history of philosophy-µÚ90½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
difference¡¡without¡¡a¡¡difference¡£¡¡Self¡consciousness¡¡is¡¡not¡¡dead¡¡identity£»¡¡or¡¡non¡Being£»¡¡but¡¡the
object¡¡which¡¡is¡¡identical¡¡with¡¡me¡£¡¡This¡¡is¡¡immediately¡¡certain£»¡¡all¡¡else¡¡must¡¡be¡¡as¡¡certain¡¡to¡¡me£»
inasmuch¡¡as¡¡it¡¡must¡¡be¡¡my¡¡relation¡¡to¡¡myself¡£¡¡The¡¡content¡¡must¡¡be¡¡transformed¡¡into¡¡the¡¡ego£»¡¡so¡¡that
in¡¡it¡¡I¡¡have¡¡my¡¡determination¡¡alone¡£¡¡This¡¡principle¡¡is¡¡at¡¡first¡¡abstract¡¡and¡¡deficient£»¡¡because¡¡in¡¡it¡¡no
difference£»¡¡or¡¡a¡¡formal¡¡difference¡¡only¡¡is¡¡expressed£»¡¡whereas¡¡the¡¡principle¡¡should¡¡possess¡¡a
content£º¡¡a¡¡subject¡¡and¡¡a¡¡predicate¡¡are¡¡indeed¡¡distinguished¡¡in¡¡it£»¡¡but¡¡only¡¡for¡¡us¡¡who¡¡reflect¡¡upon¡¡it£»
i¡£e¡£¡¡in¡¡itself¡¡there¡¡is¡¡no¡¡difference£»¡¡and¡¡consequently¡¡no¡¡true¡¡content¡£¡¡In¡¡the¡¡second¡¡place£»¡¡this
principle¡¡is¡¡indeed¡¡the¡¡immediate¡¡certainty¡¡of¡¡self¡consciousness£»¡¡but¡¡self¡consciousness¡¡is¡¡likewise
consciousness£»¡¡and¡¡in¡¡it¡¡there¡¡is¡¡likewise¡¡the¡¡certainty¡¡that¡¡other¡¡things¡¡exist¡¡to¡¡which¡¡it¡¡stands¡¡in¡¡an
attitude¡¡of¡¡opposition¡£¡¡In¡¡the¡¡third¡¡place£»¡¡that¡¡principle¡¡has¡¡not¡¡the¡¡truth¡¡in¡¡it£»¡¡for¡¡the¡¡very¡¡reason
that¡¡the¡¡certainty¡¡of¡¡itself¡¡possessed¡¡by¡¡the¡¡ego¡¡has¡¡no¡¡objectivity£»¡¡it¡¡has¡¡not¡¡the¡¡form¡¡of¡¡the
differentiated¡¡content¡¡within¡¡it¡¡¡ª¡¡or¡¡it¡¡stands¡¡in¡¡opposition¡¡to¡¡the¡¡consciousness¡¡of¡¡an¡¡¡°other¡£¡±¡¡
Now¡¡in¡¡order¡¡that¡¡determination¡¡should¡¡come¡¡to¡¡pass£»¡¡i¡£e¡£¡¡a¡¡content¡¡and¡¡difference£»¡¡it¡¡is¡¡essential
for¡¡Fichte¡¡that¡¡a¡¡second¡¡principle¡¡should¡¡be¡¡established£»¡¡which¡¡in¡¡regard¡¡to¡¡form¡¡is¡¡unconditioned£»
but¡¡the¡¡content¡¡of¡¡which¡¡is¡¡conditioned£»¡¡because¡¡it¡¡does¡¡not¡¡belong¡¡to¡¡the¡¡ego¡£¡¡This¡¡second
principle£»¡¡set¡¡forth¡¡under¡¡the¡¡first£»¡¡is£»¡¡¡°I¡¡assert¡¡a¡¡non¡ego¡¡in¡¡opposition¡¡to¡¡the¡¡ego£»¡±¡¡and¡¡in¡¡this
something¡¡other¡¡than¡¡absolute¡¡self¡consciousness¡¡is¡¡set¡¡forth¡££¨13£©¡¡To¡¡this¡¡pertains¡¡the¡¡form¡¡therein
present£»¡¡relation£»¡¡but¡¡the¡¡content¡¡is¡¡the¡¡non¡ego£»¡¡another¡¡content¡¡from¡¡the¡¡ego¡£¡¡We¡¡might¡¡say¡¡that
through¡¡this¡¡content¡¡the¡¡proposition¡¡is¡¡independent£»¡¡since¡¡the¡¡negative¡¡therein¡¡is¡¡an¡¡absolute£»¡¡as
truly¡¡as¡¡the¡¡reverse¡¡¡ª¡¡that¡¡it¡¡is¡¡independent¡¡through¡¡the¡¡form¡¡of¡¡opposition¡¡which¡¡cannot¡¡be
derived¡¡from¡¡the¡¡original¡£¡¡Here£»¡¡then£»¡¡we¡¡have¡¡no¡¡more¡¡to¡¡do¡¡with¡¡derivation£»¡¡although¡¡this
derivation¡¡of¡¡opposition¡¡from¡¡the¡¡first¡¡proposition¡¡was¡¡all¡¡the¡¡same¡¡demanded¡£¡¡Inasmuch¡¡as¡¡I¡¡posit
another¡¡in¡¡opposition¡¡to¡¡the¡¡ego£»¡¡I¡¡posit¡¡myself¡¡as¡¡not¡¡posited£»¡¡this¡¡non¡ego¡¡is¡¡the¡¡object¡¡generally£»
i¡£e¡£¡¡that¡¡which¡¡is¡¡opposed¡¡to¡¡me¡£¡¡This¡¡other¡¡is¡¡the¡¡negative¡¡of¡¡the¡¡ego£»¡¡thus¡¡when¡¡Fichte¡¡called¡¡it
the¡¡non¡ego¡¡he¡¡was¡¡expressing¡¡himself¡¡in¡¡a¡¡very¡¡happy£»¡¡suitable£»¡¡and¡¡consistent¡¡manner¡£¡¡There¡¡has
been¡¡a¡¡good¡¡deal¡¡of¡¡ridicule¡¡cast¡¡on¡¡the¡¡ego¡¡and¡¡non¡ego£»¡¡the¡¡expression¡¡is¡¡new£»¡¡and¡¡therefore¡¡to
us¡¡Germans¡¡it¡¡seems¡¡strange¡¡at¡¡first¡£¡¡But¡¡the¡¡French¡¡say¡¡Moi¡¡and¡¡Non¡moi£»¡¡without¡¡finding
anything¡¡laughable¡¡in¡¡it¡£¡¡In¡¡this¡¡principle¡¡the¡¡positing¡¡belongs£»¡¡however£»¡¡to¡¡the¡¡ego£»¡¡but¡¡because¡¡the
non¡ego¡¡is¡¡independent¡¡of¡¡the¡¡ego£»¡¡we¡¡have¡¡two¡¡sides£»¡¡and¡¡self¡consciousness¡¡relates¡¡itself¡¡to
another¡£¡¡This¡¡second¡¡proposition¡¡thus¡¡signifies¡¡that¡¡I¡¡posit¡¡myself¡¡as¡¡limited£»¡¡as¡¡non¡ego£»¡¡but
non¡ego¡¡is¡¡something¡¡quite¡¡new¡¡to¡¡be¡¡added¡£¡¡On¡¡the¡¡one¡¡side¡¡we¡¡thus¡¡have¡¡before¡¡us¡¡a¡¡field¡¡which
is¡¡merely¡¡appropriated¡¡from¡¡the¡¡ego£»¡¡and¡¡in¡¡this¡¡way¡¡we¡¡have¡¡before¡¡us¡¡the¡¡non¡ego¡¡as¡¡our¡¡object¡£
To¡¡these¡¡is¡¡added¡¡yet¡¡a¡¡third¡¡proposition£»¡¡in¡¡which¡¡I¡¡now¡¡make¡¡this¡¡division¡¡into¡¡ego¡¡and¡¡non¡ego£º
it¡¡is¡¡the¡¡synthetic¡¡principle£»¡¡the¡¡proposition¡¡of¡¡ground£»¡¡which¡¡in¡¡content¡¡is¡¡unconditioned£»¡¡just¡¡as¡¡in
the¡¡second¡¡was¡¡the¡¡case¡¡in¡¡regard¡¡to¡¡form¡£¡¡This¡¡third¡¡proposition¡¡is¡¡the¡¡determination¡¡of¡¡the¡¡first
two¡¡through¡¡one¡¡another£»¡¡in¡¡such¡¡a¡¡way¡¡that¡¡the¡¡ego¡¡limits¡¡the¡¡non¡ego¡£¡¡¡°In¡¡and¡¡through¡¡the¡¡ego
both¡¡the¡¡ego¡¡and¡¡the¡¡non¡ego¡¡are¡¡posited¡¡as¡¡capable¡¡of¡¡being¡¡mutually¡¡limited¡¡by¡¡means¡¡of¡¡one
another£»¡¡i¡£e¡£¡¡in¡¡such¡¡a¡¡way¡¡that¡¡the¡¡reality¡¡of¡¡the¡¡one¡¡abrogates¡¡the¡¡reality¡¡of¡¡the¡¡other¡£¡±¡¡In
limitation¡¡both¡¡are¡¡negated£»¡¡but¡¡¡°only¡¡in¡¡part¡±¡¡£»¡¡only¡¡thus¡¡are¡¡synthesis¡¡and¡¡deduction¡¡possible¡£¡¡I
posit¡¡the¡¡non¡ego£»¡¡which¡¡is¡¡for¡¡me£»¡¡in¡¡myself£»¡¡in¡¡my¡¡identity¡¡with¡¡myself£»¡¡thus¡¡I¡¡take¡¡it¡¡from¡¡its
non¡identity£»¡¡its¡¡not¡being¡I£»¡¡that¡¡is¡¡to¡¡say¡¡I¡¡limit¡¡it¡£¡¡This¡¡limitation¡¡of¡¡the¡¡non¡ego¡¡Fichte¡¡expresses
thus£º¡¡¡°I¡¡place¡¡in¡¡opposition¡¡to¡¡the¡¡ego£»¡±¡¡and¡¡indeed¡¡¡°to¡¡the¡¡divisible¡¡ego£»¡¡a¡¡divisible¡¡non¡ego¡£¡±
The¡¡non¡ego¡¡I¡¡destroy¡¡as¡¡a¡¡complete¡¡sphere£»¡¡which¡¡it¡¡was¡¡according¡¡to¡¡the¡¡second¡¡principle£»¡¡and
posit¡¡it¡¡as¡¡divisible£»¡¡I¡¡likewise¡¡posit¡¡the¡¡ego¡¡as¡¡divisible¡¡in¡¡so¡¡far¡¡as¡¡the¡¡non¡ego¡¡is¡¡present¡¡in¡¡it¡£¡¡The
whole¡¡sphere¡¡which¡¡I¡¡have¡¡before¡¡me¡¡is¡¡supposed¡¡indeed¡¡to¡¡be¡¡the¡¡ego£»¡¡but¡¡in¡¡it¡¡I¡¡have¡¡not¡¡one
but¡¡two¡£¡¡The¡¡proposition¡¡of¡¡ground¡¡is¡¡thus¡¡the¡¡relation¡¡of¡¡reality¡¡and¡¡negation£»¡¡i¡£e¡£¡¡it¡¡is¡¡limitation£»¡¡it
contains¡¡the¡¡ego¡¡limited¡¡by¡¡the¡¡non¡ego£»¡¡and¡¡the¡¡non¡ego¡¡limited¡¡by¡¡the¡¡ego¡££¨14£©¡¡Of¡¡this¡¡synthesis
there¡¡is¡¡nothing£»¡¡properly¡¡speaking£»¡¡contained¡¡in¡¡the¡¡two¡¡earlier¡¡propositions¡£¡¡Even¡¡this¡¡first
presentation¡¡of¡¡the¡¡three¡¡principles¡¡does¡¡away¡¡with¡¡the¡¡immanence¡¡of¡¡real¡¡knowledge¡£¡¡Thus¡¡the
presentation¡¡is¡¡here¡¡also¡¡subject¡¡to¡¡an¡¡opposite¡¡from¡¡the¡¡first£»¡¡as¡¡it¡¡is¡¡with¡¡Kant£»¡¡even¡¡if¡¡these¡¡are
two¡¡acts¡¡of¡¡the¡¡ego¡¡merely£»¡¡and¡¡we¡¡remain¡¡entirely¡¡in¡¡the¡¡ego¡£
Now¡¡that¡¡limitation¡¡may¡¡take¡¡place¡¡for¡¡me¡¡in¡¡two¡¡different¡¡ways£º¡¡at¡¡one¡¡time¡¡the¡¡one¡¡is¡¡passive£»¡¡at
another¡¡time¡¡the¡¡other¡¡is¡¡so¡£¡¡In¡¡this¡¡limitation¡¡the¡¡ego¡¡may¡¡posit¡¡the¡¡non¡ego¡¡as¡¡limiting¡¡and¡¡itself¡¡as
limited£»¡¡in¡¡such¡¡a¡¡way¡¡that¡¡the¡¡ego¡¡posits¡¡itself¡¡as¡¡requiring¡¡to¡¡have¡¡an¡¡object£»¡¡I¡¡know¡¡myself¡¡indeed
as¡¡ego£»¡¡but¡¡determined¡¡by¡¡the¡¡non¡ego£»¡¡non¡ego¡¡is¡¡here¡¡active¡¡and¡¡ego¡¡passive¡£¡¡Or£»¡¡on¡¡the¡¡other
hand£»¡¡the¡¡ego£»¡¡as¡¡abrogating¡¡other¡being£»¡¡is¡¡that¡¡which¡¡limits£»¡¡and¡¡non¡ego¡¡is¡¡the¡¡limited¡£¡¡I¡¡know
myself¡¡then¡¡as¡¡clearly¡¡determining¡¡the¡¡non¡ego£»¡¡as¡¡the¡¡absolute¡¡cause¡¡of¡¡the¡¡non¡ego¡¡as¡¡such£»¡¡for¡¡I
can¡¡think¡£¡¡The¡¡first¡¡is¡¡the¡¡proposition¡¡of¡¡the¡¡theoretic¡¡reason£»¡¡of¡¡intelligence£º¡¡the¡¡second¡¡the
proposition¡¡of¡¡practical¡¡reason£»¡¡of¡¡will¡££¨15£©¡¡The¡¡will¡¡is¡¡this£»¡¡that¡¡I¡¡am¡¡conscious¡¡of¡¡myself¡¡as¡¡limiting
the¡¡object£»¡¡thus¡¡I¡¡make¡¡myself¡¡exercise¡¡activity¡¡upon¡¡the¡¡object¡¡and¡¡maintain¡¡myself¡£¡¡The¡¡theoretic
proposition¡¡is¡¡that¡¡the¡¡object¡¡is¡¡before¡¡me¡¡and¡¡it¡¡determines¡¡me¡£¡¡The¡¡ego¡¡is£»¡¡since¡¡I¡¡perceive£»¡¡a
content£»¡¡and¡¡I¡¡have¡¡this¡¡content¡¡in¡¡me£»¡¡which¡¡is¡¡thus¡¡outside¡¡of¡¡me¡£¡¡This¡¡is¡¡on¡¡the¡¡whole¡¡the¡¡same
thing¡¡as¡¡we¡¡meet¡¡with¡¡in¡¡the¡¡experience¡¡of¡¡Kant£º¡¡it¡¡comes¡¡to¡¡the¡¡same¡¡thing¡¡whether¡¡it¡¡is¡¡by¡¡matter
or¡¡the¡¡non¡ego¡¡that¡¡the¡¡ego¡¡is¡¡here¡¡determined¡£
b¡£¡¡In¡¡the¡¡theoretic¡¡consciousness¡¡the¡¡ego£»¡¡although¡¡the¡¡assertive¡¡generally£»¡¡finds¡¡itself¡¡limited¡¡by¡¡the
non¡ego¡£¡¡But¡¡it¡¡is¡¡identical¡¡with¡¡itself£»¡¡hence¡¡its¡¡infinite¡¡activity¡¡ever¡¡sets¡¡itself¡¡to¡¡abrogate¡¡the
non¡ego¡¡and¡¡to¡¡bring¡¡forth¡¡itself¡£¡¡Now¡¡the¡¡different¡¡methods¡¡whereby¡¡the¡¡ego¡¡sets¡¡forth¡¡itself¡¡are
the¡¡different¡¡methods¡¡of¡¡its¡¡activity£»¡¡these¡¡we¡¡have¡¡to¡¡understand¡¡in¡¡their¡¡necessity¡£¡¡But¡¡since
philosophic¡¡knowledge¡¡is¡¡the¡¡consideration¡¡of¡¡consciousness¡¡itself¡¡£¨supra£»¡¡p¡£¡¡483£©£»¡¡I¡¡can¡¡only
know¡¡knowledge£»¡¡the¡¡act¡¡of¡¡the¡¡ego¡£¡¡Fichte¡¡thus¡¡appeals¡¡to¡¡consciousness£»¡¡postulates¡¡ego¡¡and
non¡ego¡¡in¡¡their¡¡abstraction£»¡¡and¡¡since¡¡philosophic¡¡knowledge¡¡is¡¡the¡¡consciousness¡¡of
consciousness£»¡¡it¡¡is¡¡not¡¡sufficient¡¡that¡¡I¡¡should¡¡find¡¡its¡¡determinations¡¡in¡¡consciousness£»¡¡for¡¡I
produce¡¡them¡¡with¡¡consciousness¡£¡¡Common¡¡consciousness£»¡¡indeed£»¡¡likewise¡¡brings¡¡forth¡¡all¡¡the
determinations¡¡of¡¡the¡¡ordinary¡¡conception¡¡and¡¡of¡¡thought£»¡¡but¡¡without¡¡¡ª¡¡on¡¡the¡¡theoretic¡¡side¡¡at
least¡¡¡ª¡¡having¡¡any¡¡knowledge¡¡of¡¡it£»¡¡for¡¡it¡¡is¡¡the¡¡fact¡¡of¡¡being¡¡limited¡¡alone¡¡that¡¡is¡¡present¡¡to¡¡it¡£¡¡Thus£»
when¡¡I¡¡see¡¡a¡¡large¡¡square¡¡object£»¡¡such¡¡as¡¡a¡¡wall£»¡¡my¡¡ordinary¡¡consciousness¡¡accepts¡¡these
determinations¡¡as¡¡they¡¡are¡¡given¡¡to¡¡it£»¡¡the¡¡object¡¡is¡£¡¡In¡¡so¡¡doing¡¡I¡¡do¡¡not¡¡think¡¡of¡¡seeing£»¡¡but¡¡of¡¡the
object£»¡¡seeing£»¡¡however£»¡¡is¡¡my¡¡activity£»¡¡the¡¡determinations¡¡of¡¡my¡¡faculty¡¡of¡¡sensation¡¡are¡¡thus
posited¡¡through¡¡me¡££¨16£©¡¡The¡¡ego¡¡as¡¡theoretic¡¡is£»¡¡indeed£»¡¡aware¡¡in¡¡philosophic¡¡consciousness¡¡that¡¡it
is¡¡the¡¡ego¡¡which¡¡posits£»¡¡but¡¡here¡¡it¡¡posits¡¡that¡¡the¡¡non¡ego¡¡posits¡¡somewhat¡¡in¡¡me¡£¡¡The¡¡ego¡¡thus
posits¡¡itself¡¡as¡¡that¡¡which¡¡is¡¡limited¡¡by¡¡the¡¡non¡ego¡£¡¡I¡¡make¡¡this¡¡limitation¡¡mine£»¡¡thus¡¡is¡¡it¡¡for¡¡me¡¡in
me£»¡¡this¡¡passivity¡¡of¡¡the¡¡ego¡¡is¡¡itself¡¡the¡¡activity¡¡of¡¡the¡¡ego¡£¡¡As¡¡a¡¡matter¡¡of¡¡fact£»¡¡all¡¡reality¡¡which
appears¡¡in¡¡the¡¡object¡¡for¡¡the¡¡ego¡¡is¡¡a¡¡determination¡¡of¡¡the¡¡ego£»£¨17£©¡¡just¡¡as¡¡the¡¡categories¡¡and¡¡other
determinations¡¡were¡¡in¡¡Kant's¡¡case¡£¡¡Thus¡¡it¡¡is¡¡here¡¡more¡¡especially¡¡that¡¡we¡¡should¡¡expect¡¡Fichte¡¡to
demonstrate¡¡the¡¡return¡¡of¡¡other¡Being¡¡into¡¡absolute¡¡consciousness¡£¡¡However£»¡¡because¡¡after¡¡all¡¡the
other¡Being¡¡was¡¡regarded¡¡as¡¡unconditioned£»¡¡as¡¡implicit£»¡¡this¡¡return¡¡does¡¡not¡¡come¡¡to¡¡pass¡£¡¡The
ego¡¡determines¡¡the¡¡'other£»'¡¡indeed£»¡¡but¡¡this¡¡unity¡¡is¡¡an¡¡altogether¡¡finite¡¡unity£»¡¡non¡ego¡¡has¡¡thus
immediately¡¡escaped¡¡from¡¡determination¡¡once¡¡more¡¡and¡¡gone¡¡forth¡¡from¡¡this¡¡unity¡£¡¡What¡¡we¡¡find
is¡¡merely¡¡an¡¡alternation¡¡between¡¡self¡consciousness¡¡and¡¡the¡¡consciousness¡¡of¡¡another£»¡¡and¡¡the
constant¡¡progression¡¡of¡¡this¡¡alternation£»¡¡which¡¡never¡¡reaches¡¡any¡¡end¡££¨18£©
The¡¡development¡¡of¡¡theoretic¡¡reason¡¡is¡¡the¡¡following¡out¡¡of¡¡the¡¡manifold¡¡relationships¡¡between¡¡the
ego¡¡and¡¡non¡ego£»¡¡the¡¡forms¡¡of¡¡this¡¡limitation¡¡which¡¡Fichte¡¡now¡¡goes¡¡through¡¡are¡¡the¡¡determinations
of¡¡the¡¡object¡£¡¡These¡¡particular¡¡thought¡determinations¡¡he¡¡calls¡¡categories£»¡¡and¡¡he¡¡seeks¡¡to
demonstrate¡¡them¡¡in¡¡their¡¡necessity£»¡¡from¡¡the¡¡time¡¡of¡¡Aristotle¡¡onwards¡¡no¡¡one¡¡had¡¡thought¡¡of¡¡so
doing¡£¡¡The¡¡first¡¡of¡¡t