Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ11½Ú

posterior analytics-µÚ11½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






descent¡¡is¡¡infinite£»¡¡since¡¡a¡¡substance¡¡whose¡¡predicates¡¡were



infinite¡¡would¡¡not¡¡be¡¡definable¡£¡¡Hence¡¡they¡¡will¡¡not¡¡be¡¡predicated



each¡¡as¡¡the¡¡genus¡¡of¡¡the¡¡other£»¡¡for¡¡this¡¡would¡¡equate¡¡a¡¡genus¡¡with¡¡one



of¡¡its¡¡own¡¡species¡£¡¡Nor¡¡£¨the¡¡other¡¡alternative£©¡¡can¡¡a¡¡quale¡¡be



reciprocally¡¡predicated¡¡of¡¡a¡¡quale£»¡¡nor¡¡any¡¡term¡¡belonging¡¡to¡¡an



adjectival¡¡category¡¡of¡¡another¡¡such¡¡term£»¡¡except¡¡by¡¡accidental



predication£»¡¡for¡¡all¡¡such¡¡predicates¡¡are¡¡coincidents¡¡and¡¡are



predicated¡¡of¡¡substances¡£¡¡On¡¡the¡¡other¡¡hand¡­in¡¡proof¡¡of¡¡the



impossibility¡¡of¡¡an¡¡infinite¡¡ascending¡¡series¡­every¡¡predication



displays¡¡the¡¡subject¡¡as¡¡somehow¡¡qualified¡¡or¡¡quantified¡¡or¡¡as



characterized¡¡under¡¡one¡¡of¡¡the¡¡other¡¡adjectival¡¡categories£»¡¡or¡¡else¡¡is



an¡¡element¡¡in¡¡its¡¡substantial¡¡nature£º¡¡these¡¡latter¡¡are¡¡limited¡¡in



number£»¡¡and¡¡the¡¡number¡¡of¡¡the¡¡widest¡¡kinds¡¡under¡¡which¡¡predications



fall¡¡is¡¡also¡¡limited£»¡¡for¡¡every¡¡predication¡¡must¡¡exhibit¡¡its¡¡subject



as¡¡somehow¡¡qualified£»¡¡quantified£»¡¡essentially¡¡related£»¡¡acting¡¡or



suffering£»¡¡or¡¡in¡¡some¡¡place¡¡or¡¡at¡¡some¡¡time¡£



¡¡¡¡I¡¡assume¡¡first¡¡that¡¡predication¡¡implies¡¡a¡¡single¡¡subject¡¡and¡¡a



single¡¡attribute£»¡¡and¡¡secondly¡¡that¡¡predicates¡¡which¡¡are¡¡not



substantial¡¡are¡¡not¡¡predicated¡¡of¡¡one¡¡another¡£¡¡We¡¡assume¡¡this



because¡¡such¡¡predicates¡¡are¡¡all¡¡coincidents£»¡¡and¡¡though¡¡some¡¡are



essential¡¡coincidents£»¡¡others¡¡of¡¡a¡¡different¡¡type£»¡¡yet¡¡we¡¡maintain



that¡¡all¡¡of¡¡them¡¡alike¡¡are¡¡predicated¡¡of¡¡some¡¡substratum¡¡and¡¡that¡¡a



coincident¡¡is¡¡never¡¡a¡¡substratum¡­since¡¡we¡¡do¡¡not¡¡class¡¡as¡¡a¡¡coincident



anything¡¡which¡¡does¡¡not¡¡owe¡¡its¡¡designation¡¡to¡¡its¡¡being¡¡something



other¡¡than¡¡itself£»¡¡but¡¡always¡¡hold¡¡that¡¡any¡¡coincident¡¡is¡¡predicated



of¡¡some¡¡substratum¡¡other¡¡than¡¡itself£»¡¡and¡¡that¡¡another¡¡group¡¡of



coincidents¡¡may¡¡have¡¡a¡¡different¡¡substratum¡£¡¡Subject¡¡to¡¡these



assumptions¡¡then£»¡¡neither¡¡the¡¡ascending¡¡nor¡¡the¡¡descending¡¡series¡¡of



predication¡¡in¡¡which¡¡a¡¡single¡¡attribute¡¡is¡¡predicated¡¡of¡¡a¡¡single



subject¡¡is¡¡infinite¡£¡¡For¡¡the¡¡subjects¡¡of¡¡which¡¡coincidents¡¡are



predicated¡¡are¡¡as¡¡many¡¡as¡¡the¡¡constitutive¡¡elements¡¡of¡¡each¡¡individual



substance£»¡¡and¡¡these¡¡we¡¡have¡¡seen¡¡are¡¡not¡¡infinite¡¡in¡¡number£»¡¡while¡¡in



the¡¡ascending¡¡series¡¡are¡¡contained¡¡those¡¡constitutive¡¡elements¡¡with



their¡¡coincidents¡­both¡¡of¡¡which¡¡are¡¡finite¡£¡¡We¡¡conclude¡¡that¡¡there



is¡¡a¡¡given¡¡subject¡¡£¨D£©¡¡of¡¡which¡¡some¡¡attribute¡¡£¨C£©¡¡is¡¡primarily



predicable£»¡¡that¡¡there¡¡must¡¡be¡¡an¡¡attribute¡¡£¨B£©¡¡primarily¡¡predicable



of¡¡the¡¡first¡¡attribute£»¡¡and¡¡that¡¡the¡¡series¡¡must¡¡end¡¡with¡¡a¡¡term¡¡£¨A£©



not¡¡predicable¡¡of¡¡any¡¡term¡¡prior¡¡to¡¡the¡¡last¡¡subject¡¡of¡¡which¡¡it¡¡was



predicated¡¡£¨B£©£»¡¡and¡¡of¡¡which¡¡no¡¡term¡¡prior¡¡to¡¡it¡¡is¡¡predicable¡£



¡¡¡¡The¡¡argument¡¡we¡¡have¡¡given¡¡is¡¡one¡¡of¡¡the¡¡so¡­called¡¡proofs£»¡¡an



alternative¡¡proof¡¡follows¡£¡¡Predicates¡¡so¡¡related¡¡to¡¡their¡¡subjects



that¡¡there¡¡are¡¡other¡¡predicates¡¡prior¡¡to¡¡them¡¡predicable¡¡of¡¡those



subjects¡¡are¡¡demonstrable£»¡¡but¡¡of¡¡demonstrable¡¡propositions¡¡one¡¡cannot



have¡¡something¡¡better¡¡than¡¡knowledge£»¡¡nor¡¡can¡¡one¡¡know¡¡them¡¡without



demonstration¡£¡¡Secondly£»¡¡if¡¡a¡¡consequent¡¡is¡¡only¡¡known¡¡through¡¡an



antecedent¡¡£¨viz¡£¡¡premisses¡¡prior¡¡to¡¡it£©¡¡and¡¡we¡¡neither¡¡know¡¡this



antecedent¡¡nor¡¡have¡¡something¡¡better¡¡than¡¡knowledge¡¡of¡¡it£»¡¡then¡¡we



shall¡¡not¡¡have¡¡scientific¡¡knowledge¡¡of¡¡the¡¡consequent¡£¡¡Therefore£»¡¡if



it¡¡is¡¡possible¡¡through¡¡demonstration¡¡to¡¡know¡¡anything¡¡without



qualification¡¡and¡¡not¡¡merely¡¡as¡¡dependent¡¡on¡¡the¡¡acceptance¡¡of¡¡certain



premisses¡­i¡£e¡£¡¡hypothetically¡­the¡¡series¡¡of¡¡intermediate



predications¡¡must¡¡terminate¡£¡¡If¡¡it¡¡does¡¡not¡¡terminate£»¡¡and¡¡beyond



any¡¡predicate¡¡taken¡¡as¡¡higher¡¡than¡¡another¡¡there¡¡remains¡¡another¡¡still



higher£»¡¡then¡¡every¡¡predicate¡¡is¡¡demonstrable¡£¡¡Consequently£»¡¡since



these¡¡demonstrable¡¡predicates¡¡are¡¡infinite¡¡in¡¡number¡¡and¡¡therefore



cannot¡¡be¡¡traversed£»¡¡we¡¡shall¡¡not¡¡know¡¡them¡¡by¡¡demonstration¡£¡¡If£»



therefore£»¡¡we¡¡have¡¡not¡¡something¡¡better¡¡than¡¡knowledge¡¡of¡¡them£»¡¡we



cannot¡¡through¡¡demonstration¡¡have¡¡unqualified¡¡but¡¡only¡¡hypothetical



science¡¡of¡¡anything¡£



¡¡¡¡As¡¡dialectical¡¡proofs¡¡of¡¡our¡¡contention¡¡these¡¡may¡¡carry



conviction£»¡¡but¡¡an¡¡analytic¡¡process¡¡will¡¡show¡¡more¡¡briefly¡¡that



neither¡¡the¡¡ascent¡¡nor¡¡the¡¡descent¡¡of¡¡predication¡¡can¡¡be¡¡infinite¡¡in



the¡¡demonstrative¡¡sciences¡¡which¡¡are¡¡the¡¡object¡¡of¡¡our



investigation¡£¡¡Demonstration¡¡proves¡¡the¡¡inherence¡¡of¡¡essential



attributes¡¡in¡¡things¡£¡¡Now¡¡attributes¡¡may¡¡be¡¡essential¡¡for¡¡two¡¡reasons£º



either¡¡because¡¡they¡¡are¡¡elements¡¡in¡¡the¡¡essential¡¡nature¡¡of¡¡their



subjects£»¡¡or¡¡because¡¡their¡¡subjects¡¡are¡¡elements¡¡in¡¡their¡¡essential



nature¡£¡¡An¡¡example¡¡of¡¡the¡¡latter¡¡is¡¡odd¡¡as¡¡an¡¡attribute¡¡of



number¡­though¡¡it¡¡is¡¡number's¡¡attribute£»¡¡yet¡¡number¡¡itself¡¡is¡¡an



element¡¡in¡¡the¡¡definition¡¡of¡¡odd£»¡¡of¡¡the¡¡former£»¡¡multiplicity¡¡or¡¡the



indivisible£»¡¡which¡¡are¡¡elements¡¡in¡¡the¡¡definition¡¡of¡¡number¡£¡¡In



neither¡¡kind¡¡of¡¡attribution¡¡can¡¡the¡¡terms¡¡be¡¡infinite¡£¡¡They¡¡are¡¡not



infinite¡¡where¡¡each¡¡is¡¡related¡¡to¡¡the¡¡term¡¡below¡¡it¡¡as¡¡odd¡¡is¡¡to



number£»¡¡for¡¡this¡¡would¡¡mean¡¡the¡¡inherence¡¡in¡¡odd¡¡of¡¡another



attribute¡¡of¡¡odd¡¡in¡¡whose¡¡nature¡¡odd¡¡was¡¡an¡¡essential¡¡element£º¡¡but



then¡¡number¡¡will¡¡be¡¡an¡¡ultimate¡¡subject¡¡of¡¡the¡¡whole¡¡infinite¡¡chain¡¡of



attributes£»¡¡and¡¡be¡¡an¡¡element¡¡in¡¡the¡¡definition¡¡of¡¡each¡¡of¡¡them¡£



Hence£»¡¡since¡¡an¡¡infinity¡¡of¡¡attributes¡¡such¡¡as¡¡contain¡¡their¡¡subject



in¡¡their¡¡definition¡¡cannot¡¡inhere¡¡in¡¡a¡¡single¡¡thing£»¡¡the¡¡ascending



series¡¡is¡¡equally¡¡finite¡£¡¡Note£»¡¡moreover£»¡¡that¡¡all¡¡such¡¡attributes



must¡¡so¡¡inhere¡¡in¡¡the¡¡ultimate¡¡subject¡­e¡£g¡£¡¡its¡¡attributes¡¡in¡¡number



and¡¡number¡¡in¡¡them¡­as¡¡to¡¡be¡¡commensurate¡¡with¡¡the¡¡subject¡¡and¡¡not¡¡of



wider¡¡extent¡£¡¡Attributes¡¡which¡¡are¡¡essential¡¡elements¡¡in¡¡the¡¡nature¡¡of



their¡¡subjects¡¡are¡¡equally¡¡finite£º¡¡otherwise¡¡definition¡¡would¡¡be



impossible¡£¡¡Hence£»¡¡if¡¡all¡¡the¡¡attributes¡¡predicated¡¡are¡¡essential



and¡¡these¡¡cannot¡¡be¡¡infinite£»¡¡the¡¡ascending¡¡series¡¡will¡¡terminate£»¡¡and



consequently¡¡the¡¡descending¡¡series¡¡too¡£



¡¡¡¡If¡¡this¡¡is¡¡so£»¡¡it¡¡follows¡¡that¡¡the¡¡intermediates¡¡between¡¡any¡¡two



terms¡¡are¡¡also¡¡always¡¡limited¡¡in¡¡number¡£¡¡An¡¡immediately¡¡obvious



consequence¡¡of¡¡this¡¡is¡¡that¡¡demonstrations¡¡necessarily¡¡involve¡¡basic



truths£»¡¡and¡¡that¡¡the¡¡contention¡¡of¡¡some¡­referred¡¡to¡¡at¡¡the¡¡outset¡­that



all¡¡truths¡¡are¡¡demonstrable¡¡is¡¡mistaken¡£¡¡For¡¡if¡¡there¡¡are¡¡basic



truths£»¡¡£¨a£©¡¡not¡¡all¡¡truths¡¡are¡¡demonstrable£»¡¡and¡¡£¨b£©¡¡an¡¡infinite



regress¡¡is¡¡impossible£»¡¡since¡¡if¡¡either¡¡£¨a£©¡¡or¡¡£¨b£©¡¡were¡¡not¡¡a¡¡fact£»



it¡¡would¡¡mean¡¡that¡¡no¡¡interval¡¡was¡¡immediate¡¡and¡¡indivisible£»¡¡but¡¡that



all¡¡intervals¡¡were¡¡divisible¡£¡¡This¡¡is¡¡true¡¡because¡¡a¡¡conclusion¡¡is



demonstrated¡¡by¡¡the¡¡interposition£»¡¡not¡¡the¡¡apposition£»¡¡of¡¡a¡¡fresh



term¡£¡¡If¡¡such¡¡interposition¡¡could¡¡continue¡¡to¡¡infinity¡¡there¡¡might



be¡¡an¡¡infinite¡¡number¡¡of¡¡terms¡¡between¡¡any¡¡two¡¡terms£»¡¡but¡¡this¡¡is



impossible¡¡if¡¡both¡¡the¡¡ascending¡¡and¡¡descending¡¡series¡¡of



predication¡¡terminate£»¡¡and¡¡of¡¡this¡¡fact£»¡¡which¡¡before¡¡was¡¡shown



dialectically£»¡¡analytic¡¡proof¡¡has¡¡now¡¡been¡¡given¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡23







¡¡¡¡It¡¡is¡¡an¡¡evident¡¡corollary¡¡of¡¡these¡¡conclusions¡¡that¡¡if¡¡the¡¡same



attribute¡¡A¡¡inheres¡¡in¡¡two¡¡terms¡¡C¡¡and¡¡D¡¡predicable¡¡either¡¡not¡¡at¡¡all£»



or¡¡not¡¡of¡¡all¡¡instances£»¡¡of¡¡one¡¡another£»¡¡it¡¡does¡¡not¡¡always¡¡belong



to¡¡them¡¡in¡¡virtue¡¡of¡¡a¡¡common¡¡middle¡¡term¡£¡¡Isosceles¡¡and¡¡scalene



possess¡¡the¡¡attribute¡¡of¡¡having¡¡their¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles



in¡¡virtue¡¡of¡¡a¡¡common¡¡middle£»¡¡for¡¡they¡¡possess¡¡it¡¡in¡¡so¡¡far¡¡as¡¡they



are¡¡both¡¡a¡¡certain¡¡kind¡¡of¡¡figure£»¡¡and¡¡not¡¡in¡¡so¡¡far¡¡as¡¡they¡¡differ



from¡¡one¡¡another¡£¡¡But¡¡this¡¡is¡¡not¡¡always¡¡the¡¡case£º¡¡for£»¡¡were¡¡it¡¡so£»¡¡if



we¡¡take¡¡B¡¡as¡¡the¡¡common¡¡middle¡¡in¡¡virtue¡¡of¡¡which¡¡A¡¡inheres¡¡in¡¡C¡¡and



D£»¡¡clearly¡¡B¡¡would¡¡inhere¡¡in¡¡C¡¡and¡¡D¡¡through¡¡a¡¡second¡¡common¡¡middle£»



and¡¡this¡¡in¡¡turn¡¡would¡¡inhere¡¡in¡¡C¡¡and¡¡D¡¡through¡¡a¡¡third£»¡¡so¡¡that



between¡¡two¡¡terms¡¡an¡¡infinity¡¡of¡¡intermediates¡¡would¡¡fall¡­an



impossibility¡£¡¡Thus¡¡it¡¡need¡¡not¡¡always¡¡be¡¡in¡¡virtue¡¡of¡¡a¡¡common¡¡middle



term¡¡that¡¡a¡¡single¡¡attribute¡¡inheres¡¡in¡¡several¡¡subjects£»¡¡since



there¡¡must¡¡be¡¡immediate¡¡intervals¡£¡¡Yet¡¡if¡¡the¡¡attribute¡¡to¡¡be¡¡proved



common¡¡to¡¡two¡¡subjects¡¡is¡¡to¡¡be¡¡one¡¡of¡¡their¡¡essential¡¡attributes£»¡¡the



middle¡¡terms¡¡involved¡¡must¡¡be¡¡within¡¡one¡¡subject¡¡genus¡¡and¡¡be



derived¡¡from¡¡the¡¡same¡¡group¡¡of¡¡immediate¡¡premisses£»¡¡for¡¡we¡¡have¡¡seen



that¡¡processes¡¡of¡¡proof¡¡cannot¡¡pass¡¡from¡¡one¡¡genus¡¡to¡¡another¡£



¡¡¡¡It¡¡is¡¡also¡¡clear¡¡that¡¡when¡¡A¡¡inheres¡¡in¡¡B£»¡¡this¡¡can¡¡be



demonstrated¡¡if¡¡there¡¡is¡¡a¡¡middle¡¡term¡£¡¡Further£»¡¡the¡¡'elements'¡¡of



such¡¡a¡¡conclusion¡¡are¡¡the¡¡premisses¡¡containing¡¡the¡¡middle¡¡in¡¡question£»



and¡¡they¡¡are¡¡identical¡¡in¡¡number¡¡with¡¡the¡¡middle¡¡terms£»¡¡seeing¡¡that



the¡¡immediate¡¡propositions¡­or¡¡at¡¡least¡¡such¡¡immediate¡¡propositions



as¡¡are¡¡universal¡­are¡¡the¡¡'elements'¡£¡¡If£»¡¡on¡¡the¡¡other¡¡hand£»¡¡there¡¡is



no¡¡middle¡¡term£»¡¡demonstration¡¡ceases¡¡to¡¡be¡¡possib

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ