Ì«×ÓүС˵Íø > Ó¢Óïµç×ÓÊé > history of philosophy >

µÚ67½Ú

history of philosophy-µÚ67½Ú

С˵£º history of philosophy ×ÖÊý£º ÿҳ4000×Ö

°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·­Ò³£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡



at¡¡Wolff£»¡¡who¡¡had¡¡taken¡¡them¡¡to¡¡be¡¡quite¡¡in¡¡earnest£»¡¡his¡¡opinion¡¡was¡¡that¡¡if¡¡Leibnitz¡¡were¡¡not
perfectly¡¡serious¡¡in¡¡this¡¡sense¡¡with¡¡his¡¡Th¨¦odic¨¦e£»¡¡yet¡¡he¡¡had¡¡unconsciously¡¡written¡¡his¡¡best
therein¡£¡¡Leibnitz's¡¡Th¨¦odic¨¦e¡¡is¡¡not¡¡what¡¡we¡¡can¡¡altogether¡¡appreciate£»¡¡it¡¡is¡¡a¡¡justification¡¡of¡¡God
in¡¡regard¡¡to¡¡the¡¡evil¡¡in¡¡the¡¡world¡£¡¡His¡¡really¡¡philosophic¡¡thoughts¡¡are¡¡most¡¡connectedly¡¡expressed
in¡¡a¡¡treatise¡¡on¡¡the¡¡principles¡¡of¡¡Grace¡¡£¨Principes¡¡de¡¡la¡¡Nature¡¡et¡¡de¡¡la¡¡Grace£©£»£¨3£©¡¡and¡¡especially
in¡¡the¡¡pamphlet¡¡addressed¡¡to¡¡Prince¡¡Eug¨¦ne¡¡of¡¡Savoy¡££¨4£©¡¡¡£Buhle¡¡£¨Geschichte¡¡der¡¡neuern
Philosophie£»¡¡vol¡£¡¡iv¡£¡¡section¡¡1£»¡¡p¡£¡¡131£©¡¡says£º¡¡¡°His¡¡philosophy¡¡is¡¡not¡¡so¡¡much¡¡the¡¡product¡¡of¡¡free£»
independent£»¡¡original¡¡speculation£»¡¡as¡¡the¡¡result¡¡of¡¡well¡­tested¡¡earlier¡±¡¡and¡¡later¡¡¡°systems£»¡¡an
eclecticism¡¡whose¡¡defects¡¡he¡¡tried¡¡to¡¡remedy¡¡in¡¡his¡¡own¡¡way¡£¡¡It¡¡is¡¡a¡¡desultory¡¡treatment¡¡of
Philosophy¡¡in¡¡letters¡£¡±

Leibnitz¡¡followed¡¡the¡¡same¡¡general¡¡plan¡¡in¡¡his¡¡philosophy¡¡as¡¡the¡¡physicists¡¡adopt¡¡when¡¡they
advance¡¡a¡¡hypothesis¡¡to¡¡explain¡¡existing¡¡data¡£¡¡He¡¡has¡¡it¡¡that¡¡general¡¡conceptions¡¡of¡¡the¡¡Idea¡¡are¡¡to
be¡¡found£»¡¡from¡¡which¡¡the¡¡particular¡¡may¡¡be¡¡derived£»¡¡here£»¡¡on¡¡account¡¡of¡¡existing¡¡data£»¡¡the¡¡general
conception£»¡¡for¡¡example¡¡the¡¡determination¡¡of¡¡force¡¡or¡¡matter¡¡furnished¡¡by¡¡reflection£»¡¡must¡¡have¡¡its
determinations¡¡disposed¡¡in¡¡such¡¡a¡¡way¡¡that¡¡it¡¡fits¡¡in¡¡with¡¡the¡¡data¡£¡¡Thus¡¡the¡¡philosophy¡¡of¡¡Leibnitz
seems¡¡to¡¡be¡¡not¡¡so¡¡much¡¡a¡¡philosophic¡¡system¡¡as¡¡an¡¡hypothesis¡¡regarding¡¡the¡¡existence¡¡of¡¡the
world£»¡¡namely¡¡how¡¡it¡¡is¡¡to¡¡be¡¡determined¡¡in¡¡accordance¡¡with¡¡the¡¡metaphysical¡¡determinations¡¡and
the¡¡data¡¡and¡¡assumptions¡¡of¡¡the¡¡ordinary¡¡conception£»¡¡which¡¡are¡¡accepted¡¡as¡¡valid£¨5£©¡¡¡ª¡¡thoughts
which¡¡are¡¡moreover¡¡propounded¡¡without¡¡the¡¡sequence¡¡pertaining¡¡to¡¡the¡¡Notion¡¡and¡¡mainly¡¡in
narrative¡¡style£»¡¡and¡¡which¡¡taken¡¡by¡¡themselves¡¡show¡¡no¡¡necessity¡¡in¡¡their¡¡connection¡£¡¡Leibnitz's
philosophy¡¡therefore¡¡appears¡¡like¡¡a¡¡string¡¡of¡¡arbitrary¡¡assertions£»¡¡which¡¡follow¡¡one¡¡on¡¡another¡¡like
a¡¡metaphysical¡¡romance£»¡¡it¡¡is¡¡only¡¡when¡¡we¡¡see¡¡what¡¡he¡¡wished¡¡thereby¡¡to¡¡avoid¡¡that¡¡we¡¡learn¡¡to
appreciate¡¡its¡¡value¡£¡¡He¡¡really¡¡makes¡¡use¡¡of¡¡external¡¡reasons¡¡mainly¡¡in¡¡order¡¡to¡¡establish¡¡relations£º
¡°Because¡¡the¡¡validity¡¡of¡¡such¡¡relations¡¡cannot¡¡be¡¡allowed£»¡¡nothing¡¡remains¡¡but¡¡to¡¡establish¡¡the
matter¡¡in¡¡this¡¡way¡£¡±¡¡If¡¡we¡¡are¡¡not¡¡acquainted¡¡with¡¡these¡¡reasons£»¡¡this¡¡procedure¡¡strikes¡¡us¡¡as
arbitrary¡£

a¡£¡¡Leibnitz's¡¡philosophy¡¡is¡¡an¡¡idealism¡¡of¡¡the¡¡intellectuality¡¡of¡¡the¡¡universe£»¡¡and¡¡although¡¡from¡¡one
point¡¡of¡¡view¡¡he¡¡stands¡¡opposed¡¡to¡¡Locke£»¡¡as¡¡from¡¡another¡¡point¡¡of¡¡view¡¡he¡¡is¡¡in¡¡opposition¡¡to¡¡the
Substance¡¡of¡¡Spinoza£»¡¡he¡¡yet¡¡binds¡¡them¡¡both¡¡together¡¡again¡£¡¡For£»¡¡to¡¡go¡¡into¡¡the¡¡matter¡¡more
particularly£»¡¡on¡¡the¡¡one¡¡hand¡¡he¡¡expresses¡¡in¡¡the¡¡many¡¡monads¡¡the¡¡absolute¡¡nature¡¡of¡¡things
distinguished¡¡and¡¡of¡¡individuality£»¡¡on¡¡the¡¡other¡¡hand£»¡¡in¡¡contrast¡¡to¡¡this¡¡and¡¡apart¡¡from¡¡it£»¡¡he
expresses¡¡the¡¡ideality¡¡of¡¡Spinoza¡¡and¡¡the¡¡non¡­absolute¡¡nature¡¡of¡¡all¡¡difference£»¡¡as¡¡the¡¡idealism¡¡of
the¡¡popular¡¡conception¡£¡¡Leibnitz's¡¡philosophy¡¡is¡¡a¡¡metaphysics£»¡¡and¡¡in¡¡sharp¡¡contrast¡¡to¡¡the¡¡simple
universal¡¡Substance¡¡of¡¡Spinoza£»¡¡where¡¡all¡¡that¡¡is¡¡determined¡¡is¡¡merely¡¡transitory£»¡¡it¡¡makes
fundamental¡¡the¡¡absolute¡¡multiplicity¡¡of¡¡individual¡¡substances£»¡¡which¡¡after¡¡the¡¡example¡¡of¡¡the
ancients¡¡he¡¡named¡¡monads¡¡¡ª¡¡an¡¡expression¡¡already¡¡used¡¡by¡¡the¡¡Pythagoreans¡£¡¡These¡¡monads¡¡he
then¡¡proceeds¡¡to¡¡determine¡¡as¡¡follows¡£

Firstly£º¡¡¡°Substance¡¡is¡¡a¡¡thing¡¡that¡¡is¡¡capable¡¡of¡¡activity£»¡¡it¡¡is¡¡compound¡¡or¡¡simple£»¡¡the¡¡compound
cannot¡¡exist¡¡without¡¡the¡¡simple¡£¡¡The¡¡monads¡¡are¡¡simple¡¡substances¡£¡±¡¡The¡¡proof¡¡that¡¡they
constitute¡¡the¡¡truth¡¡in¡¡all¡¡things¡¡is¡¡very¡¡simple£»¡¡it¡¡is¡¡a¡¡superficial¡¡reflection¡£¡¡For¡¡instance£»¡¡one¡¡of
Leibnitz's¡¡maxims¡¡is£º¡¡¡°Because¡¡there¡¡are¡¡compound¡¡things£»¡¡the¡¡principles¡¡of¡¡the¡¡same¡¡must¡¡be
simple£»¡¡for¡¡the¡¡compound¡¡consists¡¡of¡¡the¡¡simple¡£¡±£¨6£©¡¡This¡¡proof¡¡is¡¡poor¡¡enough£»¡¡it¡¡is¡¡an¡¡example¡¡of
the¡¡favourite¡¡way¡¡of¡¡starting¡¡from¡¡something¡¡definite£»¡¡say¡¡the¡¡compound£»¡¡and¡¡then¡¡drawing
conclusions¡¡therefrom¡¡as¡¡to¡¡the¡¡simple¡£¡¡It¡¡is¡¡quite¡¡right¡¡in¡¡a¡¡way£»¡¡but¡¡really¡¡it¡¡is¡¡tautology¡£¡¡Of
course£»¡¡if¡¡the¡¡compound¡¡exists£»¡¡so¡¡does¡¡the¡¡simple£»¡¡for¡¡the¡¡compound¡¡means¡¡something¡¡in¡¡itself
manifold¡¡whose¡¡connection¡¡or¡¡unity¡¡is¡¡external¡£¡¡From¡¡the¡¡very¡¡trivial¡¡category¡¡of¡¡the¡¡compound¡¡it
is¡¡easy¡¡to¡¡deduce¡¡the¡¡simple¡£¡¡It¡¡is¡¡a¡¡conclusion¡¡drawn¡¡from¡¡a¡¡certain¡¡premiss£»¡¡but¡¡the¡¡question¡¡is
whether¡¡the¡¡premiss¡¡is¡¡true¡£¡¡These¡¡monads¡¡are¡¡not£»¡¡however£»¡¡something¡¡abstract¡¡and¡¡simple¡¡in
itself£»¡¡like¡¡the¡¡empty¡¡Epicurean¡¡atoms£»¡¡which£»¡¡as¡¡they¡¡were¡¡in¡¡themselves¡¡lacking¡¡in¡¡determination£»
drew¡¡all¡¡their¡¡determination¡¡from¡¡their¡¡aggregation¡¡alone¡£¡¡The¡¡monads¡¡are£»¡¡on¡¡the¡¡contrary£»
substantial¡¡forms£»¡¡a¡¡good¡¡expression£»¡¡borrowed¡¡from¡¡the¡¡Scholastics¡¡£¨supra£»¡¡p¡£¡¡71£©£»¡¡or¡¡the
metaphysical¡¡points¡¡of¡¡the¡¡Alexandrian¡¡School¡¡£¨Vol¡£¡¡II¡£¡¡p¡£¡¡439£©£»¡¡they¡¡are¡¡the¡¡entelechies¡¡of
Aristotle¡¡taken¡¡as¡¡pure¡¡activity£»¡¡which¡¡are¡¡forms¡¡in¡¡themselves¡¡£¨Vol¡£¡¡II¡£¡¡pp¡£¡¡138£»¡¡182£»¡¡183£©¡£
¡°These¡¡monads¡¡are¡¡not¡¡material¡¡or¡¡extended£»¡¡nor¡¡do¡¡they¡¡originate¡¡or¡¡decay¡¡in¡¡the¡¡natural¡¡fashion£»
for¡¡they¡¡can¡¡begin¡¡only¡¡by¡¡a¡¡creative¡¡act¡¡of¡¡God£»¡¡and¡¡they¡¡can¡¡end¡¡only¡¡by¡¡annihilation¡£¡±£¨7£©
Thereby¡¡they¡¡are¡¡distinguished¡¡from¡¡the¡¡atoms£»¡¡which¡¡are¡¡regarded¡¡simply¡¡as¡¡principles¡£¡¡The
expression¡¡creation¡¡we¡¡are¡¡familiar¡¡with¡¡from¡¡religion£»¡¡but¡¡it¡¡is¡¡a¡¡meaningless¡¡word¡¡derived¡¡from
the¡¡ordinary¡¡conception£»¡¡in¡¡order¡¡to¡¡be¡¡a¡¡thought¡¡and¡¡to¡¡have¡¡philosophic¡¡significance£»¡¡it¡¡must¡¡be
much¡¡more¡¡closely¡¡defined¡£

Secondly£º¡¡¡°On¡¡account¡¡of¡¡their¡¡simplicity¡¡the¡¡monads¡¡are¡¡not¡¡susceptible¡¡of¡¡alteration¡¡by¡¡another
monad¡¡in¡¡their¡¡inner¡¡essence£»¡¡there¡¡is¡¡no¡¡causal¡¡connection¡¡between¡¡them¡£¡±¡¡Each¡¡of¡¡them¡¡is
something¡¡indifferent¡¡and¡¡independent¡¡as¡¡regards¡¡the¡¡rest£»¡¡otherwise¡¡it¡¡would¡¡not¡¡be¡¡an¡¡entelechy¡£
Each¡¡of¡¡them¡¡is¡¡so¡¡much¡¡for¡¡itself¡¡that¡¡all¡¡its¡¡determinations¡¡and¡¡modifications¡¡go¡¡on¡¡in¡¡itself¡¡alone£»
and¡¡no¡¡determination¡¡from¡¡without¡¡takes¡¡place¡£¡¡Leibnitz¡¡says£º¡¡¡°There¡¡are¡¡three¡¡ways¡¡in¡¡which
substances¡¡are¡¡connected£º¡¡£¨1£©¡¡Causality£»¡¡influence£»¡¡£¨2£©¡¡The¡¡relation¡¡of¡¡assistance£»¡¡£¨3£©¡¡The¡¡relation
of¡¡harmony¡£¡¡The¡¡relation¡¡of¡¡influence¡¡is¡¡a¡¡relation¡¡pertaining¡¡to¡¡a¡¡commonplace¡¡or¡¡popular
philosophy¡£¡¡But¡¡as¡¡it¡¡is¡¡impossible¡¡to¡¡understand¡¡how¡¡material¡¡particles¡¡or¡¡immaterial¡¡qualities¡¡can
pass¡¡from¡¡one¡¡substance¡¡into¡¡another£»¡¡such¡¡a¡¡conception¡¡as¡¡this¡¡must¡¡be¡¡abandoned¡£¡±¡¡If¡¡we
accept¡¡the¡¡reality¡¡of¡¡the¡¡many£»¡¡there¡¡can¡¡be¡¡no¡¡transition¡¡at¡¡all£»¡¡each¡¡is¡¡an¡¡ultimate¡¡and¡¡absolutely
independent¡¡entity¡£¡¡¡°The¡¡system¡¡of¡¡assistance£»¡±¡¡according¡¡to¡¡Descartes£»¡¡¡°is¡¡something¡¡quite
superfluous£»¡¡a¡¡Deus¡¡ex¡¡machina£»¡¡because¡¡continual¡¡miracles¡¡in¡¡the¡¡things¡¡of¡¡nature¡¡are¡¡assumed¡£¡±
If¡¡we£»¡¡like¡¡Descartes£»¡¡assume¡¡independent¡¡substances£»¡¡no¡¡causal¡¡nexus¡¡is¡¡conceivable£»¡¡for¡¡this
presupposes¡¡an¡¡influence£»¡¡a¡¡bearing¡¡of¡¡the¡¡one¡¡upon¡¡the¡¡other£»¡¡and¡¡in¡¡this¡¡way¡¡the¡¡other¡¡is¡¡not¡¡a
substance¡£¡¡¡°Therefore¡¡there¡¡remains¡¡only¡¡harmony£»¡¡a¡¡unity¡¡which¡¡is¡¡in¡¡itself¡¡or¡¡implicit¡£¡¡The¡¡monad
is¡¡therefore¡¡simply¡¡shut¡¡up¡¡in¡¡itself£»¡¡and¡¡cannot¡¡be¡¡determined¡¡by¡¡another£»¡¡this¡¡other¡¡cannot¡¡be¡¡set
into¡¡it¡£¡¡It¡¡can¡¡neither¡¡get¡¡outside¡¡itself£»¡¡nor¡¡can¡¡others¡¡get¡¡inside¡¡it¡£¡±£¨8£©¡¡That¡¡is¡¡also¡¡Spinoza's¡¡way¡¡of
regarding¡¡matters£º¡¡each¡¡attribute¡¡entirely¡¡represents¡¡the¡¡essence¡¡of¡¡God¡¡for¡¡itself£»¡¡extension¡¡and
thought¡¡have¡¡no¡¡influence¡¡on¡¡each¡¡other¡£

In¡¡the¡¡third¡¡place£»¡¡¡°however£»¡¡these¡¡monads¡¡must¡¡at¡¡the¡¡same¡¡time¡¡have¡¡certain¡¡qualities¡¡or
determinations¡¡in¡¡themselves£»¡¡inner¡¡actions£»¡¡through¡¡which¡¡they¡¡are¡¡distinguished¡¡from¡¡others¡£
There¡¡cannot¡¡be¡¡two¡¡things¡¡alike£»¡¡for¡¡otherwise¡¡they¡¡would¡¡not¡¡be¡¡two£»¡¡they¡¡would¡¡not¡¡be¡¡different
but¡¡one¡¡and¡¡the¡¡same¡£¡±£¨9£©¡¡Here¡¡then¡¡Leibnitz's¡¡axiom¡¡of¡¡the¡¡undistinguishable¡¡comes¡¡into¡¡words¡£
What¡¡is¡¡not¡¡in¡¡itself¡¡distinguished¡¡is¡¡not¡¡distinguished¡£¡¡This¡¡may¡¡be¡¡taken¡¡in¡¡a¡¡trivial¡¡sense£»¡¡as¡¡that
there¡¡are¡¡not¡¡two¡¡individuals¡¡which¡¡are¡¡alike¡£¡¡To¡¡such¡¡sensuous¡¡things¡¡the¡¡maxim¡¡has¡¡no
application£»¡¡it¡¡is¡¡prima¡¡facie¡¡indifferent¡¡whether¡¡there¡¡are¡¡things¡¡which¡¡are¡¡alike¡¡or¡¡not£»¡¡there¡¡may
also¡¡be¡¡always¡¡a¡¡difference¡¡of¡¡space¡£¡¡This¡¡is¡¡the¡¡superficial¡¡sense£»¡¡which¡¡does¡¡not¡¡concern¡¡us¡£¡¡The
more¡¡intimate¡¡sense¡¡is£»¡¡however£»¡¡that¡¡each¡¡thing¡¡is¡¡in¡¡itself¡¡something¡¡determined£»¡¡distinguishing
itself¡¡from¡¡others¡¡implicitly¡¡or¡¡in¡¡itself¡£¡¡Whether¡¡two¡¡things¡¡are¡¡like¡¡or¡¡unlike¡¡is¡¡only¡¡a¡¡comparison
which¡¡we¡¡make£»¡¡which¡¡falls¡¡within¡¡our¡¡ken¡£¡¡But¡¡what¡¡we¡¡have¡¡further¡¡to¡¡consider¡¡is¡¡the¡¡determined
difference¡¡in¡¡themselves¡£¡¡The¡¡difference¡¡must¡¡be¡¡a¡¡difference¡¡in¡¡themselves£»¡¡not¡¡for¡¡our
comparison£»¡¡for¡¡the¡¡subject¡¡must¡¡have¡¡the¡¡difference¡¡as¡¡its¡¡own¡¡peculiar¡¡characteristic¡¡or
determination£»¡¡i¡£e¡££»¡¡the¡¡determination¡¡must¡¡be¡¡immanent¡¡in¡¡the¡¡individual¡£¡¡Not¡¡only¡¡do¡¡we
distinguish¡¡the¡¡animal¡¡by¡¡its¡¡claws£»¡¡but¡¡it¡¡distinguishes¡¡itself¡¡essentially¡¡thereby£»¡¡it¡¡defends¡¡itself£»¡¡it
preserves¡¡itself¡£¡¡If¡¡two¡¡things¡¡are¡¡different¡¡only¡¡in¡¡being¡¡two£»¡¡then¡¡each¡¡of¡¡them¡¡is¡¡one£»¡¡but¡¡the¡¡fact
of¡¡their¡¡being¡¡two¡¡does¡¡not¡¡constitute¡¡a¡¡distinction¡¡between¡¡them£»¡¡the¡¡determined¡¡difference¡¡in¡¡itself
is¡¡the¡¡principal¡¡point¡£

Fourthly£º¡¡¡°The¡¡determinateness¡¡and¡¡the¡¡variation¡¡thereby¡¡established¡¡is£»¡¡however£»¡¡an¡¡inward
implicit¡¡principle£»¡¡it¡¡is¡¡a¡¡multiplicity¡¡of¡¡modification£»¡¡of¡¡relations¡¡to¡¡surrounding¡¡existences£»¡¡but¡¡a
multiplicity¡¡which¡¡remains¡¡locked¡¡up¡¡in¡¡simplicity¡£¡¡Determinateness¡¡and¡¡variation¡¡such¡¡as¡¡this£»
which¡¡rem

·µ»ØĿ¼ ÉÏÒ»Ò³ ÏÂÒ»Ò³ »Øµ½¶¥²¿ ÔÞ£¨0£© ²È£¨0£©

Äã¿ÉÄÜϲ»¶µÄ