history of philosophy-µÚ99½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
circle¡¡are¡¡all¡¡figures¡£¡¡The¡¡possibility¡¡of¡¡the¡¡difference¡¡of¡¡all¡¡things¡¡in¡¡association¡¡with¡¡perfect¡¡unity¡¡in
the¡¡Notion¡¡lies¡¡in¡¡the¡¡manner¡¡in¡¡which¡¡the¡¡particular¡¡in¡¡them¡¡is¡¡combined¡¡with¡¡the¡¡universal¡£¡¡In¡¡the
Absolute¡¡this¡¡altogether¡¡disappears£»¡¡because¡¡it¡¡pertains¡¡to¡¡the¡¡very¡¡idea¡¡of¡¡the¡¡Absolute¡¡that¡¡the
particular¡¡in¡¡it¡¡is¡¡also¡¡the¡¡universal£»¡¡and¡¡the¡¡universal¡¡the¡¡particular£»¡¡and¡¡further¡¡that¡¡by¡¡means¡¡of¡¡this
unity¡¡form¡¡and¡¡existence¡¡are¡¡also¡¡one¡¡in¡¡it¡£¡¡Consequently£»¡¡in¡¡regard¡¡to¡¡the¡¡Absolute£»¡¡from¡¡the¡¡fact
of¡¡its¡¡being¡¡the¡¡Absolute£»¡¡there¡¡likewise¡¡follows¡¡the¡¡absolute¡¡exclusion¡¡from¡¡its¡¡existence¡¡of¡¡all
difference£»¡¡and¡¡that¡¡at¡¡once¡£¡±¡¡£¨14£©
In¡¡the¡¡former¡¡of¡¡the¡¡two¡¡above¡named¡¡works£»¡¡the¡¡¡°Journal¡¡of¡¡Speculative¡¡Physics£»¡±¡¡Schelling
began¡¡by¡¡again¡¡bringing¡¡forward¡¡the¡¡Substance¡¡of¡¡Spinoza£»¡¡simple£»¡¡absolute¡¡Existence£»¡¡inasmuch
as¡¡he¡¡makes¡¡his¡¡starting¡point¡¡the¡¡absolute¡¡identity¡¡of¡¡the¡¡subjective¡¡and¡¡objective¡£¡¡Here£»¡¡like
Spinoza£»¡¡he¡¡employed¡¡the¡¡method¡¡of¡¡geometry£»¡¡laying¡¡down¡¡axioms¡¡and¡¡proving¡¡by¡¡means¡¡of
propositions£»¡¡then¡¡going¡¡on¡¡to¡¡deduce¡¡other¡¡propositions¡¡from¡¡there£»¡¡and¡¡so¡¡on¡£¡¡But¡¡this¡¡method
has¡¡no¡¡real¡¡application¡¡to¡¡philosophy¡£¡¡Schelling¡¡at¡¡this¡¡point¡¡laid¡¡down¡¡certain¡¡forms¡¡of¡¡difference£»
to¡¡which¡¡he¡¡gave¡¡the¡¡name¡¡of¡¡potencies£»¡¡adopting¡¡the¡¡term¡¡from¡¡Eschenmayer£»¡¡who¡¡made¡¡use¡¡of¡¡it
£¨p¡£¡¡514£©£»£¨15£©¡¡they¡¡are¡¡ready¡made¡¡differences£»¡¡which¡¡Schelling¡¡avails¡¡himself¡¡of¡£¡¡But¡¡philosophy
must¡¡not¡¡take¡¡any¡¡forms¡¡from¡¡other¡¡sciences£»¡¡as¡¡here¡¡from¡¡mathematics¡£¡¡With¡¡Schelling£»¡¡the
leading¡¡form¡¡is¡¡that¡¡which¡¡was¡¡brought¡¡into¡¡remembrance¡¡again¡¡by¡¡Kant£»¡¡the¡¡form¡¡of¡¡triplicity¡¡as
first£»¡¡second£»¡¡and¡¡third¡¡potency¡£
Schelling£»¡¡like¡¡Fichte£»¡¡begins¡¡with¡¡I¡¡=¡¡I£»¡¡or¡¡with¡¡the¡¡absolute¡¡intuition£»¡¡expressed¡¡as¡¡proposition¡¡or
definition¡¡of¡¡the¡¡Absolute£»¡¡that¡¡Reason¡¡is¡¡the¡¡absolute¡¡indifference¡¡of¡¡subject¡¡and¡¡object£º¡¡so¡¡that¡¡it
is¡¡neither¡¡the¡¡one¡¡nor¡¡the¡¡other£»¡¡for¡¡both¡¡have¡¡in¡¡it¡¡their¡¡true¡¡determination£»¡¡and¡¡their¡¡opposition£»
like¡¡all¡¡others£»¡¡is¡¡utterly¡¡done¡¡away¡¡with¡£¡¡The¡¡true¡¡reality¡¡of¡¡subject¡¡and¡¡object¡¡is¡¡placed¡¡in¡¡this
alone£»¡¡that¡¡the¡¡subject¡¡is¡¡not¡¡posited¡¡in¡¡the¡¡determination¡¡of¡¡subject¡¡against¡¡object£»¡¡as¡¡in¡¡the
philosophy¡¡of¡¡Fichte£»¡¡it¡¡is¡¡not¡¡determined¡¡as¡¡in¡¡itself¡¡existent£»¡¡but¡¡as¡¡subject¡object£»¡¡as¡¡the¡¡identity
of¡¡the¡¡two£»¡¡in¡¡the¡¡same¡¡way¡¡the¡¡object¡¡is¡¡not¡¡posited¡¡according¡¡to¡¡its¡¡ideal¡¡determination¡¡as¡¡object£»
but¡¡in¡¡as¡¡far¡¡as¡¡it¡¡is¡¡itself¡¡absolute£»¡¡or¡¡the¡¡identity¡¡of¡¡the¡¡subjective¡¡and¡¡objective¡£¡¡But¡¡the
expression¡¡¡°indifference¡±¡¡is¡¡ambiguous£»¡¡for¡¡it¡¡means¡¡indifference¡¡in¡¡regard¡¡to¡¡both¡¡the¡¡one¡¡and
the¡¡other£»¡¡and¡¡thus¡¡it¡¡appears¡¡as¡¡if¡¡the¡¡content¡¡of¡¡indifference£»¡¡the¡¡only¡¡thing¡¡which¡¡makes¡¡it
concrete£»¡¡were¡¡indifferent¡£¡¡Schelling's¡¡next¡¡requirement¡¡is¡¡that¡¡the¡¡subject¡¡must¡¡not¡¡be¡¡hampered
with¡¡reflection£»¡¡that¡¡would¡¡be¡¡bringing¡¡it¡¡under¡¡the¡¡determination¡¡of¡¡the¡¡understanding£»¡¡which£»
equally¡¡with¡¡sensuous¡¡perception£»¡¡implies¡¡the¡¡separateness¡¡of¡¡sensuous¡¡things¡£¡¡As¡¡to¡¡the¡¡form¡¡of¡¡its
existence£»¡¡absolute¡¡indifference¡¡is¡¡with¡¡Schelling¡¡posited¡¡as¡¡A¡¡=¡¡A£»¡¡and¡¡this¡¡form¡¡is¡¡for¡¡him¡¡the
knowledge¡¡of¡¡absolute¡¡identity£»¡¡which£»¡¡however£»¡¡is¡¡inseparable¡¡from¡¡the¡¡Being¡¡or¡¡existence¡¡of¡¡the
same¡££¨16£©
Thus£»¡¡therefore£»¡¡opposition£»¡¡as¡¡form¡¡and¡¡reality¡¡or¡¡existence£»¡¡no¡¡doubt¡¡appears¡¡in¡¡this¡¡Absolute£»
but¡¡it¡¡is¡¡determined¡¡as¡¡a¡¡merely¡¡relative¡¡or¡¡unessential¡¡opposition£º¡¡¡°Between¡¡subject¡¡and¡¡object¡¡no
other¡¡than¡¡quantitative¡¡difference¡¡is¡¡possible¡£¡¡For¡¡no¡¡qualitative¡¡difference¡¡as¡¡regards¡¡the¡¡two¡¡is
thinkable£»¡±¡¡because¡¡absolute¡¡identity¡¡¡°is¡¡posited¡¡as¡¡subject¡¡and¡¡object¡¡only¡¡as¡¡regards¡¡the¡¡form
of¡¡its¡¡Being£»¡¡not¡¡as¡¡regards¡¡its¡¡existence¡£¡¡There¡¡is¡¡consequently¡¡only¡¡a¡¡quantitative¡¡difference¡¡left£»¡±
i¡£e¡£¡¡only¡¡that¡¡of¡¡magnitude£º¡¡and¡¡yet¡¡difference¡¡must¡¡really¡¡be¡¡understood¡¡as¡¡qualitative£»¡¡and¡¡must
thus¡¡be¡¡shown¡¡to¡¡be¡¡a¡¡difference¡¡which¡¡abrogates¡¡itself¡£¡¡This¡¡quantitative¡¡difference£»¡¡says
Schelling£»¡¡is¡¡the¡¡form¡¡actu£º¡¡¡°The¡¡quantitative¡¡difference¡¡of¡¡subjective¡¡and¡¡objective¡¡is¡¡the¡¡basis¡¡of
all¡¡finitude¡£¡¡Each¡¡determined¡¡potency¡¡marks¡¡a¡¡determined¡¡quantitative¡¡difference¡¡of¡¡the¡¡subjective
and¡¡objective¡£¡¡Each¡¡individual¡¡Being¡¡is¡¡the¡¡result¡¡of¡¡a¡¡quantitative¡¡difference¡¡of¡¡subjectivity¡¡and
objectivity¡£¡¡The¡¡individual¡¡expresses¡¡absolute¡¡identity¡¡under¡¡a¡¡determined¡¡form¡¡of¡¡Being£º¡¡¡°so¡¡that
each¡¡side¡¡is¡¡itself¡¡a¡¡relative¡¡totality£»¡¡A¡¡=¡¡B£»¡¡and¡¡at¡¡the¡¡same¡¡time¡¡the¡¡one¡¡factor¡¡preponderates¡¡in
the¡¡one£»¡¡and¡¡the¡¡other¡¡factor¡¡in¡¡the¡¡other£»¡¡but¡¡both¡¡remain¡¡absolute¡¡identity¡££¨17£©¡¡This¡¡is¡¡insufficient£»
for¡¡there¡¡are¡¡other¡¡determinations£»¡¡difference¡¡is¡¡undoubtedly¡¡qualitative£»¡¡although¡¡this¡¡is¡¡not¡¡the
absolute¡¡determination¡£¡¡Quantitative¡¡difference¡¡is¡¡no¡¡true¡¡difference£»¡¡but¡¡an¡¡entirely¡¡external
relation£»¡¡and¡¡likewise¡¡the¡¡preponderance¡¡of¡¡subjective¡¡and¡¡objective¡¡is¡¡not¡¡a¡¡determination¡¡of
thought£»¡¡but¡¡a¡¡merely¡¡sensuous¡¡determination¡£
The¡¡Absolute¡¡itself£»¡¡in¡¡so¡¡far¡¡as¡¡the¡¡positing¡¡of¡¡difference¡¡is¡¡taken¡¡into¡¡account£»¡¡is¡¡defined¡¡by
Schelling¡¡as¡¡the¡¡quantitative¡¡indifference¡¡of¡¡subjective¡¡and¡¡objective£º¡¡in¡¡respect¡¡to¡¡absolute¡¡identity
no¡¡quantitative¡¡difference¡¡is¡¡thinkable¡£¡¡¡°Quantitative¡¡difference¡¡is¡¡only¡¡possible¡¡outside¡¡of¡¡absolute
identity£»¡¡and¡¡outside¡¡of¡¡absolute¡¡totality¡£¡¡There¡¡is¡¡nothing¡¡in¡¡itself¡¡outside¡¡of¡¡totality£»¡¡excepting¡¡by
virtue¡¡of¡¡an¡¡arbitrary¡¡separation¡¡of¡¡the¡¡individual¡¡from¡¡the¡¡whole¡£¡¡Absolute¡¡identity¡¡exists¡¡only
under¡¡the¡¡form¡¡of¡¡the¡¡quantitative¡¡indifference¡¡of¡¡subjective¡¡and¡¡objective¡£¡±¡¡Quantitative
difference£»¡¡which¡¡appears¡¡outside¡¡of¡¡absolute¡¡identity¡¡and¡¡totality£»¡¡is¡¡therefore£»¡¡according¡¡to
Schelling£»¡¡in¡¡itself¡¡absolute¡¡identity£»¡¡and¡¡consequently¡¡thinkable¡¡only¡¡under¡¡the¡¡form¡¡of¡¡the
quantitative¡¡indifference¡¡of¡¡the¡¡subjective¡¡and¡¡objective¡£¡¡¡°This¡¡opposition¡¡does¡¡not¡¡therefore¡¡occur
in¡¡itself£»¡¡or¡¡from¡¡the¡¡standpoint¡¡of¡¡speculation¡£¡¡From¡¡this¡¡standpoint¡¡A¡¡exists¡¡just¡¡as¡¡much¡¡as¡¡B
does£»¡¡for¡¡A¡¡like¡¡B¡¡is¡¡the¡¡whole¡¡absolute¡¡identity£»¡¡which¡¡only¡¡exists¡¡under¡¡the¡¡two¡¡forms£»¡¡but¡¡under
both¡¡of¡¡them¡¡alike¡£¡¡Absolute¡¡identity¡¡is¡¡the¡¡universe¡¡itself¡£¡¡The¡¡form¡¡of¡¡its¡¡Being¡¡can¡¡be¡¡thought¡¡of
under¡¡the¡¡image¡¡of¡¡a¡¡line£»¡±¡¡as¡¡shown¡¡by¡¡the¡¡following¡¡scheme£º
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£«¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡£«
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡A¡¡=¡¡B¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡A¡¡=¡¡B
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡A¡¡=¡¡A
¡°in¡¡which¡¡the¡¡same¡¡identity¡¡is¡¡posited¡¡in¡¡each¡¡direction£»¡¡but¡¡with¡¡A¡¡or¡¡B¡¡preponderating¡¡in
opposite¡¡directions¡£¡±¡¡£¨18£©¡¡If¡¡we¡¡go¡¡into¡¡details£»¡¡the¡¡main¡¡points¡¡from¡¡an¡¡elementary¡¡point¡¡of¡¡view
are¡¡the¡¡following¡£
The¡¡first¡¡potency¡¡is¡¡that¡¡the¡¡first¡¡quantitative¡¡difference¡¡of¡¡the¡¡Absolute£»¡¡or¡¡¡°the¡¡first¡¡relative
totality¡¡is¡¡matter¡£¡¡Proof£º¡¡A¡¡=¡¡B¡¡is¡¡not¡¡anything¡¡real¡¡either¡¡as¡¡relative¡¡identity¡¡or¡¡as¡¡relative¡¡duplicity¡£
As¡¡identity¡¡A¡¡=¡¡B£»¡¡in¡¡the¡¡individual¡¡as¡¡in¡¡the¡¡whole£»¡¡can¡¡be¡¡expressed¡¡only¡¡by¡¡the¡¡line£»¡¨¡¡¡ª¡¡the¡¡first
dimension¡£¡¡¡°But¡¡in¡¡that¡¡line¡¡A¡¡is¡¡posited¡¡throughout¡¡as¡¡existent£»¡±¡¡i¡£e¡£¡¡it¡¡is¡¡at¡¡the¡¡same¡¡time¡¡related
to¡¡B¡£¡¡¡°Therefore¡¡this¡¡line¡¡presupposes¡¡A¡¡=¡¡B¡¡as¡¡relative¡¡totality¡¡throughout£»¡¡relative¡¡totality¡¡is
therefore¡¡the¡¡first¡¡presupposition£»¡¡and¡¡if¡¡relative¡¡identity¡¡exists£»¡¡it¡¡exists¡¡only¡¡through¡¡relative
totality£»¡¨¡¡¡ª¡¡this¡¡is¡¡duplicity£»¡¡the¡¡second¡¡dimension¡£¡¡¡°In¡¡the¡¡same¡¡way¡¡relative¡¡duplicity
presupposes¡¡relative¡¡identity¡£¡¡Relative¡¡identity¡¡and¡¡duplicity¡¡are¡¡contained¡¡in¡¡relative¡¡totality£»¡¡not
indeed¡¡actu£»¡¡but¡¡yet¡¡potentia¡£¡¡Therefore¡¡the¡¡two¡¡opposites¡¡must¡¡mutually¡¡extinguish¡¡each¡¡other¡¡in
a¡¡third¡±¡¡dimension¡£¡¡¡°Absolute¡¡identity¡¡as¡¡the¡¡immediate¡¡basis¡¡of¡¡the¡¡reality¡¡of¡¡A¡¡and¡¡B¡¡in¡¡matter£»¡¡is
the¡¡force¡¡of¡¡gravitation¡£¡¡If¡¡A¡¡preponderates¡¡we¡¡have¡¡the¡¡force¡¡of¡¡attraction£»¡¡if¡¡B¡¡preponderates¡¡we
have¡¡that¡¡of¡¡expansion¡£¡¡The¡¡quantitative¡¡positing¡¡of¡¡the¡¡forces¡¡of¡¡attraction¡¡and¡¡expansion¡¡passes
into¡¡the¡¡infinite£»¡¡their¡¡equilibrium¡¡exists¡¡in¡¡the¡¡whole£»¡¡not¡¡in¡¡the¡¡individual¡£¡±¡¡£¨19£©¡¡From¡¡matter¡¡as¡¡the
first¡¡indifference¡¡in¡¡immediacy¡¡Schelling¡¡now¡¡passes¡¡on¡¡to¡¡further¡¡determinations¡£
The¡¡second¡¡potency¡¡£¨A2£©¡¡is¡¡light£»¡¡this¡¡identity¡¡itself¡¡posited¡¡as¡¡existent£»¡¡in¡¡so¡¡far¡¡as¡¡A¡¡=¡¡B£»¡¡A2¡¡is
also¡¡posited¡£¡¡The¡¡same¡¡identity£»¡¡¡°posited¡¡under¡¡the¡¡form¡¡of¡¡relative¡¡identity£»¡±¡¡i¡£e¡£¡¡of¡¡the¡¡polarity
which¡¡we¡¡find¡¡appearing¡¡¡°in¡¡A¡¡and¡¡B£»¡¡is¡¡the¡¡force¡¡of¡¡cohesion¡£¡¡Cohesion¡¡is¡¡the¡¡impression¡¡made
on¡¡matter¡¡by¡¡the¡¡self¡hood¡±¡¡of¡¡light¡¡¡°or¡¡by¡¡personality£»¡¡whereby¡¡matter¡¡first¡¡emerges¡¡as¡¡particular
out¡¡of¡¡the¡¡universal¡¡identity£»¡¡and¡¡raises¡¡itself¡¡into¡¡the¡¡realm¡¡of¡¡form¡£¡±¡¡Planets£»¡¡metals¡¡and¡¡other
bodies¡¡form¡¡a¡¡series¡¡which¡¡under¡¡the¡¡form¡¡of¡¡dynamic¡¡cohesion¡¡expresses¡¡particular¡¡relations¡¡of
cohesion£»¡¡in¡¡which¡¡on¡¡the¡¡one¡¡hand¡¡contraction¡¡preponderates£»¡¡and¡¡on¡¡the¡¡other¡¡hand¡¡expansion¡£
Those¡¡potencies¡¡appear¡¡with¡¡Schelling¡¡as¡¡north¡¡and¡¡south£»¡¡east¡¡and¡¡west¡¡polarity£º¡¡their
developments¡¡further¡¡appear¡¡as¡¡north¡west£»¡¡south¡east£»¡¡&c¡£¡¡He¡¡counts¡¡as¡¡the¡¡last¡¡potency
Mercury£»¡¡Venus£»¡¡the¡¡Earth£»¡¡&c¡£¡¡He¡¡continues£º¡¡¡°Cohesion¡¡outside¡¡of¡¡the¡¡point¡¡of¡¡indifference¡¡I¡¡term
passive¡£¡¡Towards¡¡the¡¡negative¡¡side¡±¡¡£¨or¡¡pole£©¡¡¡°fall¡¡some¡¡of¡¡the¡¡metals¡¡which¡¡stand¡¡next¡¡to¡¡iron£»
after¡¡them¡¡the¡¡so¡called¡¡precious¡¡metals£»¡±¡¡then¡¡the¡¡¡°diamond£»¡¡and¡¡lastly¡¡carbon£»¡¡the¡¡greatest
passive¡¡cohesion¡£¡¡Towards¡¡the¡¡positive¡¡side£»¡¡again£»¡¡some¡¡metals¡¡fall£»¡¡in¡¡which¡¡the¡¡cohesive¡¡nature
of¡¡iron¡¡gradually¡¡diminishes£»¡±¡¡i¡£e¡£¡¡approaches¡¡disintegration£»¡¡and¡¡lastly¡¡¡°disappears¡¡in¡¡nitrogen¡£¡±
Active¡¡cohesion¡¡i