¡that¡¡he¡¡who



knows¡¡a¡¡connexion¡¡universally¡¡has¡¡greater¡¡knowledge¡¡of¡¡it¡¡as¡¡it¡¡in



fact¡¡is¡¡than¡¡he¡¡who¡¡knows¡¡the¡¡particular£»¡¡and¡¡the¡¡inference¡¡is¡¡that



commensurate¡¡and¡¡universal¡¡is¡¡superior¡¡to¡¡particular¡¡demonstration¡£



¡¡¡¡£¨2£©¡¡If¡¡there¡¡is¡¡a¡¡single¡¡identical¡¡definition¡¡i¡£e¡£¡¡if¡¡the



commensurate¡¡universal¡¡is¡¡unequivocal¡­then¡¡the¡¡universal¡¡will



possess¡¡being¡¡not¡¡less¡¡but¡¡more¡¡than¡¡some¡¡of¡¡the¡¡particulars£»¡¡inasmuch



as¡¡it¡¡is¡¡universals¡¡which¡¡comprise¡¡the¡¡imperishable£»¡¡particulars



that¡¡tend¡¡to¡¡perish¡£



¡¡¡¡£¨3£©¡¡Because¡¡the¡¡universal¡¡has¡¡a¡¡single¡¡meaning£»¡¡we¡¡are¡¡not¡¡therefore



compelled¡¡to¡¡suppose¡¡that¡¡in¡¡these¡¡examples¡¡it¡¡has¡¡being¡¡as¡¡a



substance¡¡apart¡¡from¡¡its¡¡particulars¡­any¡¡more¡¡than¡¡we¡¡need¡¡make¡¡a



similar¡¡supposition¡¡in¡¡the¡¡other¡¡cases¡¡of¡¡unequivocal¡¡universal



predication£»¡¡viz¡£¡¡where¡¡the¡¡predicate¡¡signifies¡¡not¡¡substance¡¡but



quality£»¡¡essential¡¡relatedness£»¡¡or¡¡action¡£¡¡If¡¡such¡¡a¡¡supposition¡¡is



entertained£»¡¡the¡¡blame¡¡rests¡¡not¡¡with¡¡the¡¡demonstration¡¡but¡¡with¡¡the



hearer¡£



¡¡¡¡£¨4£©¡¡Demonstration¡¡is¡¡syllogism¡¡that¡¡proves¡¡the¡¡cause£»¡¡i¡£e¡£¡¡the



reasoned¡¡fact£»¡¡and¡¡it¡¡is¡¡rather¡¡the¡¡commensurate¡¡universal¡¡than¡¡the



particular¡¡which¡¡is¡¡causative¡¡£¨as¡¡may¡¡be¡¡shown¡¡thus£º¡¡that¡¡which



possesses¡¡an¡¡attribute¡¡through¡¡its¡¡own¡¡essential¡¡nature¡¡is¡¡itself



the¡¡cause¡¡of¡¡the¡¡inherence£»¡¡and¡¡the¡¡commensurate¡¡universal¡¡is¡¡primary£»



hence¡¡the¡¡commensurate¡¡universal¡¡is¡¡the¡¡cause£©¡£¡¡Consequently



commensurately¡¡universal¡¡demonstration¡¡is¡¡superior¡¡as¡¡more



especially¡¡proving¡¡the¡¡cause£»¡¡that¡¡is¡¡the¡¡reasoned¡¡fact¡£



¡¡¡¡£¨5£©¡¡Our¡¡search¡¡for¡¡the¡¡reason¡¡ceases£»¡¡and¡¡we¡¡think¡¡that¡¡we¡¡know£»



when¡¡the¡¡coming¡¡to¡¡be¡¡or¡¡existence¡¡of¡¡the¡¡fact¡¡before¡¡us¡¡is¡¡not¡¡due¡¡to



the¡¡coming¡¡to¡¡be¡¡or¡¡existence¡¡of¡¡some¡¡other¡¡fact£»¡¡for¡¡the¡¡last¡¡step¡¡of



a¡¡search¡¡thus¡¡conducted¡¡is¡¡eo¡¡ipso¡¡the¡¡end¡¡and¡¡limit¡¡of¡¡the¡¡problem¡£



Thus£º¡¡'Why¡¡did¡¡he¡¡come£¿'¡¡'To¡¡get¡¡the¡¡money¡­wherewith¡¡to¡¡pay¡¡a



debt¡­that¡¡he¡¡might¡¡thereby¡¡do¡¡what¡¡was¡¡right¡£'¡¡When¡¡in¡¡this¡¡regress¡¡we



can¡¡no¡¡longer¡¡find¡¡an¡¡efficient¡¡or¡¡final¡¡cause£»¡¡we¡¡regard¡¡the¡¡last



step¡¡of¡¡it¡¡as¡¡the¡¡end¡¡of¡¡the¡¡coming¡­or¡¡being¡¡or¡¡coming¡¡to¡¡be¡­and¡¡we



regard¡¡ourselves¡¡as¡¡then¡¡only¡¡having¡¡full¡¡knowledge¡¡of¡¡the¡¡reason



why¡¡he¡¡came¡£



¡¡¡¡If£»¡¡then£»¡¡all¡¡causes¡¡and¡¡reasons¡¡are¡¡alike¡¡in¡¡this¡¡respect£»¡¡and¡¡if



this¡¡is¡¡the¡¡means¡¡to¡¡full¡¡knowledge¡¡in¡¡the¡¡case¡¡of¡¡final¡¡causes¡¡such



as¡¡we¡¡have¡¡exemplified£»¡¡it¡¡follows¡¡that¡¡in¡¡the¡¡case¡¡of¡¡the

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ