posterior analytics-µÚ11½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
descent¡¡is¡¡infinite£»¡¡since¡¡a¡¡substance¡¡whose¡¡predicates¡¡were
infinite¡¡would¡¡not¡¡be¡¡definable¡£¡¡Hence¡¡they¡¡will¡¡not¡¡be¡¡predicated
each¡¡as¡¡the¡¡genus¡¡of¡¡the¡¡other£»¡¡for¡¡this¡¡would¡¡equate¡¡a¡¡genus¡¡with¡¡one
of¡¡its¡¡own¡¡species¡£¡¡Nor¡¡£¨the¡¡other¡¡alternative£©¡¡can¡¡a¡¡quale¡¡be
reciprocally¡¡predicated¡¡of¡¡a¡¡quale£»¡¡nor¡¡any¡¡term¡¡belonging¡¡to¡¡an
adjectival¡¡category¡¡of¡¡another¡¡such¡¡term£»¡¡except¡¡by¡¡accidental
predication£»¡¡for¡¡all¡¡such¡¡predicates¡¡are¡¡coincidents¡¡and¡¡are
predicated¡¡of¡¡substances¡£¡¡On¡¡the¡¡other¡¡hand¡in¡¡proof¡¡of¡¡the
impossibility¡¡of¡¡an¡¡infinite¡¡ascending¡¡series¡every¡¡predication
displays¡¡the¡¡subject¡¡as¡¡somehow¡¡qualified¡¡or¡¡quantified¡¡or¡¡as
characterized¡¡under¡¡one¡¡of¡¡the¡¡other¡¡adjectival¡¡categories£»¡¡or¡¡else¡¡is
an¡¡element¡¡in¡¡its¡¡substantial¡¡nature£º¡¡these¡¡latter¡¡are¡¡limited¡¡in
number£»¡¡and¡¡the¡¡number¡¡of¡¡the¡¡widest¡¡kinds¡¡under¡¡which¡¡predications
fall¡¡is¡¡also¡¡limited£»¡¡for¡¡every¡¡predication¡¡must¡¡exhibit¡¡its¡¡subject
as¡¡somehow¡¡qualified£»¡¡quantified£»¡¡essentially¡¡related£»¡¡acting¡¡or
suffering£»¡¡or¡¡in¡¡some¡¡place¡¡or¡¡at¡¡some¡¡time¡£
¡¡¡¡I¡¡assume¡¡first¡¡that¡¡predication¡¡implies¡¡a¡¡single¡¡subject¡¡and¡¡a
single¡¡attribute£»¡¡and¡¡secondly¡¡that¡¡predicates¡¡which¡¡are¡¡not
substantial¡¡are¡¡not¡¡predicated¡¡of¡¡one¡¡another¡£¡¡We¡¡assume¡¡this
because¡¡such¡¡predicates¡¡are¡¡all¡¡coincidents£»¡¡and¡¡though¡¡some¡¡are
essential¡¡coincidents£»¡¡others¡¡of¡¡a¡¡different¡¡type£»¡¡yet¡¡we¡¡maintain
that¡¡all¡¡of¡¡them¡¡alike¡¡are¡¡predicated¡¡of¡¡some¡¡substratum¡¡and¡¡that¡¡a
coincident¡¡is¡¡never¡¡a¡¡substratum¡since¡¡we¡¡do¡¡not¡¡class¡¡as¡¡a¡¡coincident
anything¡¡which¡¡does¡¡not¡¡owe¡¡its¡¡designation¡¡to¡¡its¡¡being¡¡something
other¡¡than¡¡itself£»¡¡but¡¡always¡¡hold¡¡that¡¡any¡¡coincident¡¡is¡¡predicated
of¡¡some¡¡substratum¡¡other¡¡than¡¡itself£»¡¡and¡¡that¡¡another¡¡group¡¡of
coincidents¡¡may¡¡have¡¡a¡¡different¡¡substratum¡£¡¡Subject¡¡to¡¡these
assumptions¡¡then£»¡¡neither¡¡the¡¡ascending¡¡nor¡¡the¡¡descending¡¡series¡¡of
predication¡¡in¡¡which¡¡a¡¡single¡¡attribute¡¡is¡¡predicated¡¡of¡¡a¡¡single
subject¡¡is¡¡infinite¡£¡¡For¡¡the¡¡subjects¡¡of¡¡which¡¡coincidents¡¡are
predicated¡¡are¡¡as¡¡many¡¡as¡¡the¡¡constitutive¡¡elements¡¡of¡¡each¡¡individual
substance£»¡¡and¡¡these¡¡we¡¡have¡¡seen¡¡are¡¡not¡¡infinite¡¡in¡¡number£»¡¡while¡¡in
the¡¡ascending¡¡series¡¡are¡¡contained¡¡those¡¡constitutive¡¡elements¡¡with
their¡¡coincidents¡both¡¡of¡¡which¡¡are¡¡finite¡£¡¡We¡¡conclude¡¡that¡¡there
is¡¡a¡¡given¡¡subject¡¡£¨D£©¡¡of¡¡which¡¡some¡¡attribute¡¡£¨C£©¡¡is¡¡primarily
predicable£»¡¡that¡¡there¡¡must¡¡be¡¡an¡¡attribute¡¡£¨B£©¡¡primarily¡¡predicable
of¡¡the¡¡first¡¡attribute£»¡¡and¡¡that¡¡the¡¡series¡¡must¡¡end¡¡with¡¡a¡¡term¡¡£¨A£©
not¡¡predicable¡¡of¡¡any¡¡term¡¡prior¡¡to¡¡the¡¡last¡¡subject¡¡of¡¡which¡¡it¡¡was
predicated¡¡£¨B£©£»¡¡and¡¡of¡¡which¡¡no¡¡term¡¡prior¡¡to¡¡it¡¡is¡¡predicable¡£
¡¡¡¡The¡¡argument¡¡we¡¡have¡¡given¡¡is¡¡one¡¡of¡¡the¡¡so¡called¡¡proofs£»¡¡an
alternative¡¡proof¡¡follows¡£¡¡Predicates¡¡so¡¡related¡¡to¡¡their¡¡subjects
that¡¡there¡¡are¡¡other¡¡predicates¡¡prior¡¡to¡¡them¡¡predicable¡¡of¡¡those
subjects¡¡are¡¡demonstrable£»¡¡but¡¡of¡¡demonstrable¡¡propositions¡¡one¡¡cannot
have¡¡something¡¡better¡¡than¡¡knowledge£»¡¡nor¡¡can¡¡one¡¡know¡¡them¡¡without
demonstration¡£¡¡Secondly£»¡¡if¡¡a¡¡consequent¡¡is¡¡only¡¡known¡¡through¡¡an
antecedent¡¡£¨viz¡£¡¡premisses¡¡prior¡¡to¡¡it£©¡¡and¡¡we¡¡neither¡¡know¡¡this
antecedent¡¡nor¡¡have¡¡something¡¡better¡¡than¡¡knowledge¡¡of¡¡it£»¡¡then¡¡we
shall¡¡not¡¡have¡¡scientific¡¡knowledge¡¡of¡¡the¡¡consequent¡£¡¡Therefore£»¡¡if
it¡¡is¡¡possible¡¡through¡¡demonstration¡¡to¡¡know¡¡anything¡¡without
qualification¡¡and¡¡not¡¡merely¡¡as¡¡dependent¡¡on¡¡the¡¡acceptance¡¡of¡¡certain
premisses¡i¡£e¡£¡¡hypothetically¡the¡¡series¡¡of¡¡intermediate
predications¡¡must¡¡terminate¡£¡¡If¡¡it¡¡does¡¡not¡¡terminate£»¡¡and¡¡beyond
any¡¡predicate¡¡taken¡¡as¡¡higher¡¡than¡¡another¡¡there¡¡remains¡¡another¡¡still
higher£»¡¡then¡¡every¡¡predicate¡¡is¡¡demonstrable¡£¡¡Consequently£»¡¡since
these¡¡demonstrable¡¡predicates¡¡are¡¡infinite¡¡in¡¡number¡¡and¡¡therefore
cannot¡¡be¡¡traversed£»¡¡we¡¡shall¡¡not¡¡know¡¡them¡¡by¡¡demonstration¡£¡¡If£»
therefore£»¡¡we¡¡have¡¡not¡¡something¡¡better¡¡than¡¡knowledge¡¡of¡¡them£»¡¡we
cannot¡¡through¡¡demonstration¡¡have¡¡unqualified¡¡but¡¡only¡¡hypothetical
science¡¡of¡¡anything¡£
¡¡¡¡As¡¡dialectical¡¡proofs¡¡of¡¡our¡¡contention¡¡these¡¡may¡¡carry
conviction£»¡¡but¡¡an¡¡analytic¡¡process¡¡will¡¡show¡¡more¡¡briefly¡¡that
neither¡¡the¡¡ascent¡¡nor¡¡the¡¡descent¡¡of¡¡predication¡¡can¡¡be¡¡infinite¡¡in
the¡¡demonstrative¡¡sciences¡¡which¡¡are¡¡the¡¡object¡¡of¡¡our
investigation¡£¡¡Demonstration¡¡proves¡¡the¡¡inherence¡¡of¡¡essential
attributes¡¡in¡¡things¡£¡¡Now¡¡attributes¡¡may¡¡be¡¡essential¡¡for¡¡two¡¡reasons£º
either¡¡because¡¡they¡¡are¡¡elements¡¡in¡¡the¡¡essential¡¡nature¡¡of¡¡their
subjects£»¡¡or¡¡because¡¡their¡¡subjects¡¡are¡¡elements¡¡in¡¡their¡¡essential
nature¡£¡¡An¡¡example¡¡of¡¡the¡¡latter¡¡is¡¡odd¡¡as¡¡an¡¡attribute¡¡of
number¡though¡¡it¡¡is¡¡number's¡¡attribute£»¡¡yet¡¡number¡¡itself¡¡is¡¡an
element¡¡in¡¡the¡¡definition¡¡of¡¡odd£»¡¡of¡¡the¡¡former£»¡¡multiplicity¡¡or¡¡the
indivisible£»¡¡which¡¡are¡¡elements¡¡in¡¡the¡¡definition¡¡of¡¡number¡£¡¡In
neither¡¡kind¡¡of¡¡attribution¡¡can¡¡the¡¡terms¡¡be¡¡infinite¡£¡¡They¡¡are¡¡not
infinite¡¡where¡¡each¡¡is¡¡related¡¡to¡¡the¡¡term¡¡below¡¡it¡¡as¡¡odd¡¡is¡¡to
number£»¡¡for¡¡this¡¡would¡¡mean¡¡the¡¡inherence¡¡in¡¡odd¡¡of¡¡another
attribute¡¡of¡¡odd¡¡in¡¡whose¡¡nature¡¡odd¡¡was¡¡an¡¡essential¡¡element£º¡¡but
then¡¡number¡¡will¡¡be¡¡an¡¡ultimate¡¡subject¡¡of¡¡the¡¡whole¡¡infinite¡¡chain¡¡of
attributes£»¡¡and¡¡be¡¡an¡¡element¡¡in¡¡the¡¡definition¡¡of¡¡each¡¡of¡¡them¡£
Hence£»¡¡since¡¡an¡¡infinity¡¡of¡¡attributes¡¡such¡¡as¡¡contain¡¡their¡¡subject
in¡¡their¡¡definition¡¡cannot¡¡inhere¡¡in¡¡a¡¡single¡¡thing£»¡¡the¡¡ascending
series¡¡is¡¡equally¡¡finite¡£¡¡Note£»¡¡moreover£»¡¡that¡¡all¡¡such¡¡attributes
must¡¡so¡¡inhere¡¡in¡¡the¡¡ultimate¡¡subject¡e¡£g¡£¡¡its¡¡attributes¡¡in¡¡number
and¡¡number¡¡in¡¡them¡as¡¡to¡¡be¡¡commensurate¡¡with¡¡the¡¡subject¡¡and¡¡not¡¡of
wider¡¡extent¡£¡¡Attributes¡¡which¡¡are¡¡essential¡¡elements¡¡in¡¡the¡¡nature¡¡of
their¡¡subjects¡¡are¡¡equally¡¡finite£º¡¡otherwise¡¡definition¡¡would¡¡be
impossible¡£¡¡Hence£»¡¡if¡¡all¡¡the¡¡attributes¡¡predicated¡¡are¡¡essential
and¡¡these¡¡cannot¡¡be¡¡infinite£»¡¡the¡¡ascending¡¡series¡¡will¡¡terminate£»¡¡and
consequently¡¡the¡¡descending¡¡series¡¡too¡£
¡¡¡¡If¡¡this¡¡is¡¡so£»¡¡it¡¡follows¡¡that¡¡the¡¡intermediates¡¡between¡¡any¡¡two
terms¡¡are¡¡also¡¡always¡¡limited¡¡in¡¡number¡£¡¡An¡¡immediately¡¡obvious
consequence¡¡of¡¡this¡¡is¡¡that¡¡demonstrations¡¡necessarily¡¡involve¡¡basic
truths£»¡¡and¡¡that¡¡the¡¡contention¡¡of¡¡some¡referred¡¡to¡¡at¡¡the¡¡outset¡that
all¡¡truths¡¡are¡¡demonstrable¡¡is¡¡mistaken¡£¡¡For¡¡if¡¡there¡¡are¡¡basic
truths£»¡¡£¨a£©¡¡not¡¡all¡¡truths¡¡are¡¡demonstrable£»¡¡and¡¡£¨b£©¡¡an¡¡infinite
regress¡¡is¡¡impossible£»¡¡since¡¡if¡¡either¡¡£¨a£©¡¡or¡¡£¨b£©¡¡were¡¡not¡¡a¡¡fact£»
it¡¡would¡¡mean¡¡that¡¡no¡¡interval¡¡was¡¡immediate¡¡and¡¡indivisible£»¡¡but¡¡that
all¡¡intervals¡¡were¡¡divisible¡£¡¡This¡¡is¡¡true¡¡because¡¡a¡¡conclusion¡¡is
demonstrated¡¡by¡¡the¡¡interposition£»¡¡not¡¡the¡¡apposition£»¡¡of¡¡a¡¡fresh
term¡£¡¡If¡¡such¡¡interposition¡¡could¡¡continue¡¡to¡¡infinity¡¡there¡¡might
be¡¡an¡¡infinite¡¡number¡¡of¡¡terms¡¡between¡¡any¡¡two¡¡terms£»¡¡but¡¡this¡¡is
impossible¡¡if¡¡both¡¡the¡¡ascending¡¡and¡¡descending¡¡series¡¡of
predication¡¡terminate£»¡¡and¡¡of¡¡this¡¡fact£»¡¡which¡¡before¡¡was¡¡shown
dialectically£»¡¡analytic¡¡proof¡¡has¡¡now¡¡been¡¡given¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡23
¡¡¡¡It¡¡is¡¡an¡¡evident¡¡corollary¡¡of¡¡these¡¡conclusions¡¡that¡¡if¡¡the¡¡same
attribute¡¡A¡¡inheres¡¡in¡¡two¡¡terms¡¡C¡¡and¡¡D¡¡predicable¡¡either¡¡not¡¡at¡¡all£»
or¡¡not¡¡of¡¡all¡¡instances£»¡¡of¡¡one¡¡another£»¡¡it¡¡does¡¡not¡¡always¡¡belong
to¡¡them¡¡in¡¡virtue¡¡of¡¡a¡¡common¡¡middle¡¡term¡£¡¡Isosceles¡¡and¡¡scalene
possess¡¡the¡¡attribute¡¡of¡¡having¡¡their¡¡angles¡¡equal¡¡to¡¡two¡¡right¡¡angles
in¡¡virtue¡¡of¡¡a¡¡common¡¡middle£»¡¡for¡¡they¡¡possess¡¡it¡¡in¡¡so¡¡far¡¡as¡¡they
are¡¡both¡¡a¡¡certain¡¡kind¡¡of¡¡figure£»¡¡and¡¡not¡¡in¡¡so¡¡far¡¡as¡¡they¡¡differ
from¡¡one¡¡another¡£¡¡But¡¡this¡¡is¡¡not¡¡always¡¡the¡¡case£º¡¡for£»¡¡were¡¡it¡¡so£»¡¡if
we¡¡take¡¡B¡¡as¡¡the¡¡common¡¡middle¡¡in¡¡virtue¡¡of¡¡which¡¡A¡¡inheres¡¡in¡¡C¡¡and
D£»¡¡clearly¡¡B¡¡would¡¡inhere¡¡in¡¡C¡¡and¡¡D¡¡through¡¡a¡¡second¡¡common¡¡middle£»
and¡¡this¡¡in¡¡turn¡¡would¡¡inhere¡¡in¡¡C¡¡and¡¡D¡¡through¡¡a¡¡third£»¡¡so¡¡that
between¡¡two¡¡terms¡¡an¡¡infinity¡¡of¡¡intermediates¡¡would¡¡fall¡an
impossibility¡£¡¡Thus¡¡it¡¡need¡¡not¡¡always¡¡be¡¡in¡¡virtue¡¡of¡¡a¡¡common¡¡middle
term¡¡that¡¡a¡¡single¡¡attribute¡¡inheres¡¡in¡¡several¡¡subjects£»¡¡since
there¡¡must¡¡be¡¡immediate¡¡intervals¡£¡¡Yet¡¡if¡¡the¡¡attribute¡¡to¡¡be¡¡proved
common¡¡to¡¡two¡¡subjects¡¡is¡¡to¡¡be¡¡one¡¡of¡¡their¡¡essential¡¡attributes£»¡¡the
middle¡¡terms¡¡involved¡¡must¡¡be¡¡within¡¡one¡¡subject¡¡genus¡¡and¡¡be
derived¡¡from¡¡the¡¡same¡¡group¡¡of¡¡immediate¡¡premisses£»¡¡for¡¡we¡¡have¡¡seen
that¡¡processes¡¡of¡¡proof¡¡cannot¡¡pass¡¡from¡¡one¡¡genus¡¡to¡¡another¡£
¡¡¡¡It¡¡is¡¡also¡¡clear¡¡that¡¡when¡¡A¡¡inheres¡¡in¡¡B£»¡¡this¡¡can¡¡be
demonstrated¡¡if¡¡there¡¡is¡¡a¡¡middle¡¡term¡£¡¡Further£»¡¡the¡¡'elements'¡¡of
such¡¡a¡¡conclusion¡¡are¡¡the¡¡premisses¡¡containing¡¡the¡¡middle¡¡in¡¡question£»
and¡¡they¡¡are¡¡identical¡¡in¡¡number¡¡with¡¡the¡¡middle¡¡terms£»¡¡seeing¡¡that
the¡¡immediate¡¡propositions¡or¡¡at¡¡least¡¡such¡¡immediate¡¡propositions
as¡¡are¡¡universal¡are¡¡the¡¡'elements'¡£¡¡If£»¡¡on¡¡the¡¡other¡¡hand£»¡¡there¡¡is
no¡¡middle¡¡term£»¡¡demonstration¡¡ceases¡¡to¡¡be¡¡possib