Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > history of philosophy >

µÚ68½Ú

history of philosophy-µÚ68½Ú

С˵£º history of philosophy ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



multiplicity¡¡which¡¡remains¡¡locked¡¡up¡¡in¡¡simplicity¡£¡¡Determinateness¡¡and¡¡variation¡¡such¡¡as¡¡this£»
which¡¡remains¡¡and¡¡goes¡¡on¡¡in¡¡the¡¡existence¡¡itself£»¡¡is¡¡a¡¡perception£»¡±¡¡and¡¡therefore¡¡Leibnitz¡¡says¡¡all
monads¡¡perceive¡¡or¡¡represent¡¡£¨for¡¡we¡¡may¡¡translate¡¡perceptio¡¡by¡¡representation¡¡£§Vorstellung£§£©¡£¡¡In
other¡¡words£»¡¡they¡¡are¡¡in¡¡themselves¡¡universal£»¡¡for¡¡universality¡¡is¡¡just¡¡simplicity¡¡in¡¡multiplicity£»¡¡and
therefore¡¡a¡¡simplicity¡¡which¡¡is¡¡at¡¡the¡¡same¡¡time¡¡change¡¡and¡¡motion¡¡of¡¡multiplicity¡£¡¡This¡¡is¡¡a¡¡very
important¡¡determination£»¡¡in¡¡substance¡¡itself¡¡there¡¡is¡¡negativity£»¡¡determinateness£»¡¡without¡¡its
simplicity¡¡and¡¡its¡¡implicitude¡¡being¡¡given¡¡up¡£¡¡Further£»¡¡in¡¡it¡¡there¡¡is¡¡this¡¡idealism£»¡¡that¡¡the¡¡simple¡¡is
something¡¡in¡¡itself¡¡distinguished£»¡¡and¡¡in¡¡spite¡¡of¡¡its¡¡variation£»¡¡that¡¡it¡¡yet¡¡remains¡¡one£»¡¡and¡¡continues
in¡¡its¡¡simplicity¡£¡¡An¡¡instance¡¡of¡¡this¡¡is¡¡found¡¡in¡¡¡°I£»¡±¡¡my¡¡spirit¡£¡¡I¡¡have¡¡many¡¡conceptions£»¡¡a¡¡wealth
of¡¡thought¡¡is¡¡in¡¡me£»¡¡and¡¡yet¡¡I¡¡remain¡¡one£»¡¡notwithstanding¡¡this¡¡variety¡¡of¡¡state¡£¡¡This¡¡identity¡¡may¡¡be
found¡¡in¡¡the¡¡fact¡¡that¡¡what¡¡is¡¡different¡¡is¡¡at¡¡the¡¡same¡¡time¡¡abrogated£»¡¡and¡¡is¡¡determined¡¡as¡¡one£»¡¡the
monads¡¡are¡¡therefore¡¡distinguished¡¡by¡¡modifications¡¡in¡¡themselves£»¡¡but¡¡not¡¡by¡¡external
determinations¡£¡¡These¡¡determinations¡¡contained¡¡in¡¡the¡¡monads¡¡exist¡¡in¡¡them¡¡in¡¡ideal¡¡fashion£»¡¡this
ideality¡¡in¡¡the¡¡monad¡¡is¡¡in¡¡itself¡¡a¡¡whole£»¡¡so¡¡that¡¡these¡¡differences¡¡are¡¡only¡¡representations¡¡and
ideas¡£¡¡This¡¡absolute¡¡difference¡¡what¡¡is¡¡termed¡¡the¡¡Notion£»¡¡what¡¡falls¡¡asunder¡¡in¡¡the¡¡mere
representation¡¡is¡¡held¡¡together¡£¡¡This¡¡is¡¡what¡¡possesses¡¡interest¡¡in¡¡Leibnitz's¡¡philosophy¡£¡¡Such
ideality¡¡in¡¡the¡¡same¡¡way¡¡pertains¡¡to¡¡the¡¡material£»¡¡which¡¡is¡¡also¡¡a¡¡multiplicity¡¡of¡¡monads£»¡¡therefore
the¡¡system¡¡of¡¡Leibnitz¡¡is¡¡an¡¡intellectual¡¡system£»¡¡in¡¡accordance¡¡with¡¡which¡¡all¡¡that¡¡is¡¡material¡¡has
powers¡¡of¡¡representation¡¡and¡¡perception¡£¡¡As¡¡thus¡¡representing£»¡¡the¡¡monad£»¡¡says¡¡Leibnitz£»
possesses¡¡activity£»¡¡for¡¡activity¡¡is¡¡to¡¡be¡¡different£»¡¡and¡¡yet¡¡to¡¡be¡¡one£»¡¡and¡¡this¡¡is¡¡the¡¡only¡¡true
difference¡£¡¡The¡¡monad¡¡not¡¡only¡¡represents£»¡¡it¡¡also¡¡changes£»¡¡but¡¡in¡¡doing¡¡so£»¡¡it¡¡yet¡¡remains¡¡in¡¡itself
absolutely¡¡what¡¡it¡¡is¡£¡¡This¡¡variation¡¡is¡¡based¡¡on¡¡activity¡£¡¡¡°The¡¡activity¡¡of¡¡the¡¡inner¡¡principle£»¡¡by
means¡¡of¡¡which¡¡it¡¡passes¡¡from¡¡one¡¡perception¡¡to¡¡another£»¡¡is¡¡desire¡¡£¨appetitus£©¡£¡±¡¡Variation¡¡in
representation¡¡is¡¡desire£»¡¡and¡¡that¡¡constitutes¡¡the¡¡spontaneity¡¡of¡¡the¡¡monad£»¡¡all¡¡is¡¡now¡¡complete¡¡in
itself£»¡¡and¡¡the¡¡category¡¡of¡¡influence¡¡falls¡¡away¡£¡¡Indeed£»¡¡this¡¡intellectuality¡¡of¡¡all¡¡things¡¡is¡¡a¡¡great
thought¡¡on¡¡the¡¡part¡¡of¡¡Leibnitz£º¡¡¡°All¡¡multiplicity¡¡is¡¡included¡¡in¡¡unity£»¡±£¨10£©¡¡determination¡¡is¡¡not¡¡a
difference¡¡in¡¡respect¡¡of¡¡something¡¡else£»¡¡but¡¡reflected¡¡into¡¡itself£»¡¡and¡¡maintaining¡¡itself¡£¡¡This¡¡is¡¡one
aspect¡¡of¡¡things£»¡¡but¡¡the¡¡matter¡¡is¡¡not¡¡therein¡¡complete£»¡¡it¡¡is¡¡equally¡¡the¡¡case¡¡that¡¡it¡¡is¡¡different¡¡in
respect¡¡of¡¡other¡¡things¡£

Fifthly£º¡¡These¡¡representations¡¡and¡¡ideas¡¡are¡¡not¡¡necessarily¡¡conscious¡¡representations¡¡and¡¡ideas£»
any¡¡more¡¡than¡¡all¡¡monads¡¡as¡¡forming¡¡representations¡¡are¡¡conscious¡£¡¡It¡¡is¡¡true¡¡that¡¡consciousness¡¡is
itself¡¡perception£»¡¡but¡¡a¡¡higher¡¡grade¡¡of¡¡the¡¡same£»¡¡perceptions¡¡of¡¡consciousness¡¡Leibnitz¡¡calls
apperceptions¡£¡¡The¡¡difference¡¡between¡¡the¡¡merely¡¡representing¡¡and¡¡the¡¡self¡­conscious¡¡monads
Leibnitz¡¡makes¡¡one¡¡of¡¡degrees¡¡of¡¡clearness¡£¡¡The¡¡expression¡¡representation¡¡has£»¡¡however£»¡¡certainly
something¡¡awkward¡¡about¡¡it£»¡¡since¡¡we¡¡are¡¡accustomed¡¡to¡¡associate¡¡it¡¡only¡¡with¡¡consciousness£»
and¡¡with¡¡consciousness¡¡as¡¡such£»¡¡but¡¡Leibnitz¡¡admits¡¡also¡¡of¡¡unconscious¡¡representation¡£¡¡When¡¡he
then¡¡adduces¡¡examples¡¡of¡¡unconscious¡¡representations£»¡¡he¡¡appeals¡¡to¡¡the¡¡condition¡¡of¡¡a¡¡swoon¡¡or
of¡¡sleep£»¡¡in¡¡which¡¡we¡¡are¡¡mere¡¡monads£º¡¡and¡¡that¡¡representations¡¡without¡¡consciousness¡¡are
present¡¡in¡¡such¡¡states¡¡he¡¡shows¡¡from¡¡the¡¡fact¡¡of¡¡our¡¡having¡¡perceptions¡¡immediately¡¡after
awakening¡¡out¡¡of¡¡sleep£»¡¡which¡¡shows¡¡that¡¡others¡¡must¡¡have¡¡been¡¡there£»¡¡for¡¡one¡¡perception¡¡arises
only¡¡out¡¡of¡¡others¡££¨11£©¡¡That¡¡is¡¡a¡¡trivial¡¡and¡¡empirical¡¡demonstration¡£

Sixthly£º¡¡These¡¡monads¡¡constitute¡¡the¡¡principle¡¡that¡¡exists¡£¡¡Matter¡¡is¡¡nothing¡¡else¡¡than¡¡their
passive¡¡capability¡£¡¡This¡¡passive¡¡capability¡¡it¡¡is¡¡which¡¡constitutes¡¡the¡¡obscurity¡¡of¡¡the
representations£»¡¡or¡¡a¡¡confusion¡¡which¡¡never¡¡arrives¡¡at¡¡distinction£»¡¡or¡¡desire£»¡¡or¡¡activity¡££¨12£©¡¡That¡¡is
a¡¡correct¡¡definition¡¡of¡¡the¡¡conception£»¡¡it¡¡is¡¡Being£»¡¡matter£»¡¡in¡¡accordance¡¡with¡¡the¡¡moment¡¡of
simplicity¡£¡¡This¡¡is¡¡implicitly¡¡activity£»¡¡¡°mere¡¡implicitness¡¡without¡¡actualization¡±¡¡would¡¡therefore¡¡be¡¡a
better¡¡expression¡£¡¡The¡¡transition¡¡from¡¡obscurity¡¡to¡¡distinctness¡¡Leibnitz¡¡exemplifies¡¡by¡¡the¡¡state¡¡of
swooning¡£

Seventhly£º¡¡Bodies¡¡as¡¡bodies¡¡are¡¡aggregates¡¡of¡¡monads£º¡¡they¡¡are¡¡mere¡¡heaps¡¡which¡¡cannot¡¡be
termed¡¡substances£»¡¡any¡¡more¡¡than¡¡a¡¡flock¡¡of¡¡sheep¡¡can¡¡bear¡¡this¡¡name¡££¨13£©¡¡The¡¡continuity¡¡of¡¡the
same¡¡is¡¡an¡¡arrangement¡¡or¡¡extension£»¡¡but¡¡space¡¡is¡¡nothing¡¡in¡¡itself£»£¨14£©¡¡it¡¡is¡¡only¡¡in¡¡another£»¡¡or¡¡a
unity¡¡which¡¡our¡¡understanding¡¡gives¡¡to¡¡that¡¡aggregate¡££¨15£©

b¡£¡¡Leibnitz¡¡goes¡¡on¡¡to¡¡determine¡¡and¡¡distinguish¡¡more¡¡clearly¡¡as¡¡the¡¡principal¡¡moments£»¡¡inorganic£»
organic£»¡¡and¡¡conscious¡¡monads£»¡¡and¡¡he¡¡does¡¡it¡¡in¡¡the¡¡following¡¡way¡£

Such¡¡bodies¡¡as¡¡have¡¡no¡¡inner¡¡unity£»¡¡whose¡¡elements¡¡are¡¡connected¡¡merely¡¡by¡¡space£»¡¡or¡¡externally£»
are¡¡inorganic£»¡¡they¡¡have¡¡not¡¡an¡¡entelechy¡¡or¡¡one¡¡monad¡¡which¡¡rules¡¡over¡¡the¡¡rest¡££¨16£©¡¡The
continuity¡¡of¡¡space¡¡as¡¡a¡¡merely¡¡external¡¡relation¡¡has¡¡not¡¡the¡¡Notion¡¡in¡¡itself¡¡of¡¡the¡¡likeness¡¡of¡¡these
monads¡¡in¡¡themselves¡£¡¡Continuity¡¡is¡¡in¡¡fact¡¡to¡¡be¡¡regarded¡¡in¡¡them¡¡as¡¡an¡¡arrangement£»¡¡a¡¡similarity¡¡in
themselves¡£¡¡Leibnitz¡¡therefore¡¡defines¡¡their¡¡movements¡¡as¡¡like¡¡one¡¡another£»¡¡as¡¡a¡¡harmony¡¡in
themselves£»£¨17£©¡¡but¡¡again£»¡¡this¡¡is¡¡as¡¡much¡¡as¡¡saying¡¡that¡¡their¡¡similarity¡¡is¡¡not¡¡in¡¡themselves¡£¡¡In¡¡fact
continuity¡¡forms¡¡the¡¡essential¡¡determination¡¡of¡¡the¡¡inorganic£»¡¡but¡¡it¡¡must¡¡at¡¡the¡¡same¡¡time¡¡not¡¡be
taken¡¡as¡¡something¡¡external¡¡or¡¡as¡¡likeness£»¡¡but¡¡as¡¡penetrating¡¡or¡¡penetrated¡¡unity£»¡¡which¡¡has
dissolved¡¡individuality¡¡in¡¡itself¡¡like¡¡a¡¡fluid¡£¡¡But¡¡to¡¡this¡¡point¡¡Leibnitz¡¡does¡¡not¡¡attain£»¡¡because¡¡for¡¡him
monads¡¡are¡¡the¡¡absolute¡¡principle£»¡¡and¡¡individuality¡¡does¡¡not¡¡annul¡¡itself¡£

A¡¡higher¡¡degree¡¡of¡¡Being¡¡is¡¡found¡¡in¡¡bodies¡¡with¡¡life¡¡and¡¡soul£»¡¡in¡¡which¡¡one¡¡monad¡¡has¡¡dominion
over¡¡the¡¡rest¡£¡¡The¡¡body¡¡which¡¡is¡¡bound¡¡up¡¡with¡¡the¡¡monad£»¡¡of¡¡which¡¡the¡¡one¡¡monad¡¡is¡¡the
entelechy¡¡or¡¡soul£»¡¡is¡¡with¡¡this¡¡soul¡¡named¡¡a¡¡living¡¡creature£»¡¡an¡¡animal¡£¡¡One¡¡such¡¡entelechy¡¡rules
over¡¡the¡¡rest£»¡¡yet¡¡not¡¡really£»¡¡but¡¡formally£º¡¡the¡¡limbs¡¡of¡¡this¡¡animal£»¡¡however£»¡¡are¡¡again¡¡themselves
such¡¡living¡¡things£»¡¡each¡¡of¡¡which¡¡has¡¡in¡¡its¡¡turn¡¡its¡¡ruling¡¡entelechy¡¡within¡¡it¡££¨18£©¡¡But¡¡ruling¡¡is¡¡here¡¡an
inappropriate¡¡expression¡£¡¡To¡¡rule¡¡in¡¡this¡¡case¡¡is¡¡not¡¡to¡¡rule¡¡over¡¡others£»¡¡for¡¡all¡¡are¡¡independent£»¡¡it¡¡is
therefore¡¡only¡¡a¡¡formal¡¡expression¡£¡¡If¡¡Leibnitz¡¡had¡¡not¡¡helped¡¡himself¡¡out¡¡with¡¡the¡¡word¡¡rule£»¡¡and
developed¡¡the¡¡idea¡¡further£»¡¡this¡¡dominant¡¡monad¡¡would¡¡have¡¡abrogated¡¡the¡¡others£»¡¡and¡¡put¡¡them¡¡in
a¡¡negative¡¡position£»¡¡the¡¡implicitness¡¡of¡¡the¡¡other¡¡monads£»¡¡or¡¡the¡¡principle¡¡of¡¡the¡¡absolute¡¡Being¡¡of
these¡¡points¡¡or¡¡individuals¡¡would¡¡have¡¡disappeared¡£¡¡Yet¡¡we¡¡shall¡¡later¡¡on¡¡come¡¡across¡¡this¡¡relation
of¡¡the¡¡individuals¡¡to¡¡one¡¡another¡£

The¡¡conscious¡¡monad¡¡distinguishes¡¡itself¡¡from¡¡the¡¡naked¡¡£¨material£©¡¡monads¡¡by¡¡the¡¡distinctness¡¡of
the¡¡representation¡£¡¡But¡¡this¡¡is¡¡of¡¡course¡¡only¡¡an¡¡indefinite¡¡word£»¡¡a¡¡formal¡¡distinction£»¡¡it¡¡indicates
that¡¡consciousness¡¡is¡¡the¡¡very¡¡thing¡¡that¡¡constitutes¡¡the¡¡distinction¡¡of¡¡the¡¡undistinguished£»¡¡and¡¡that
distinction¡¡constitutes¡¡the¡¡determination¡¡of¡¡consciousness¡£¡¡Leibnitz¡¡more¡¡particularly¡¡defined¡¡the
distinction¡¡of¡¡man¡¡as¡¡that¡¡¡°he¡¡is¡¡capable¡¡of¡¡the¡¡knowledge¡¡of¡¡necessary¡¡and¡¡eternal¡¡truths£»¡¨¡¡¡ª¡¡or
that¡¡he¡¡conceives¡¡the¡¡universal¡¡on¡¡the¡¡one¡¡hand£»¡¡and¡¡on¡¡the¡¡other¡¡what¡¡is¡¡connected¡¡with¡¡it£»¡¡the
nature¡¡and¡¡essence¡¡of¡¡self¡­consciousness¡¡lies¡¡in¡¡the¡¡universality¡¡of¡¡the¡¡Notions¡£¡¡¡°These¡¡eternal
truths¡¡rest¡¡on¡¡two¡¡maxims£»¡¡the¡¡one¡¡is¡¡that¡¡of¡¡contradiction£»¡¡the¡¡other¡¡is¡¡that¡¡of¡¡sufficient¡¡reason¡£¡±
The¡¡former¡¡of¡¡these¡¡is¡¡unity¡¡expressed¡¡in¡¡useless¡¡fashion¡¡as¡¡a¡¡maxim£»¡¡the¡¡distinction¡¡of¡¡the
undistinguishable£»¡¡A=A£»¡¡it¡¡is¡¡the¡¡definition¡¡of¡¡thinking£»¡¡but¡¡not¡¡a¡¡maxim¡¡which¡¡could¡¡contain¡¡a¡¡truth
as¡¡content£»¡¡or¡¡it¡¡does¡¡not¡¡express¡¡the¡¡Notion¡¡of¡¡distinction¡¡as¡¡such¡£¡¡The¡¡other¡¡important¡¡principle
was£»¡¡on¡¡the¡¡other¡¡hand£º¡¡What¡¡is¡¡not¡¡distinguished¡¡in¡¡thought¡¡is¡¡not¡¡distinguished¡¡£¨p¡£¡¡333£©¡£¡¡¡°The
maxim¡¡of¡¡the¡¡reason¡¡is¡¡that¡¡everything¡¡has¡¡its¡¡reason£»¡±£¨19£©¡¡¡ª¡¡the¡¡particular¡¡has¡¡the¡¡universal¡¡as¡¡its
essential¡¡reality¡£¡¡Necessary¡¡truth¡¡must¡¡have¡¡its¡¡reason¡¡in¡¡itself¡¡in¡¡such¡¡a¡¡manner¡¡that¡¡it¡¡is¡¡found¡¡by
analysis£»¡¡i¡£e¡£¡¡through¡¡that¡¡very¡¡maxim¡¡of¡¡identity¡£¡¡For¡¡analysis¡¡is¡¡the¡¡very¡¡favourite¡¡plan¡¡of¡¡resolving
into¡¡simple¡¡ideas¡¡and¡¡principles£º¡¡a¡¡resolution¡¡which¡¡annihilates¡¡their¡¡relation£»¡¡and¡¡which¡¡therefore¡¡in
fact¡¡forms¡¡a¡¡transition¡¡into¡¡the¡¡opposite£»¡¡though¡¡it¡¡does¡¡not¡¡have¡¡the¡¡consciousness¡¡of¡¡the¡¡same£»
and¡¡on¡¡that¡¡account¡¡also¡¡excludes¡¡the¡¡Notion£»¡¡for¡¡every¡¡opposite¡¡it¡¡lays¡¡hold¡¡of¡¡only¡¡in¡¡its¡¡identity¡£
Sufficient¡¡reason¡¡seems¡¡to¡¡be¡¡a¡¡pleonasm£»¡¡but¡¡Leibnitz¡¡understood¡¡by¡¡this¡¡aims£»¡¡final¡¡causes
£¨caus£¿¡¡finales£©£»¡¡the¡¡difference¡¡between¡¡which¡¡and¡¡the¡¡causal¡¡nexus¡¡or¡¡the¡¡efficient¡¡cause¡¡he¡¡here
brings¡¡under¡¡discussion¡££¨20£©

c¡£¡¡The¡¡universal¡¡itself£»¡¡absolute¡¡essence£»¡¡which¡¡with¡¡Leibnitz¡¡is¡¡something¡¡quite¡¡different¡¡from¡¡the
monads£»¡¡separates¡¡itself¡¡also¡¡into¡¡two¡¡s

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ