Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > posterior analytics >

µÚ1½Ú

posterior analytics-µÚ1½Ú

С˵£º posterior analytics ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡






¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡POSTERIOR¡¡ANALYTICS



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡by¡¡Aristotle



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡translated¡¡by¡¡G¡£¡¡R¡£¡¡G¡£¡¡Mure



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡Book¡¡I



¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡1







¡¡¡¡ALL¡¡instruction¡¡given¡¡or¡¡received¡¡by¡¡way¡¡of¡¡argument¡¡proceeds¡¡from



pre¡­existent¡¡knowledge¡£¡¡This¡¡becomes¡¡evident¡¡upon¡¡a¡¡survey¡¡of¡¡all



the¡¡species¡¡of¡¡such¡¡instruction¡£¡¡The¡¡mathematical¡¡sciences¡¡and¡¡all



other¡¡speculative¡¡disciplines¡¡are¡¡acquired¡¡in¡¡this¡¡way£»¡¡and¡¡so¡¡are¡¡the



two¡¡forms¡¡of¡¡dialectical¡¡reasoning£»¡¡syllogistic¡¡and¡¡inductive£»¡¡for



each¡¡of¡¡these¡¡latter¡¡make¡¡use¡¡of¡¡old¡¡knowledge¡¡to¡¡impart¡¡new£»¡¡the



syllogism¡¡assuming¡¡an¡¡audience¡¡that¡¡accepts¡¡its¡¡premisses£»¡¡induction



exhibiting¡¡the¡¡universal¡¡as¡¡implicit¡¡in¡¡the¡¡clearly¡¡known



particular¡£¡¡Again£»¡¡the¡¡persuasion¡¡exerted¡¡by¡¡rhetorical¡¡arguments¡¡is



in¡¡principle¡¡the¡¡same£»¡¡since¡¡they¡¡use¡¡either¡¡example£»¡¡a¡¡kind¡¡of



induction£»¡¡or¡¡enthymeme£»¡¡a¡¡form¡¡of¡¡syllogism¡£



¡¡¡¡The¡¡pre¡­existent¡¡knowledge¡¡required¡¡is¡¡of¡¡two¡¡kinds¡£¡¡In¡¡some¡¡cases



admission¡¡of¡¡the¡¡fact¡¡must¡¡be¡¡assumed£»¡¡in¡¡others¡¡comprehension¡¡of



the¡¡meaning¡¡of¡¡the¡¡term¡¡used£»¡¡and¡¡sometimes¡¡both¡¡assumptions¡¡are



essential¡£¡¡Thus£»¡¡we¡¡assume¡¡that¡¡every¡¡predicate¡¡can¡¡be¡¡either¡¡truly



affirmed¡¡or¡¡truly¡¡denied¡¡of¡¡any¡¡subject£»¡¡and¡¡that¡¡'triangle'¡¡means



so¡¡and¡¡so£»¡¡as¡¡regards¡¡'unit'¡¡we¡¡have¡¡to¡¡make¡¡the¡¡double¡¡assumption



of¡¡the¡¡meaning¡¡of¡¡the¡¡word¡¡and¡¡the¡¡existence¡¡of¡¡the¡¡thing¡£¡¡The



reason¡¡is¡¡that¡¡these¡¡several¡¡objects¡¡are¡¡not¡¡equally¡¡obvious¡¡to¡¡us¡£



Recognition¡¡of¡¡a¡¡truth¡¡may¡¡in¡¡some¡¡cases¡¡contain¡¡as¡¡factors¡¡both



previous¡¡knowledge¡¡and¡¡also¡¡knowledge¡¡acquired¡¡simultaneously¡¡with



that¡¡recognition¡­knowledge£»¡¡this¡¡latter£»¡¡of¡¡the¡¡particulars¡¡actually



falling¡¡under¡¡the¡¡universal¡¡and¡¡therein¡¡already¡¡virtually¡¡known¡£¡¡For



example£»¡¡the¡¡student¡¡knew¡¡beforehand¡¡that¡¡the¡¡angles¡¡of¡¡every¡¡triangle



are¡¡equal¡¡to¡¡two¡¡right¡¡angles£»¡¡but¡¡it¡¡was¡¡only¡¡at¡¡the¡¡actual¡¡moment¡¡at



which¡¡he¡¡was¡¡being¡¡led¡¡on¡¡to¡¡recognize¡¡this¡¡as¡¡true¡¡in¡¡the¡¡instance



before¡¡him¡¡that¡¡he¡¡came¡¡to¡¡know¡¡'this¡¡figure¡¡inscribed¡¡in¡¡the



semicircle'¡¡to¡¡be¡¡a¡¡triangle¡£¡¡For¡¡some¡¡things¡¡£¨viz¡£¡¡the¡¡singulars



finally¡¡reached¡¡which¡¡are¡¡not¡¡predicable¡¡of¡¡anything¡¡else¡¡as



subject£©¡¡are¡¡only¡¡learnt¡¡in¡¡this¡¡way£»¡¡i¡£e¡£¡¡there¡¡is¡¡here¡¡no



recognition¡¡through¡¡a¡¡middle¡¡of¡¡a¡¡minor¡¡term¡¡as¡¡subject¡¡to¡¡a¡¡major¡£



Before¡¡he¡¡was¡¡led¡¡on¡¡to¡¡recognition¡¡or¡¡before¡¡he¡¡actually¡¡drew¡¡a



conclusion£»¡¡we¡¡should¡¡perhaps¡¡say¡¡that¡¡in¡¡a¡¡manner¡¡he¡¡knew£»¡¡in¡¡a



manner¡¡not¡£



¡¡¡¡If¡¡he¡¡did¡¡not¡¡in¡¡an¡¡unqualified¡¡sense¡¡of¡¡the¡¡term¡¡know¡¡the¡¡existence



of¡¡this¡¡triangle£»¡¡how¡¡could¡¡he¡¡know¡¡without¡¡qualification¡¡that¡¡its



angles¡¡were¡¡equal¡¡to¡¡two¡¡right¡¡angles£¿¡¡No£º¡¡clearly¡¡he¡¡knows¡¡not



without¡¡qualification¡¡but¡¡only¡¡in¡¡the¡¡sense¡¡that¡¡he¡¡knows¡¡universally¡£



If¡¡this¡¡distinction¡¡is¡¡not¡¡drawn£»¡¡we¡¡are¡¡faced¡¡with¡¡the¡¡dilemma¡¡in¡¡the



Meno£º¡¡either¡¡a¡¡man¡¡will¡¡learn¡¡nothing¡¡or¡¡what¡¡he¡¡already¡¡knows£»¡¡for¡¡we



cannot¡¡accept¡¡the¡¡solution¡¡which¡¡some¡¡people¡¡offer¡£¡¡A¡¡man¡¡is¡¡asked£»



'Do¡¡you£»¡¡or¡¡do¡¡you¡¡not£»¡¡know¡¡that¡¡every¡¡pair¡¡is¡¡even£¿'¡¡He¡¡says¡¡he¡¡does



know¡¡it¡£¡¡The¡¡questioner¡¡then¡¡produces¡¡a¡¡particular¡¡pair£»¡¡of¡¡the



existence£»¡¡and¡¡so¡¡a¡¡fortiori¡¡of¡¡the¡¡evenness£»¡¡of¡¡which¡¡he¡¡was¡¡unaware¡£



The¡¡solution¡¡which¡¡some¡¡people¡¡offer¡¡is¡¡to¡¡assert¡¡that¡¡they¡¡do¡¡not



know¡¡that¡¡every¡¡pair¡¡is¡¡even£»¡¡but¡¡only¡¡that¡¡everything¡¡which¡¡they¡¡know



to¡¡be¡¡a¡¡pair¡¡is¡¡even£º¡¡yet¡¡what¡¡they¡¡know¡¡to¡¡be¡¡even¡¡is¡¡that¡¡of¡¡which



they¡¡have¡¡demonstrated¡¡evenness£»¡¡i¡£e¡£¡¡what¡¡they¡¡made¡¡the¡¡subject¡¡of



their¡¡premiss£»¡¡viz¡£¡¡not¡¡merely¡¡every¡¡triangle¡¡or¡¡number¡¡which¡¡they



know¡¡to¡¡be¡¡such£»¡¡but¡¡any¡¡and¡¡every¡¡number¡¡or¡¡triangle¡¡without



reservation¡£¡¡For¡¡no¡¡premiss¡¡is¡¡ever¡¡couched¡¡in¡¡the¡¡form¡¡'every



number¡¡which¡¡you¡¡know¡¡to¡¡be¡¡such'£»¡¡or¡¡'every¡¡rectilinear¡¡figure



which¡¡you¡¡know¡¡to¡¡be¡¡such'£º¡¡the¡¡predicate¡¡is¡¡always¡¡construed¡¡as



applicable¡¡to¡¡any¡¡and¡¡every¡¡instance¡¡of¡¡the¡¡thing¡£¡¡On¡¡the¡¡other



hand£»¡¡I¡¡imagine¡¡there¡¡is¡¡nothing¡¡to¡¡prevent¡¡a¡¡man¡¡in¡¡one¡¡sense¡¡knowing



what¡¡he¡¡is¡¡learning£»¡¡in¡¡another¡¡not¡¡knowing¡¡it¡£¡¡The¡¡strange¡¡thing



would¡¡be£»¡¡not¡¡if¡¡in¡¡some¡¡sense¡¡he¡¡knew¡¡what¡¡he¡¡was¡¡learning£»¡¡but¡¡if¡¡he



were¡¡to¡¡know¡¡it¡¡in¡¡that¡¡precise¡¡sense¡¡and¡¡manner¡¡in¡¡which¡¡he¡¡was



learning¡¡it¡£







¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡2







¡¡¡¡We¡¡suppose¡¡ourselves¡¡to¡¡possess¡¡unqualified¡¡scientific¡¡knowledge



of¡¡a¡¡thing£»¡¡as¡¡opposed¡¡to¡¡knowing¡¡it¡¡in¡¡the¡¡accidental¡¡way¡¡in¡¡which



the¡¡sophist¡¡knows£»¡¡when¡¡we¡¡think¡¡that¡¡we¡¡know¡¡the¡¡cause¡¡on¡¡which¡¡the



fact¡¡depends£»¡¡as¡¡the¡¡cause¡¡of¡¡that¡¡fact¡¡and¡¡of¡¡no¡¡other£»¡¡and£»¡¡further£»



that¡¡the¡¡fact¡¡could¡¡not¡¡be¡¡other¡¡than¡¡it¡¡is¡£¡¡Now¡¡that¡¡scientific



knowing¡¡is¡¡something¡¡of¡¡this¡¡sort¡¡is¡¡evident¡­witness¡¡both¡¡those¡¡who



falsely¡¡claim¡¡it¡¡and¡¡those¡¡who¡¡actually¡¡possess¡¡it£»¡¡since¡¡the¡¡former



merely¡¡imagine¡¡themselves¡¡to¡¡be£»¡¡while¡¡the¡¡latter¡¡are¡¡also¡¡actually£»



in¡¡the¡¡condition¡¡described¡£¡¡Consequently¡¡the¡¡proper¡¡object¡¡of



unqualified¡¡scientific¡¡knowledge¡¡is¡¡something¡¡which¡¡cannot¡¡be¡¡other



than¡¡it¡¡is¡£



¡¡¡¡There¡¡may¡¡be¡¡another¡¡manner¡¡of¡¡knowing¡¡as¡¡well¡­that¡¡will¡¡be



discussed¡¡later¡£¡¡What¡¡I¡¡now¡¡assert¡¡is¡¡that¡¡at¡¡all¡¡events¡¡we¡¡do¡¡know¡¡by



demonstration¡£¡¡By¡¡demonstration¡¡I¡¡mean¡¡a¡¡syllogism¡¡productive¡¡of



scientific¡¡knowledge£»¡¡a¡¡syllogism£»¡¡that¡¡is£»¡¡the¡¡grasp¡¡of¡¡which¡¡is¡¡eo



ipso¡¡such¡¡knowledge¡£¡¡Assuming¡¡then¡¡that¡¡my¡¡thesis¡¡as¡¡to¡¡the¡¡nature



of¡¡scientific¡¡knowing¡¡is¡¡correct£»¡¡the¡¡premisses¡¡of¡¡demonstrated



knowledge¡¡must¡¡be¡¡true£»¡¡primary£»¡¡immediate£»¡¡better¡¡known¡¡than¡¡and



prior¡¡to¡¡the¡¡conclusion£»¡¡which¡¡is¡¡further¡¡related¡¡to¡¡them¡¡as¡¡effect¡¡to



cause¡£¡¡Unless¡¡these¡¡conditions¡¡are¡¡satisfied£»¡¡the¡¡basic¡¡truths¡¡will



not¡¡be¡¡'appropriate'¡¡to¡¡the¡¡conclusion¡£¡¡Syllogism¡¡there¡¡may¡¡indeed



be¡¡without¡¡these¡¡conditions£»¡¡but¡¡such¡¡syllogism£»¡¡not¡¡being



productive¡¡of¡¡scientific¡¡knowledge£»¡¡will¡¡not¡¡be¡¡demonstration¡£¡¡The



premisses¡¡must¡¡be¡¡true£º¡¡for¡¡that¡¡which¡¡is¡¡non¡­existent¡¡cannot¡¡be



known¡­we¡¡cannot¡¡know£»¡¡e¡£g¡£¡¡that¡¡the¡¡diagonal¡¡of¡¡a¡¡square¡¡is



commensurate¡¡with¡¡its¡¡side¡£¡¡The¡¡premisses¡¡must¡¡be¡¡primary¡¡and



indemonstrable£»¡¡otherwise¡¡they¡¡will¡¡require¡¡demonstration¡¡in¡¡order



to¡¡be¡¡known£»¡¡since¡¡to¡¡have¡¡knowledge£»¡¡if¡¡it¡¡be¡¡not¡¡accidental



knowledge£»¡¡of¡¡things¡¡which¡¡are¡¡demonstrable£»¡¡means¡¡precisely¡¡to¡¡have¡¡a



demonstration¡¡of¡¡them¡£¡¡The¡¡premisses¡¡must¡¡be¡¡the¡¡causes¡¡of¡¡the



conclusion£»¡¡better¡¡known¡¡than¡¡it£»¡¡and¡¡prior¡¡to¡¡it£»¡¡its¡¡causes£»¡¡since



we¡¡possess¡¡scientific¡¡knowledge¡¡of¡¡a¡¡thing¡¡only¡¡when¡¡we¡¡know¡¡its



cause£»¡¡prior£»¡¡in¡¡order¡¡to¡¡be¡¡causes£»¡¡antecedently¡¡known£»¡¡this



antecedent¡¡knowledge¡¡being¡¡not¡¡our¡¡mere¡¡understanding¡¡of¡¡the



meaning£»¡¡but¡¡knowledge¡¡of¡¡the¡¡fact¡¡as¡¡well¡£¡¡Now¡¡'prior'¡¡and¡¡'better



known'¡¡are¡¡ambiguous¡¡terms£»¡¡for¡¡there¡¡is¡¡a¡¡difference¡¡between¡¡what



is¡¡prior¡¡and¡¡better¡¡known¡¡in¡¡the¡¡order¡¡of¡¡being¡¡and¡¡what¡¡is¡¡prior



and¡¡better¡¡known¡¡to¡¡man¡£¡¡I¡¡mean¡¡that¡¡objects¡¡nearer¡¡to¡¡sense¡¡are¡¡prior



and¡¡better¡¡known¡¡to¡¡man£»¡¡objects¡¡without¡¡qualification¡¡prior¡¡and



better¡¡known¡¡are¡¡those¡¡further¡¡from¡¡sense¡£¡¡Now¡¡the¡¡most¡¡universal



causes¡¡are¡¡furthest¡¡from¡¡sense¡¡and¡¡particular¡¡causes¡¡are¡¡nearest¡¡to



sense£»¡¡and¡¡they¡¡are¡¡thus¡¡exactly¡¡opposed¡¡to¡¡one¡¡another¡£¡¡In¡¡saying



that¡¡the¡¡premisses¡¡of¡¡demonstrated¡¡knowledge¡¡must¡¡be¡¡primary£»¡¡I¡¡mean



that¡¡they¡¡must¡¡be¡¡the¡¡'appropriate'¡¡basic¡¡truths£»¡¡for¡¡I¡¡identify



primary¡¡premiss¡¡and¡¡basic¡¡truth¡£¡¡A¡¡'basic¡¡truth'¡¡in¡¡a¡¡demonstration¡¡is



an¡¡immediate¡¡proposition¡£¡¡An¡¡immediate¡¡proposition¡¡is¡¡one¡¡which¡¡has¡¡no



other¡¡proposition¡¡prior¡¡to¡¡it¡£¡¡A¡¡proposition¡¡is¡¡either¡¡part¡¡of¡¡an



enunciation£»¡¡i¡£e¡£¡¡it¡¡predicates¡¡a¡¡single¡¡attribute¡¡of¡¡a¡¡single



subject¡£¡¡If¡¡a¡¡proposition¡¡is¡¡dialectical£»¡¡it¡¡assumes¡¡either¡¡part



indifferently£»¡¡if¡¡it¡¡is¡¡demonstrative£»¡¡it¡¡lays¡¡down¡¡one¡¡part¡¡to¡¡the



definite¡¡exclusion¡¡of¡¡the¡¡other¡¡because¡¡that¡¡part¡¡is¡¡true¡£¡¡The¡¡term



'enunciation'¡¡denotes¡¡either¡¡part¡¡of¡¡a¡¡contradiction¡¡indifferently¡£



A¡¡contradiction¡¡is¡¡an¡¡opposition¡¡which¡¡of¡¡its¡¡own¡¡nature¡¡excludes¡¡a



middle¡£¡¡The¡¡part¡¡of¡¡a¡¡contradiction¡¡which¡¡conjoins¡¡a¡¡predicate¡¡with



a¡¡subject¡¡is¡¡an¡¡affirmation£»¡¡the¡¡part¡¡disjoining¡¡them¡¡is¡¡a¡¡negation¡£¡¡I



call¡¡an¡¡immediate¡¡basic¡¡truth¡¡of¡¡syllogism¡¡a¡¡'thesis'¡¡when£»¡¡though



it¡¡is¡¡not¡¡susceptible¡¡of¡¡proof¡¡by¡¡the¡¡teacher£»¡¡yet¡¡ignorance¡¡of¡¡it



does¡¡not¡¡constitute¡¡a¡¡total¡¡bar¡¡to¡¡progress¡¡on¡¡the¡¡part¡¡of¡¡the



pupil£º¡¡one¡¡which¡¡the¡¡pupil¡¡must¡¡know¡¡if¡¡he¡¡is¡¡to¡¡learn¡¡anything



whatever¡¡is¡¡an¡¡axiom¡£¡¡I¡¡call¡¡it¡¡an¡¡axiom¡¡because¡¡there¡¡are¡¡such¡¡truths



and¡¡we¡¡give¡¡them¡¡the¡¡name¡¡of¡¡axioms¡¡par¡¡excellence¡£¡¡If¡¡a¡¡thesis



assumes¡¡one¡¡part¡¡or¡¡the¡¡other¡¡of¡¡an¡¡enunciation£»¡¡i¡£e¡£¡¡asserts¡¡either



the¡¡existence¡¡or¡¡the¡¡non¡­existence¡¡of¡¡a¡¡subject£»¡¡it¡¡is¡¡a¡¡hypothesis£»



if¡¡it¡¡does¡¡not¡¡so¡¡assert£»¡¡it¡¡is¡¡a¡¡definition¡£¡¡Definition¡¡is¡¡a¡¡'thesis'



or¡¡a¡¡'laying¡¡something¡¡down'£»¡¡since¡¡the¡¡arithmetician¡¡lays¡¡it¡¡down



that¡¡to¡¡be¡¡a¡¡unit

·µ»ØĿ¼ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨1£©

Äã¿ÉÄÜϲ»¶µÄ