posterior analytics-µÚ10½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
asked¡unless£»¡¡indeed£»¡¡the¡¡terms¡¡can¡¡reciprocate¡¡by¡¡two¡¡different
modes£»¡¡by¡¡accidental¡¡predication¡¡in¡¡one¡¡relation¡¡and¡¡natural
predication¡¡in¡¡the¡¡other¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡20
¡¡¡¡Now£»¡¡it¡¡is¡¡clear¡¡that¡¡if¡¡the¡¡predications¡¡terminate¡¡in¡¡both¡¡the
upward¡¡and¡¡the¡¡downward¡¡direction¡¡£¨by¡¡'upward'¡¡I¡¡mean¡¡the¡¡ascent¡¡to
the¡¡more¡¡universal£»¡¡by¡¡'downward'¡¡the¡¡descent¡¡to¡¡the¡¡more¡¡particular£©£»
the¡¡middle¡¡terms¡¡cannot¡¡be¡¡infinite¡¡in¡¡number¡£¡¡For¡¡suppose¡¡that¡¡A¡¡is
predicated¡¡of¡¡F£»¡¡and¡¡that¡¡the¡¡intermediates¡call¡¡them¡¡BB'B¡¨¡£¡£¡£¡are
infinite£»¡¡then¡¡clearly¡¡you¡¡might¡¡descend¡¡from¡¡and¡¡find¡¡one¡¡term
predicated¡¡of¡¡another¡¡ad¡¡infinitum£»¡¡since¡¡you¡¡have¡¡an¡¡infinity¡¡of
terms¡¡between¡¡you¡¡and¡¡F£»¡¡and¡¡equally£»¡¡if¡¡you¡¡ascend¡¡from¡¡F£»¡¡there
are¡¡infinite¡¡terms¡¡between¡¡you¡¡and¡¡A¡£¡¡It¡¡follows¡¡that¡¡if¡¡these
processes¡¡are¡¡impossible¡¡there¡¡cannot¡¡be¡¡an¡¡infinity¡¡of
intermediates¡¡between¡¡A¡¡and¡¡F¡£¡¡Nor¡¡is¡¡it¡¡of¡¡any¡¡effect¡¡to¡¡urge¡¡that
some¡¡terms¡¡of¡¡the¡¡series¡¡AB¡£¡£¡£F¡¡are¡¡contiguous¡¡so¡¡as¡¡to¡¡exclude
intermediates£»¡¡while¡¡others¡¡cannot¡¡be¡¡taken¡¡into¡¡the¡¡argument¡¡at
all£º¡¡whichever¡¡terms¡¡of¡¡the¡¡series¡¡B¡£¡£¡£I¡¡take£»¡¡the¡¡number¡¡of
intermediates¡¡in¡¡the¡¡direction¡¡either¡¡of¡¡A¡¡or¡¡of¡¡F¡¡must¡¡be¡¡finite¡¡or
infinite£º¡¡where¡¡the¡¡infinite¡¡series¡¡starts£»¡¡whether¡¡from¡¡the¡¡first
term¡¡or¡¡from¡¡a¡¡later¡¡one£»¡¡is¡¡of¡¡no¡¡moment£»¡¡for¡¡the¡¡succeeding¡¡terms¡¡in
any¡¡case¡¡are¡¡infinite¡¡in¡¡number¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡21
¡¡¡¡Further£»¡¡if¡¡in¡¡affirmative¡¡demonstration¡¡the¡¡series¡¡terminates¡¡in
both¡¡directions£»¡¡clearly¡¡it¡¡will¡¡terminate¡¡too¡¡in¡¡negative
demonstration¡£¡¡Let¡¡us¡¡assume¡¡that¡¡we¡¡cannot¡¡proceed¡¡to¡¡infinity¡¡either
by¡¡ascending¡¡from¡¡the¡¡ultimate¡¡term¡¡£¨by¡¡'ultimate¡¡term'¡¡I¡¡mean¡¡a
term¡¡such¡¡as¡¡was£»¡¡not¡¡itself¡¡attributable¡¡to¡¡a¡¡subject¡¡but¡¡itself
the¡¡subject¡¡of¡¡attributes£©£»¡¡or¡¡by¡¡descending¡¡towards¡¡an¡¡ultimate
from¡¡the¡¡primary¡¡term¡¡£¨by¡¡'primary¡¡term'¡¡I¡¡mean¡¡a¡¡term¡¡predicable¡¡of¡¡a
subject¡¡but¡¡not¡¡itself¡¡a¡¡subject£©¡£¡¡If¡¡this¡¡assumption¡¡is¡¡justified£»
the¡¡series¡¡will¡¡also¡¡terminate¡¡in¡¡the¡¡case¡¡of¡¡negation¡£¡¡For¡¡a¡¡negative
conclusion¡¡can¡¡be¡¡proved¡¡in¡¡all¡¡three¡¡figures¡£¡¡In¡¡the¡¡first¡¡figure
it¡¡is¡¡proved¡¡thus£º¡¡no¡¡B¡¡is¡¡A£»¡¡all¡¡C¡¡is¡¡B¡£¡¡In¡¡packing¡¡the¡¡interval
B¡C¡¡we¡¡must¡¡reach¡¡immediate¡¡propositionsas¡¡is¡¡always¡¡the¡¡case¡¡with
the¡¡minor¡¡premisssince¡¡B¡C¡¡is¡¡affirmative¡£¡¡As¡¡regards¡¡the¡¡other
premiss¡¡it¡¡is¡¡plain¡¡that¡¡if¡¡the¡¡major¡¡term¡¡is¡¡denied¡¡of¡¡a¡¡term¡¡D¡¡prior
to¡¡B£»¡¡D¡¡will¡¡have¡¡to¡¡be¡¡predicable¡¡of¡¡all¡¡B£»¡¡and¡¡if¡¡the¡¡major¡¡is
denied¡¡of¡¡yet¡¡another¡¡term¡¡prior¡¡to¡¡D£»¡¡this¡¡term¡¡must¡¡be¡¡predicable¡¡of
all¡¡D¡£¡¡Consequently£»¡¡since¡¡the¡¡ascending¡¡series¡¡is¡¡finite£»¡¡the¡¡descent
will¡¡also¡¡terminate¡¡and¡¡there¡¡will¡¡be¡¡a¡¡subject¡¡of¡¡which¡¡A¡¡is
primarily¡¡non¡predicable¡£¡¡In¡¡the¡¡second¡¡figure¡¡the¡¡syllogism¡¡is£»¡¡all¡¡A
is¡¡B£»¡¡no¡¡C¡¡is¡¡B£»¡£¡£no¡¡C¡¡is¡¡A¡£¡¡If¡¡proof¡¡of¡¡this¡¡is¡¡required£»¡¡plainly
it¡¡may¡¡be¡¡shown¡¡either¡¡in¡¡the¡¡first¡¡figure¡¡as¡¡above£»¡¡in¡¡the¡¡second
as¡¡here£»¡¡or¡¡in¡¡the¡¡third¡£¡¡The¡¡first¡¡figure¡¡has¡¡been¡¡discussed£»¡¡and
we¡¡will¡¡proceed¡¡to¡¡display¡¡the¡¡second£»¡¡proof¡¡by¡¡which¡¡will¡¡be¡¡as
follows£º¡¡all¡¡B¡¡is¡¡D£»¡¡no¡¡C¡¡is¡¡D¡£¡£¡££»¡¡since¡¡it¡¡is¡¡required¡¡that¡¡B
should¡¡be¡¡a¡¡subject¡¡of¡¡which¡¡a¡¡predicate¡¡is¡¡affirmed¡£¡¡Next£»¡¡since¡¡D¡¡is
to¡¡be¡¡proved¡¡not¡¡to¡¡belong¡¡to¡¡C£»¡¡then¡¡D¡¡has¡¡a¡¡further¡¡predicate
which¡¡is¡¡denied¡¡of¡¡C¡£¡¡Therefore£»¡¡since¡¡the¡¡succession¡¡of¡¡predicates
affirmed¡¡of¡¡an¡¡ever¡¡higher¡¡universal¡¡terminates£»¡¡the¡¡succession¡¡of
predicates¡¡denied¡¡terminates¡¡too¡£
¡¡¡¡The¡¡third¡¡figure¡¡shows¡¡it¡¡as¡¡follows£º¡¡all¡¡B¡¡is¡¡A£»¡¡some¡¡B¡¡is¡¡not¡¡C¡£
Therefore¡¡some¡¡A¡¡is¡¡not¡¡C¡£¡¡This¡¡premiss£»¡¡i¡£e¡£¡¡C¡B£»¡¡will¡¡be¡¡proved
either¡¡in¡¡the¡¡same¡¡figure¡¡or¡¡in¡¡one¡¡of¡¡the¡¡two¡¡figures¡¡discussed
above¡£¡¡In¡¡the¡¡first¡¡and¡¡second¡¡figures¡¡the¡¡series¡¡terminates¡£¡¡If¡¡we
use¡¡the¡¡third¡¡figure£»¡¡we¡¡shall¡¡take¡¡as¡¡premisses£»¡¡all¡¡E¡¡is¡¡B£»¡¡some¡¡E
is¡¡not¡¡C£»¡¡and¡¡this¡¡premiss¡¡again¡¡will¡¡be¡¡proved¡¡by¡¡a¡¡similar
prosyllogism¡£¡¡But¡¡since¡¡it¡¡is¡¡assumed¡¡that¡¡the¡¡series¡¡of¡¡descending
subjects¡¡also¡¡terminates£»¡¡plainly¡¡the¡¡series¡¡of¡¡more¡¡universal
non¡predicables¡¡will¡¡terminate¡¡also¡£¡¡Even¡¡supposing¡¡that¡¡the¡¡proof
is¡¡not¡¡confined¡¡to¡¡one¡¡method£»¡¡but¡¡employs¡¡them¡¡all¡¡and¡¡is¡¡now¡¡in
the¡¡first¡¡figure£»¡¡now¡¡in¡¡the¡¡second¡¡or¡¡third¡even¡¡so¡¡the¡¡regress
will¡¡terminate£»¡¡for¡¡the¡¡methods¡¡are¡¡finite¡¡in¡¡number£»¡¡and¡¡if¡¡finite
things¡¡are¡¡combined¡¡in¡¡a¡¡finite¡¡number¡¡of¡¡ways£»¡¡the¡¡result¡¡must¡¡be
finite¡£
¡¡¡¡Thus¡¡it¡¡is¡¡plain¡¡that¡¡the¡¡regress¡¡of¡¡middles¡¡terminates¡¡in¡¡the
case¡¡of¡¡negative¡¡demonstration£»¡¡if¡¡it¡¡does¡¡so¡¡also¡¡in¡¡the¡¡case¡¡of
affirmative¡¡demonstration¡£¡¡That¡¡in¡¡fact¡¡the¡¡regress¡¡terminates¡¡in¡¡both
these¡¡cases¡¡may¡¡be¡¡made¡¡clear¡¡by¡¡the¡¡following¡¡dialectical
considerations¡£
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡22
¡¡¡¡In¡¡the¡¡case¡¡of¡¡predicates¡¡constituting¡¡the¡¡essential¡¡nature¡¡of¡¡a
thing£»¡¡it¡¡clearly¡¡terminates£»¡¡seeing¡¡that¡¡if¡¡definition¡¡is¡¡possible£»
or¡¡in¡¡other¡¡words£»¡¡if¡¡essential¡¡form¡¡is¡¡knowable£»¡¡and¡¡an¡¡infinite
series¡¡cannot¡¡be¡¡traversed£»¡¡predicates¡¡constituting¡¡a¡¡thing's
essential¡¡nature¡¡must¡¡be¡¡finite¡¡in¡¡number¡£¡¡But¡¡as¡¡regards¡¡predicates
generally¡¡we¡¡have¡¡the¡¡following¡¡prefatory¡¡remarks¡¡to¡¡make¡£¡¡£¨1£©¡¡We
can¡¡affirm¡¡without¡¡falsehood¡¡'the¡¡white¡¡£¨thing£©¡¡is¡¡walking'£»¡¡and
that¡¡big¡¡£¨thing£©¡¡is¡¡a¡¡log'£»¡¡or¡¡again£»¡¡'the¡¡log¡¡is¡¡big'£»¡¡and¡¡'the¡¡man
walks'¡£¡¡But¡¡the¡¡affirmation¡¡differs¡¡in¡¡the¡¡two¡¡cases¡£¡¡When¡¡I¡¡affirm
'the¡¡white¡¡is¡¡a¡¡log'£»¡¡I¡¡mean¡¡that¡¡something¡¡which¡¡happens¡¡to¡¡be
white¡¡is¡¡a¡¡log¡not¡¡that¡¡white¡¡is¡¡the¡¡substratum¡¡in¡¡which¡¡log
inheres£»¡¡for¡¡it¡¡was¡¡not¡¡qua¡¡white¡¡or¡¡qua¡¡a¡¡species¡¡of¡¡white¡¡that¡¡the
white¡¡£¨thing£©¡¡came¡¡to¡¡be¡¡a¡¡log£»¡¡and¡¡the¡¡white¡¡£¨thing£©¡¡is
consequently¡¡not¡¡a¡¡log¡¡except¡¡incidentally¡£¡¡On¡¡the¡¡other¡¡hand£»¡¡when
I¡¡affirm¡¡'the¡¡log¡¡is¡¡white'£»¡¡I¡¡do¡¡not¡¡mean¡¡that¡¡something¡¡else£»
which¡¡happens¡¡also¡¡to¡¡be¡¡a¡¡log£»¡¡is¡¡white¡¡£¨as¡¡I¡¡should¡¡if¡¡I¡¡said¡¡'the
musician¡¡is¡¡white£»'¡¡which¡¡would¡¡mean¡¡'the¡¡man¡¡who¡¡happens¡¡also¡¡to¡¡be¡¡a
musician¡¡is¡¡white'£©£»¡¡on¡¡the¡¡contrary£»¡¡log¡¡is¡¡here¡¡the¡¡substratum¡the
substratum¡¡which¡¡actually¡¡came¡¡to¡¡be¡¡white£»¡¡and¡¡did¡¡so¡¡qua¡¡wood¡¡or¡¡qua
a¡¡species¡¡of¡¡wood¡¡and¡¡qua¡¡nothing¡¡else¡£
¡¡¡¡If¡¡we¡¡must¡¡lay¡¡down¡¡a¡¡rule£»¡¡let¡¡us¡¡entitle¡¡the¡¡latter¡¡kind¡¡of
statement¡¡predication£»¡¡and¡¡the¡¡former¡¡not¡¡predication¡¡at¡¡all£»¡¡or¡¡not
strict¡¡but¡¡accidental¡¡predication¡£¡¡'White'¡¡and¡¡'log'¡¡will¡¡thus¡¡serve
as¡¡types¡¡respectively¡¡of¡¡predicate¡¡and¡¡subject¡£
¡¡¡¡We¡¡shall¡¡assume£»¡¡then£»¡¡that¡¡the¡¡predicate¡¡is¡¡invariably¡¡predicated
strictly¡¡and¡¡not¡¡accidentally¡¡of¡¡the¡¡subject£»¡¡for¡¡on¡¡such
predication¡¡demonstrations¡¡depend¡¡for¡¡their¡¡force¡£¡¡It¡¡follows¡¡from
this¡¡that¡¡when¡¡a¡¡single¡¡attribute¡¡is¡¡predicated¡¡of¡¡a¡¡single¡¡subject£»
the¡¡predicate¡¡must¡¡affirm¡¡of¡¡the¡¡subject¡¡either¡¡some¡¡element
constituting¡¡its¡¡essential¡¡nature£»¡¡or¡¡that¡¡it¡¡is¡¡in¡¡some¡¡way
qualified£»¡¡quantified£»¡¡essentially¡¡related£»¡¡active£»¡¡passive£»¡¡placed£»
or¡¡dated¡£
¡¡¡¡£¨2£©¡¡Predicates¡¡which¡¡signify¡¡substance¡¡signify¡¡that¡¡the¡¡subject¡¡is
identical¡¡with¡¡the¡¡predicate¡¡or¡¡with¡¡a¡¡species¡¡of¡¡the¡¡predicate¡£
Predicates¡¡not¡¡signifying¡¡substance¡¡which¡¡are¡¡predicated¡¡of¡¡a
subject¡¡not¡¡identical¡¡with¡¡themselves¡¡or¡¡with¡¡a¡¡species¡¡of
themselves¡¡are¡¡accidental¡¡or¡¡coincidental£»¡¡e¡£g¡£¡¡white¡¡is¡¡a
coincident¡¡of¡¡man£»¡¡seeing¡¡that¡¡man¡¡is¡¡not¡¡identical¡¡with¡¡white¡¡or¡¡a
species¡¡of¡¡white£»¡¡but¡¡rather¡¡with¡¡animal£»¡¡since¡¡man¡¡is¡¡identical
with¡¡a¡¡species¡¡of¡¡animal¡£¡¡These¡¡predicates¡¡which¡¡do¡¡not¡¡signify
substance¡¡must¡¡be¡¡predicates¡¡of¡¡some¡¡other¡¡subject£»¡¡and¡¡nothing¡¡can¡¡be
white¡¡which¡¡is¡¡not¡¡also¡¡other¡¡than¡¡white¡£¡¡The¡¡Forms¡¡we¡¡can¡¡dispense
with£»¡¡for¡¡they¡¡are¡¡mere¡¡sound¡¡without¡¡sense£»¡¡and¡¡even¡¡if¡¡there¡¡are
such¡¡things£»¡¡they¡¡are¡¡not¡¡relevant¡¡to¡¡our¡¡discussion£»¡¡since
demonstrations¡¡are¡¡concerned¡¡with¡¡predicates¡¡such¡¡as¡¡we¡¡have¡¡defined¡£
¡¡¡¡£¨3£©¡¡If¡¡A¡¡is¡¡a¡¡quality¡¡of¡¡B£»¡¡B¡¡cannot¡¡be¡¡a¡¡quality¡¡of¡¡A¡a¡¡quality
of¡¡a¡¡quality¡£¡¡Therefore¡¡A¡¡and¡¡B¡¡cannot¡¡be¡¡predicated¡¡reciprocally¡¡of
one¡¡another¡¡in¡¡strict¡¡predication£º¡¡they¡¡can¡¡be¡¡affirmed¡¡without
falsehood¡¡of¡¡one¡¡another£»¡¡but¡¡not¡¡genuinely¡¡predicated¡¡of¡¡each
other¡£¡¡For¡¡one¡¡alternative¡¡is¡¡that¡¡they¡¡should¡¡be¡¡substantially
predicated¡¡of¡¡one¡¡another£»¡¡i¡£e¡£¡¡B¡¡would¡¡become¡¡the¡¡genus¡¡or
differentia¡¡of¡¡A¡the¡¡predicate¡¡now¡¡become¡¡subject¡£¡¡But¡¡it¡¡has¡¡been
shown¡¡that¡¡in¡¡these¡¡substantial¡¡predications¡¡neither¡¡the¡¡ascending
predicates¡¡nor¡¡the¡¡descending¡¡subjects¡¡form¡¡an¡¡infinite¡¡series£»¡¡e¡£g¡£
neither¡¡the¡¡series£»¡¡man¡¡is¡¡biped£»¡¡biped¡¡is¡¡animal£»¡¡&c¡££»¡¡nor¡¡the¡¡series
predicating¡¡animal¡¡of¡¡man£»¡¡man¡¡of¡¡Callias£»¡¡Callias¡¡of¡¡a¡¡further¡£
subject¡¡as¡¡an¡¡element¡¡of¡¡its¡¡essential¡¡nature£»¡¡is¡¡infinite¡£¡¡For¡¡all
such¡¡substance¡¡is¡¡definable£»¡¡and¡¡an¡¡infinite¡¡series¡¡cannot¡¡be
traversed¡¡in¡¡thought£º¡¡consequently¡¡neither¡¡the¡¡ascent¡¡nor¡¡the
descent¡¡is¡¡infinite£»¡¡since¡¡a¡¡substance¡¡whose¡¡predicates¡¡were
infinite¡¡would¡¡not¡¡b