the origin of species(ÎïÖÖÆðÔ´)-µÚ45½Ú
°´¼üÅÌÉÏ·½Ïò¼ü ¡û »ò ¡ú ¿É¿ìËÙÉÏÏ·ҳ£¬°´¼üÅÌÉ쵀 Enter ¼ü¿É»Øµ½±¾ÊéĿ¼ҳ£¬°´¼üÅÌÉÏ·½Ïò¼ü ¡ü ¿É»Øµ½±¾Ò³¶¥²¿£¡
¡ª¡ª¡ª¡ªÎ´ÔĶÁÍꣿ¼ÓÈëÊéÇ©ÒѱãÏ´μÌÐøÔĶÁ£¡
lanes¡¡of¡¡imaginary¡¡intersection¡¡between¡¡the¡¡basins¡¡on¡¡the¡¡opposite¡¡sides¡¡of¡¡the¡¡ridge¡¡of¡¡wax¡£¡¡In¡¡parts£»¡¡only¡¡little¡¡bits£»¡¡in¡¡other¡¡parts£»¡¡large¡¡portions¡¡of¡¡a¡¡rhombic¡¡plate¡¡had¡¡been¡¡left¡¡between¡¡the¡¡opposed¡¡basins£»¡¡but¡¡the¡¡work£»¡¡from¡¡the¡¡unnatural¡¡state¡¡of¡¡things£»¡¡had¡¡not¡¡been¡¡neatly¡¡performed¡£¡¡The¡¡bees¡¡must¡¡have¡¡worked¡¡at¡¡very¡¡nearly¡¡the¡¡same¡¡rate¡¡on¡¡the¡¡opposite¡¡side¡¡of¡¡the¡¡ridge¡¡of¡¡vermilion¡¡wax£»¡¡as¡¡they¡¡circularly¡¡gnawed¡¡away¡¡and¡¡deepened¡¡the¡¡basins¡¡on¡¡both¡¡sides£»¡¡in¡¡order¡¡to¡¡have¡¡succeeded¡¡in¡¡thus¡¡leaving¡¡flat¡¡plates¡¡between¡¡the¡¡basins£»¡¡by¡¡stopping¡¡work¡¡along¡¡the¡¡intermediate¡¡planes¡¡or¡¡planes¡¡of¡¡intersection¡£¡¡
Considering¡¡how¡¡flexible¡¡thin¡¡wax¡¡is£»¡¡I¡¡do¡¡not¡¡see¡¡that¡¡there¡¡is¡¡any¡¡difficulty¡¡in¡¡the¡¡bees£»¡¡whilst¡¡at¡¡work¡¡on¡¡the¡¡two¡¡sides¡¡of¡¡a¡¡strip¡¡of¡¡wax£»¡¡perceiving¡¡when¡¡they¡¡have¡¡gnawed¡¡the¡¡wax¡¡away¡¡to¡¡the¡¡proper¡¡thinness£»¡¡and¡¡then¡¡stopping¡¡their¡¡work¡£¡¡In¡¡ordinary¡¡combs¡¡it¡¡has¡¡appeared¡¡to¡¡me¡¡that¡¡the¡¡bees¡¡do¡¡not¡¡always¡¡succeed¡¡in¡¡working¡¡at¡¡exactly¡¡the¡¡same¡¡rate¡¡from¡¡the¡¡opposite¡¡sides£»¡¡for¡¡I¡¡have¡¡noticed¡¡half¡completed¡¡rhombs¡¡at¡¡the¡¡base¡¡of¡¡a¡¡just¡commenced¡¡cell£»¡¡which¡¡were¡¡slightly¡¡concave¡¡on¡¡one¡¡side£»¡¡where¡¡I¡¡suppose¡¡that¡¡the¡¡bees¡¡had¡¡excavated¡¡too¡¡quickly£»¡¡and¡¡convex¡¡on¡¡the¡¡opposed¡¡side£»¡¡where¡¡the¡¡bees¡¡had¡¡worked¡¡less¡¡quickly¡£¡¡In¡¡one¡¡well¡marked¡¡instance£»¡¡I¡¡put¡¡the¡¡comb¡¡back¡¡into¡¡the¡¡hive¡¡and¡¡allowed¡¡the¡¡bees¡¡to¡¡go¡¡on¡¡working¡¡for¡¡a¡¡short¡¡time¡¡and¡¡again¡¡examined¡¡the¡¡cell£»¡¡and¡¡I¡¡found¡¡that¡¡the¡¡rhombic¡¡plate¡¡had¡¡been¡¡completed£»¡¡and¡¡had¡¡become¡¡perfectly¡¡flat£º¡¡it¡¡was¡¡absolutely¡¡impossible£»¡¡from¡¡the¡¡extreme¡¡thinness¡¡of¡¡the¡¡little¡¡rhombic¡¡plate£»¡¡that¡¡they¡¡could¡¡have¡¡affected¡¡this¡¡by¡¡gnawing¡¡away¡¡the¡¡convex¡¡side£»¡¡and¡¡I¡¡suspect¡¡that¡¡the¡¡bees¡¡in¡¡such¡¡cases¡¡stand¡¡in¡¡the¡¡opposed¡¡cells¡¡and¡¡push¡¡and¡¡bend¡¡the¡¡ductile¡¡and¡¡warm¡¡wax¡¡£¨which¡¡as¡¡I¡¡have¡¡tried¡¡is¡¡easily¡¡done£©¡¡into¡¡its¡¡proper¡¡intermediate¡¡plane£»¡¡and¡¡thus¡¡flatten¡¡it¡£¡¡
From¡¡the¡¡experiment¡¡of¡¡the¡¡ridge¡¡of¡¡vermilion¡¡wax£»¡¡we¡¡can¡¡clearly¡¡see¡¡that¡¡if¡¡the¡¡bees¡¡were¡¡to¡¡build¡¡for¡¡themselves¡¡a¡¡thin¡¡wall¡¡of¡¡wax£»¡¡they¡¡could¡¡make¡¡their¡¡cells¡¡of¡¡the¡¡proper¡¡shape£»¡¡by¡¡standing¡¡at¡¡the¡¡proper¡¡distance¡¡from¡¡each¡¡other£»¡¡by¡¡excavating¡¡at¡¡the¡¡same¡¡rate£»¡¡and¡¡by¡¡endeavouring¡¡to¡¡make¡¡equal¡¡spherical¡¡hollows£»¡¡but¡¡never¡¡allowing¡¡the¡¡spheres¡¡to¡¡break¡¡into¡¡each¡¡other¡£¡¡Now¡¡bees£»¡¡as¡¡may¡¡be¡¡clearly¡¡seen¡¡by¡¡examining¡¡the¡¡edge¡¡of¡¡a¡¡growing¡¡comb£»¡¡do¡¡make¡¡a¡¡rough£»¡¡circumferential¡¡wall¡¡or¡¡rim¡¡all¡¡round¡¡the¡¡comb£»¡¡and¡¡they¡¡gnaw¡¡into¡¡this¡¡from¡¡the¡¡opposite¡¡sides£»¡¡always¡¡working¡¡circularly¡¡as¡¡they¡¡deepen¡¡each¡¡cell¡£¡¡They¡¡do¡¡not¡¡make¡¡the¡¡whole¡¡three¡sided¡¡pyramidal¡¡base¡¡of¡¡any¡¡one¡¡cell¡¡at¡¡the¡¡same¡¡time£»¡¡but¡¡only¡¡the¡¡one¡¡rhombic¡¡plate¡¡which¡¡stands¡¡on¡¡the¡¡extreme¡¡growing¡¡margin£»¡¡or¡¡the¡¡two¡¡plates£»¡¡as¡¡the¡¡case¡¡may¡¡be£»¡¡and¡¡they¡¡never¡¡complete¡¡the¡¡upper¡¡edges¡¡of¡¡the¡¡rhombic¡¡plates£»¡¡until¡¡the¡¡hexagonal¡¡walls¡¡are¡¡commenced¡£¡¡Some¡¡of¡¡these¡¡statements¡¡differ¡¡from¡¡those¡¡made¡¡by¡¡the¡¡justly¡¡celebrated¡¡elder¡¡Huber£»¡¡but¡¡I¡¡am¡¡convinced¡¡of¡¡their¡¡accuracy£»¡¡and¡¡if¡¡I¡¡had¡¡space£»¡¡I¡¡could¡¡show¡¡that¡¡they¡¡are¡¡conformable¡¡with¡¡my¡¡theory¡£¡¡
Huber's¡¡statement¡¡that¡¡the¡¡very¡¡first¡¡cell¡¡is¡¡excavated¡¡out¡¡of¡¡a¡¡little¡¡parallel¡sided¡¡wall¡¡of¡¡wax£»¡¡is¡¡not£»¡¡as¡¡far¡¡as¡¡I¡¡have¡¡seen£»¡¡strictly¡¡correct£»¡¡the¡¡first¡¡commencement¡¡having¡¡always¡¡been¡¡a¡¡little¡¡hood¡¡of¡¡wax£»¡¡but¡¡I¡¡will¡¡not¡¡here¡¡enter¡¡on¡¡these¡¡details¡£¡¡We¡¡see¡¡how¡¡important¡¡a¡¡part¡¡excavation¡¡plays¡¡in¡¡the¡¡construction¡¡of¡¡the¡¡cells£»¡¡but¡¡it¡¡would¡¡be¡¡a¡¡great¡¡error¡¡to¡¡suppose¡¡that¡¡the¡¡bees¡¡cannot¡¡build¡¡up¡¡a¡¡rough¡¡wall¡¡of¡¡wax¡¡in¡¡the¡¡proper¡¡position¡¡that¡¡is£»¡¡along¡¡the¡¡plane¡¡of¡¡intersection¡¡between¡¡two¡¡adjoining¡¡spheres¡£¡¡I¡¡have¡¡several¡¡specimens¡¡showing¡¡clearly¡¡that¡¡they¡¡can¡¡do¡¡this¡£¡¡Even¡¡in¡¡the¡¡rude¡¡circumferential¡¡rim¡¡or¡¡wall¡¡of¡¡wax¡¡round¡¡a¡¡growing¡¡comb£»¡¡flexures¡¡may¡¡sometimes¡¡be¡¡observed£»¡¡corresponding¡¡in¡¡position¡¡to¡¡the¡¡planes¡¡of¡¡the¡¡rhombic¡¡basal¡¡plates¡¡of¡¡future¡¡cells¡£¡¡But¡¡the¡¡rough¡¡wall¡¡of¡¡wax¡¡has¡¡in¡¡every¡¡case¡¡to¡¡be¡¡finished¡¡off£»¡¡by¡¡being¡¡largely¡¡gnawed¡¡away¡¡on¡¡both¡¡sides¡£¡¡The¡¡manner¡¡in¡¡which¡¡the¡¡bees¡¡build¡¡is¡¡curious£»¡¡they¡¡always¡¡make¡¡the¡¡first¡¡rough¡¡wall¡¡from¡¡ten¡¡to¡¡twenty¡¡times¡¡thicker¡¡than¡¡the¡¡excessively¡¡thin¡¡finished¡¡wall¡¡of¡¡the¡¡cell£»¡¡which¡¡will¡¡ultimately¡¡be¡¡left¡£¡¡We¡¡shall¡¡understand¡¡how¡¡they¡¡work£»¡¡by¡¡supposing¡¡masons¡¡first¡¡to¡¡pile¡¡up¡¡a¡¡broad¡¡ridge¡¡of¡¡cement£»¡¡and¡¡then¡¡to¡¡begin¡¡cutting¡¡it¡¡away¡¡equally¡¡on¡¡both¡¡sides¡¡near¡¡the¡¡ground£»¡¡till¡¡a¡¡smooth£»¡¡very¡¡thin¡¡wall¡¡is¡¡left¡¡in¡¡the¡¡middle£»¡¡the¡¡masons¡¡always¡¡piling¡¡up¡¡the¡¡cut¡away¡¡cement£»¡¡and¡¡adding¡¡fresh¡¡cement£»¡¡on¡¡the¡¡summit¡¡of¡¡the¡¡ridge¡£¡¡We¡¡shall¡¡thus¡¡have¡¡a¡¡thin¡¡wall¡¡steadily¡¡growing¡¡upward£»¡¡but¡¡always¡¡crowned¡¡by¡¡a¡¡gigantic¡¡coping¡£¡¡From¡¡all¡¡the¡¡cells£»¡¡both¡¡those¡¡just¡¡commenced¡¡and¡¡those¡¡completed£»¡¡being¡¡thus¡¡crowned¡¡by¡¡a¡¡strong¡¡coping¡¡of¡¡wax£»¡¡the¡¡bees¡¡can¡¡cluster¡¡and¡¡crawl¡¡over¡¡the¡¡comb¡¡without¡¡injuring¡¡the¡¡delicate¡¡hexagonal¡¡walls£»¡¡which¡¡are¡¡only¡¡about¡¡one¡¡four¡hundredth¡¡of¡¡an¡¡inch¡¡in¡¡thickness£»¡¡the¡¡plates¡¡of¡¡the¡¡pyramidal¡¡basis¡¡being¡¡about¡¡twice¡¡as¡¡thick¡£¡¡By¡¡this¡¡singular¡¡manner¡¡of¡¡building£»¡¡strength¡¡is¡¡continually¡¡given¡¡to¡¡the¡¡comb£»¡¡with¡¡the¡¡utmost¡¡ultimate¡¡economy¡¡of¡¡wax¡£¡¡
It¡¡seems¡¡at¡¡first¡¡to¡¡add¡¡to¡¡the¡¡difficulty¡¡of¡¡understanding¡¡how¡¡the¡¡cells¡¡are¡¡made£»¡¡that¡¡a¡¡multitude¡¡of¡¡bees¡¡all¡¡work¡¡together£»¡¡one¡¡bee¡¡after¡¡working¡¡a¡¡short¡¡time¡¡at¡¡one¡¡cell¡¡going¡¡to¡¡another£»¡¡so¡¡that£»¡¡as¡¡Huber¡¡has¡¡stated£»¡¡a¡¡score¡¡of¡¡individuals¡¡work¡¡even¡¡at¡¡the¡¡commencement¡¡of¡¡the¡¡first¡¡cell¡£¡¡I¡¡was¡¡able¡¡practically¡¡to¡¡show¡¡this¡¡fact£»¡¡by¡¡covering¡¡the¡¡edges¡¡of¡¡the¡¡hexagonal¡¡walls¡¡of¡¡a¡¡single¡¡cell£»¡¡or¡¡the¡¡extreme¡¡margin¡¡of¡¡the¡¡circumferential¡¡rim¡¡of¡¡a¡¡growing¡¡comb£»¡¡with¡¡an¡¡extremely¡¡thin¡¡layer¡¡of¡¡melted¡¡vermilion¡¡wax£»¡¡and¡¡I¡¡invariably¡¡found¡¡that¡¡the¡¡colour¡¡was¡¡most¡¡delicately¡¡diffused¡¡by¡¡the¡¡bees¡¡as¡¡delicately¡¡as¡¡a¡¡painter¡¡could¡¡have¡¡done¡¡with¡¡his¡¡brush¡¡by¡¡atoms¡¡of¡¡the¡¡coloured¡¡wax¡¡having¡¡been¡¡taken¡¡from¡¡the¡¡spot¡¡on¡¡which¡¡it¡¡had¡¡been¡¡placed£»¡¡and¡¡worked¡¡into¡¡the¡¡growing¡¡edges¡¡of¡¡the¡¡cells¡¡all¡¡round¡£¡¡The¡¡work¡¡of¡¡construction¡¡seems¡¡to¡¡be¡¡a¡¡sort¡¡of¡¡balance¡¡struck¡¡between¡¡many¡¡bees£»¡¡all¡¡instinctively¡¡standing¡¡at¡¡the¡¡same¡¡relative¡¡distance¡¡from¡¡each¡¡other£»¡¡all¡¡trying¡¡to¡¡sweep¡¡equal¡¡spheres£»¡¡and¡¡then¡¡building¡¡up£»¡¡or¡¡leaving¡¡ungnawed£»¡¡the¡¡planes¡¡of¡¡intersection¡¡between¡¡these¡¡spheres¡£¡¡It¡¡was¡¡really¡¡curious¡¡to¡¡note¡¡in¡¡cases¡¡of¡¡difficulty£»¡¡as¡¡when¡¡two¡¡pieces¡¡of¡¡comb¡¡met¡¡at¡¡an¡¡angle£»¡¡how¡¡often¡¡the¡¡bees¡¡would¡¡entirely¡¡pull¡¡down¡¡and¡¡rebuild¡¡in¡¡different¡¡ways¡¡the¡¡same¡¡cell£»¡¡sometimes¡¡recurring¡¡to¡¡a¡¡shape¡¡which¡¡they¡¡had¡¡at¡¡first¡¡rejected¡£¡¡
When¡¡bees¡¡have¡¡a¡¡place¡¡on¡¡which¡¡they¡¡can¡¡stand¡¡in¡¡their¡¡proper¡¡positions¡¡for¡¡working£»¡¡for¡¡instance£»¡¡on¡¡a¡¡slip¡¡of¡¡wood£»¡¡placed¡¡directly¡¡under¡¡the¡¡middle¡¡of¡¡a¡¡comb¡¡growing¡¡downwards¡¡so¡¡that¡¡the¡¡comb¡¡has¡¡to¡¡be¡¡built¡¡over¡¡one¡¡face¡¡of¡¡the¡¡slip¡¡in¡¡this¡¡case¡¡the¡¡bees¡¡can¡¡lay¡¡the¡¡foundations¡¡of¡¡one¡¡wall¡¡of¡¡a¡¡new¡¡hexagon£»¡¡in¡¡its¡¡strictly¡¡proper¡¡place£»¡¡projecting¡¡beyond¡¡the¡¡other¡¡completed¡¡cells¡£¡¡It¡¡suffices¡¡that¡¡the¡¡bees¡¡should¡¡be¡¡enabled¡¡to¡¡stand¡¡at¡¡their¡¡proper¡¡relative¡¡distances¡¡from¡¡each¡¡other¡¡and¡¡from¡¡the¡¡walls¡¡of¡¡the¡¡last¡¡completed¡¡cells£»¡¡and¡¡then£»¡¡by¡¡striking¡¡imaginary¡¡spheres£»¡¡they¡¡can¡¡build¡¡up¡¡a¡¡wall¡¡intermediate¡¡between¡¡two¡¡adjoining¡¡spheres£»¡¡but£»¡¡as¡¡far¡¡as¡¡I¡¡have¡¡seen£»¡¡they¡¡never¡¡gnaw¡¡away¡¡and¡¡finish¡¡off¡¡the¡¡angles¡¡of¡¡a¡¡cell¡¡till¡¡a¡¡large¡¡part¡¡both¡¡of¡¡that¡¡cell¡¡and¡¡of¡¡the¡¡adjoining¡¡cells¡¡has¡¡been¡¡built¡£¡¡This¡¡capacity¡¡in¡¡bees¡¡of¡¡laying¡¡down¡¡under¡¡certain¡¡circumstances¡¡a¡¡rough¡¡wall¡¡in¡¡its¡¡proper¡¡place¡¡between¡¡two¡¡just¡commenced¡¡cells£»¡¡is¡¡important£»¡¡as¡¡it¡¡bears¡¡on¡¡a¡¡fact£»¡¡which¡¡seems¡¡at¡¡first¡¡quite¡¡subversive¡¡of¡¡the¡¡foregoing¡¡theory£»¡¡namely£»¡¡that¡¡the¡¡cells¡¡on¡¡the¡¡extreme¡¡margin¡¡of¡¡wasp¡combs¡¡are¡¡sometimes¡¡strictly¡¡hexagonal£»¡¡but¡¡I¡¡have¡¡not¡¡space¡¡here¡¡to¡¡enter¡¡on¡¡this¡¡subject¡£¡¡Nor¡¡does¡¡there¡¡seem¡¡to¡¡me¡¡any¡¡great¡¡difficulty¡¡in¡¡a¡¡single¡¡insect¡¡£¨as¡¡in¡¡the¡¡case¡¡of¡¡a¡¡queen¡wasp£©¡¡making¡¡hexagonal¡¡cells£»¡¡if¡¡she¡¡work¡¡alternately¡¡on¡¡the¡¡inside¡¡and¡¡outside¡¡of¡¡two¡¡or¡¡three¡¡cells¡¡commenced¡¡at¡¡the¡¡same¡¡time£»¡¡always¡¡standing¡¡at¡¡the¡¡proper¡¡relative¡¡distance¡¡from¡¡the¡¡parts¡¡of¡¡the¡¡cells¡¡just¡¡begun£»¡¡sweeping¡¡spheres¡¡or¡¡cylinders£»¡¡and¡¡building¡¡up¡¡intermediate¡¡planes¡£¡¡It¡¡is¡¡even¡¡conceivable¡¡that¡¡an¡¡insect¡¡might£»¡¡by¡¡fixing¡¡on¡¡a¡¡point¡¡at¡¡which¡¡to¡¡commence¡¡a¡¡cell£»¡¡and¡¡then¡¡moving¡¡outside£»¡¡first¡¡to¡¡one¡¡point£»¡¡and¡¡then¡¡to¡¡five¡¡other¡¡points£»¡¡at¡¡the¡¡proper¡¡relative¡¡distances¡¡from¡¡the¡¡central¡¡point¡¡and¡¡from¡¡each¡¡other£»¡¡strike¡¡the¡¡planes¡¡of¡¡intersection£»¡¡and¡¡so¡¡make¡¡an¡¡isolated¡¡hexagon£º¡¡but¡¡I¡¡am¡¡not¡¡aware¡¡that¡¡any¡¡such¡¡case¡¡has¡¡been¡¡observed£»¡¡nor¡¡would¡¡any¡¡good¡¡be¡¡derived¡¡from¡¡a¡¡single¡¡hexagon¡¡being¡¡built£»¡¡as¡¡in¡¡its¡¡construction¡¡more¡¡materials¡¡would¡¡be¡¡required¡¡than¡¡for¡¡a¡¡cylinder¡£¡¡
As¡¡natural¡¡selection¡¡acts¡¡only¡¡by¡¡the¡¡accumulation¡¡of¡¡slight¡¡modifications¡¡of¡¡structure¡¡or¡¡instinct£»¡¡each¡¡profitable¡¡to¡¡the¡¡individual¡¡under¡¡its¡¡conditions¡¡of¡¡life£»¡¡it¡¡may¡¡reasonably¡¡be¡¡asked£»¡¡how¡¡a¡¡long¡¡and¡¡graduated¡¡succession¡¡of¡¡modified¡¡architectural¡¡instincts£»¡¡all¡¡tending¡¡towards¡¡the¡¡present¡¡perfect¡¡plan¡¡of¡¡construction£»¡¡could¡¡have¡¡profited¡¡the¡¡progenitors¡¡of¡¡the¡¡hive¡bee£¿¡¡I¡¡think¡¡the¡¡answer¡¡is¡¡not¡¡difficult£º¡¡it¡¡is¡¡known¡¡that¡¡bees¡¡are¡¡often¡¡hard¡¡pressed¡¡to¡¡get¡¡sufficient¡¡nectar£»¡¡and¡¡I¡¡am¡¡informed¡¡by¡¡Mr¡£¡¡Tegetmeier¡¡that¡¡it¡¡has¡¡been¡¡experimentally¡¡found¡¡that¡¡no¡¡less¡¡than¡¡from¡¡twelve¡¡to¡¡fifteen¡¡pounds¡¡of¡¡dry¡¡sugar¡¡are¡¡consumed¡¡by¡¡a¡¡hive¡¡of¡¡bees¡¡for¡¡the¡¡secretion¡¡of¡¡each¡¡pound¡¡of¡¡wax£»¡¡so¡¡that¡¡a¡¡prodigious¡¡quantity¡¡of¡¡fluid¡¡nectar¡¡must¡¡be¡¡collected¡¡and¡¡consumed¡¡by¡¡the¡¡bees¡¡in¡¡a¡¡hive¡¡for¡¡the¡¡secretion¡¡of¡¡the¡¡wax¡¡necessary¡¡for¡¡the¡¡construction¡¡of¡¡their¡¡combs¡£¡¡Moreover£»¡¡many¡¡bees¡¡have¡¡to¡¡remain¡¡idle¡¡for¡¡many¡¡days¡¡during¡¡the¡¡proc